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Abstract: We show that exact computation of a family of ‘max weighted score’ 

estimators, including Manski’s max score estimator, can be achieved efficiently by 

reformulating them as mixed integer programs (MIP) with disjunctive constraints. The 

advantage of our MIP formulation is that estimates are exact and can be computed using 

widely available solvers in reasonable time. In a classic work-trip mode choice 

application our method delivers exact estimates that lead to a different economic 

interpretation of the data than previous heuristic estimates. In a small Monte Carlo study 

we find that our approach is computationally efficient for usual estimation problem sizes.  
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1. Introduction 
We are concerned with the computation of ‘max weighted score’ estimators that 

solve: 

[ ]-1

1

max  T 1 (2 1) 0
T

t t t
t

w y x
β

β
=

′− >∑      (1) 

where ty  is a binary (0-1) dependent variable, tx  is an explanatory variable (a p+1-

dimensional row vector), tw  is a scalar weight on the objective function at t, 

{ }0 1[ , ,..., ] 1,1p Bβ β β β= ∈ − × is the parameter to be estimated ( 0 β  is normalized in this 

way to allow identification and is appropriately chosen from the p+1 parameters while B 

is typically compact) and 1[v] equals one if v is a true logical statement or zero otherwise. 

This objective function is closely related to certain objectives that are by now classic in 

the optimization literature, especially the ‘weighted max-sat’ objective (e.g., Borchers 

and Furman, 1999) and the max weighted feasible linear subsystems objective (e.g., 

Amaldi, Pfetsch and Trotter, 2003). 

When 1tw =  this estimator is the maximum score estimator of Manski (1975); when 

tw  is some arbitrary function of tx  it is Elliott and Lieli’s (2006) maximum utility 

estimator; and if 1( )t ty v=  and | |t tw v=  where tv  is an observed variable, it is an 

estimator for the sign of the regression of v on x, as shown by Skouras (2001). These 

estimators are of wide applicability, with the max score estimator having been used in 

empirical studies of, inter alia, work-trip mode choice (Horowitz, 1993), residential 

mobility determination (Bartik et al, 1992), idling of cement kilns (Das, 1991), 

entitlement of housing benefits (Blundell et al, 1988), forecasting of basketball games 

outcomes (Caudill, 2003), contingent valuation of forest resources (Li, 1996) and welfare 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 3 

consequences to adult children due to taking care of their elderly parents (Kniesner et al, 

2001). The estimator for the regression sign in the context of forecasting financial returns 

maximizes profits of a simple forecast-based investment strategy and is used for this 

purpose by traders (Skouras, 2001b).  

The difficulty in computing these estimators arises because they are step functions of 

the parameters which furthermore will usually have a large number of local maxima (see 

Pinkse, 1993 and Skouras, 2003 for visualizations of such functions). This means 

standard optimization algorithms will perform poorly if they tend to get trapped in local 

maxima or may not be applicable, for example if they require analytical gradients. These 

observations are well known in the context of max score estimator computation which 

has attracted considerable interest (see Pinkse, 1993), and the treatment of the more 

general max weighted score estimators is very similar. 

The most popular and probably the only widely available computational algorithm for 

computing max score estimators seems to be Manski and Thompson’s (1986) ‘great 

circle search algorithm’ (GCS) which is implemented in LIMDEP. This is a heuristic 

algorithm (it does not guarantee a global optimum but is ‘intuitively appealing’) that has 

low computational complexity but does not guarantee global convergence (see Pinkse, 

1993, p. 192) and as we shall see has poor performance in actual applications . As far as 

we are aware, it is the only algorithm that has been used in empirical applications of max 

score estimators (see Table C in our online appendix). An alternative heuristic is the 

smoothing procedure discussed in Skouras (2003) which however leads to exact solutions 

only under difficult to verify conditions. In the context of computing estimators, heuristic 

algorithms that guarantee only local optima are problematic because the statistical 
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properties of such procedures can differ from those of exact estimates in arbitrary ways, a 

point emphasized by Andrews (1997). Unfortunately, Andrews’ method for dealing with 

this problem is inapplicable here due to the unusual nature of the weighted score 

objective function. The algorithm for exact computation of the maximum score estimator 

suggested by Pinkse (1993) compares scores at the intersections of the T hyperplanes 

tx β′  (which partition the parameter space B into regions of constant score). This 

hyperplane intersection algorithm (HI) is too computationally expensive in realistic 

contexts: when p=4 and T=500, it requires the solution of approximately 9105.2 ⋅  systems 

of 4-by-4 linear equations.  

We suggest a new method for exact computation of max weighted score 

estimators by reformulating them as a mixed integer programming problem (MIP). Our 

method has been designed to be more efficient than HI in realistic contexts, is based on 

MIP solvers available in many numerical mathematics packages and is therefore very 

easy to implement. Intuitively, the reason our estimator can achieve an exact optimum 

more efficiently than HI is because it determines parameter regions in which performance 

is low and avoids searching in those regions (see the example of Section 2). While MIP is 

still rarely used by economists, the fact that MIP reformulations of economic problems 

can be efficient was observed at least as early as Dantzig (1960); in an econometric 

context the only application we know of has been the recent work of Jouneau-Sion and 

Torres (2006) who use MIP to compute Dufour’s (2006) maximized Monte Carlo test 

statistic. 

The proposed MIP reformulation of max weighted score estimators is provided in 

the next section together with a very simple example that illustrates its effectiveness. In 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 5 

Section 3.1 we use our software to re-compute the estimates in Horowitz’s (1993) classic 

analysis of work-trip mode choice and arrive at an empirical model with very different 

economic interpretation and much larger score. In section 3.2 we provide a Monte Carlo 

comparison of the MIP algorithm with a Fortran implementation of Pinkse’s HI algorithm 

and the LIMDEP implementation of Manski & Thompson’s GCS algorithm. We make 

some concluding remarks in Section 4 and provide supporting documentation, auxiliary 

results, code for implementing our approach and a code manual in an online appendix at 

http://liee.ntua.gr/kf/mws. Our code can be linked to high-level languages or used as a 

stand-alone executable depending on the preferences of the user. 

2. Mixed Integer Programming formulation of  max  weighted score 

estimators  

For simplicity in what follows we will assume that the sign of 0 β  is known on a 

priori grounds to be positive so 0 β =1 (this negative case can be handled by multiplying 

x0 by minus one). This is quite usual in practice and will often be the basis for choosing 

which variable will have the normalized parameter (i.e. be assigned to x0). However, if 

such a priori information does not exist for any variable we would need to solve the max 

weighted score estimation problem twice, one for each possible value of 0 β . 

It is straightforward to verify that an equivalent expression for the max weighted 

score estimator is: 
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where xti is the i’th element of the row vector xt; remember that the zero’th element is the 

one for which the coefficient β0 has been normalized to 1 which is emphasized by the 

formulation of the term in the brackets of the inequality. 

This formulation introduces T new binary decision variables in addition to the 

parameter β  (one tz  for each observation) that capture whether sgn( )tx β′  hits or misses 

2 1ty −  at each t. The weighted hits are now maximised subject to T new disjunctive 

constraints on the estimator objective function. The computational difficulty of this 

problem depends on T, p and of course B, which controls the size of the search space, so 

as usual the range of plausible parameters needs to be chosen judiciously in the context of 

each application to be as narrow as possible. 

Notice that this objective function is linear in decision variables (the step function has 

been eliminated) while some, but not all, decision variables are now constrained to be 

integer (in fact binary) variables. This linear mix of integer and continuous variables 

together with the disjunctive constraints represents a reformulation of our objective as a 

classic ‘mixed integer linear program with disjunctive constraints’ (Nemhauser and 

Wolsey 1999, p. 12).  

Notice that if we relax the constraints on the zt’s they become continuous variables in 

[0,1] and the optimization problem becomes a standard linear programming problem 

which is easy to solve. The maximum of the relaxed problem will always be larger than 
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the maximum of the actual (more constrained) problem and this is exploited by standard 

MIP solvers such as brand-and-bound to easily eliminate directions of search in which 

the actual objective must be small since even the relaxed objective is small. In what 

follows we illustrate with a very simple example how the reformulated max weighted 

score estimation problem can be solved with a simple branch-and-bound algorithm, 

noting that the solvers used by our code are sophisticated refinements of the same 

approach. 

Example: Consider data such that x0 = [2,-3,-1]’, x1 = [1,1,1]’, y = [0,1,0]’, w = [1,1,1]’ 

and B = [-5,5]. In such a trivially small max score estimation problem a solution can be 

obtained effectively in a number of ways.  The purpose of this example is only to 

illustrate the mixed integer linear program with disjunctive constraints formulation and 

how it can be solved; according to (2), max score estimation requires the solution of  

, , ,1 2 3 1

1 2 3

1 1

1 2

1 3

1 2 3

1

max   . .

7 5

8 5
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      (3) 

 
This can be achieved for example by maximizing with respect to β1 (a trivial exercise 

in linear programming) each of the eight possible combinations of values for [z1,z2,z3] 

and comparing these eight maxima to find the global maximum. A more intelligent 

branch-and-bound solution method with relaxations involves searching along the eight 

combinations by solving only four linear programs as follows: 

Step 1: Solve the linear program (LP) produced by fixing z1 to 1 and relaxing variables 

z2, z3 to take any value in [0,1]. The solution is [z1, z2, z3, β1] = [1, 0.375, 1, -2] with score 
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2.375. Notice that this is a solution that does not satisfy all the constraints of our desired 

objective since the constraint that the z’s should be binary have been relaxed. 

Step 2: Now fix also z2 to 1 allowing z3 to be in [0,1]. This LP does not have a solution. 

Hence we can exclude both combinations [z1, z2, z3]=[1,1,1] or [1,1,0] as potential 

solutions. This means there does not exist a parametrization which can score on both of 

the first two realizations. 

Step 3: Fix [z1, z2]=[1, 0] with z3 in [0,1]. This LP is solved at [1, 0, 1, -3.824] with score 

2. 

Step 4: In addition to the above, fix also z3 to 1 to try a combination that satisfies all the 

constraints of the actual problem. A (non-unique) solution is at [1,0,1,-2] with score 2. 

Step 5: A solution with [z1, z2, z3]=[1,0,0] would have a score of one which is less than 

that at the parametrization of Step 4 so we do not need to solve the LP for this 

combination. 

Step 6: Analogously to Step 1, we now fix z1 at 0 and relax variables z2,z3 to take any 

value in [0,1]. This LP is solved at [0,0.75,1,1] with a score of 1.75. This is lower than 

the solution of Step 4 which provides us with a score maximizing parameter β1=-2 since 

imposing constraints on z2, z3 cannot possibly help. 

We see that max score estimation was achieved using a branch-and-bound algorithm 

that required solving four trivial LP problems and just a few additional operations. In 

fact, MIP solvers will typically use heuristic refinements on branch-and-bound that can 

achieve large reductions in computation time. 
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3. Application: Computation of max score estimates 

In order to assess the practical usefulness of the MIP formulation of the max weighted  

score estimator, we study in detail the computation underlying Horowitz’s (1993) widely 

cited max score estimation of a work-trip mode choice model for Washington DC (also 

appearing in Horowitz (2004), Gozalo et al (2000) and McDonald (1996)). Our aim is to 

show that in a relevant problem the computational procedure we propose is practical, 

effective and a significant improvement over currently used methods. In our online 

appendix B we also provide results based on simulated data which agree qualitatively 

with the conclusions drawn in the context of this application. 

The results reported below solve our MIP with disjunctive constraints formulation of 

max weighted score estimators by calling GAMS XPRESS - a widely available 

commercial solver for MIP problems (using a branch-and-cut technique, a variant of the 

branch-and-bound algorithm described in the example of section 2; see e.g. Williams 

(1985), pp.157-161). The code for obtaining these results has been included in the GAMS 

model library since Distribution 22.6 and is also available together with a similar open-

source Fortran implementation in our online appendix. Commercial MIP solvers tend to 

be faster than the best open-source competitors, hence we have provided code that works 

with either. A convenient feature of wither implementation is that they also provide the 

user with an upper bound on the underperformance relative to the global optimum should 

there be a computation time constraint that does not allow the computation of the global 

optimum. 
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3.1 Exact computation of Horowitz’s (1993) work-trip mode choice model 

estimates 

Briefly, for a sample of 842 persons in Washington DC in the late 1960’s Horowitz 

(1993) modeled the ‘work-trip mode choice’ decision (automobile or other) for the daily 

trip from home to work. The explanatory variables were the number of cars owned by the 

traveler’s household (CARS); the transit out-of-vehicle travel time minus automobile out-

of-vehicle travel time (DOVTT in minutes); the transit in-vehicle travel time minus 

automobile in-vehicle travel time (DIVTT in minutes); and the transit fare minus 

automobile travel cost (DCOST in dollars). The coefficient chosen for the identification 

normalization (β0) was that of DCOST (x0) which was set to one. Table 1 reports 

published computed estimates from Horowitz (1993), estimates based on the LIMDEP 

implementation of the max score estimator (which uses essentially the same algorithm as 

Horowitz), and our own exact results. Horowitz reports computing these using code 

provided by Manski and Thompson that has been widely used, including Manski and 

Thompson (1986), Bartik et al (1992) and Das (1991). In order to impose a plausible 

constraint on B, we standardized variables to mean zero and unit standard deviation and 

(very conservatively) allowed each parameter to be in the range [-10, 10] so that 

parameters were allowed to be an order of magnitude larger than the standard deviations 

in the raw data. Estimates obtained after this normalization also facilitate comparison of 

the relevance of each variable on the score. 

Evidently, the published analysis would lead to the conclusion that DCOST and 

CARS are the most significant determinants of work-trip mode choice; we might easily 

arrive at the conclusion that DCOST is by far the most significant determinant of work-
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trip mode choice since its parameter is twenty time larger than the next largest parameter 

(for CARS) with standardized data. This conclusion is also likely to emerge from 

LIMDEP estimates which however are even more puzzling in that they suggest the effect 

of CARS is negative; we have not attempted to evaluate statistical significance of the 

estimates because it is now known – as opposed to the time of publication of the original 

study - that standard errors for max score estimates are difficult to estimate, even with 

bootstrapping (Abrevaya et al, 2005). In contrast, our exact estimates indicate that CARS 

is by far the most important variable, and that probably the only factor of any relevance 

to work-trip mode choice is whether at least one car is owned - if CARS is one or larger 

the other variables must take on extremely negative values for the model to predict that 

the work-trip is not by automobile. This suggests the regression coefficients for DIVTT, 

DOVTT and DCOST should be treated as zero and interpreted in this way both 

economically and in any subsequent statistical analyses. This simple fact is obscured by 

computational inaccuracies in competing algorithms. The same inaccuracies probably 

corrupt published bootstrap estimates for standard errors and other statistics of max score 

estimates that are based on heuristic optimization procedures. 

A more detailed auxiliary analysis confirmed this intuition: omitting DIVTT, DOVTT 

and DCOST led to a model in which car owners always use a car and the rest do not. This 

simple model reduces the score by only 11 hits and in particular the three additional 

variables lead to only 4 additional hits on car travelers who do not own a car and 7 car 

owners who do not travel by car. These additional hits are either due to a very negative 

value of DCOST (‘other’ is much cheaper than car transport) for car owners who in fact 

do not use their cars; or to a large value simultaneously in DIVTT, DOVTT and DCOST 
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for a non-car owner who nevertheless travels by car. Put simply, these variables only 

explain the behavior of a relatively small number of outliers. 

3.2  Performance analysis of MIP approach 

Having shown in the previous section that applications of the max score estimation 

should be based on exact estimates and that these can be achieved using a MIP approach, 

we now examine its time-performance. The computation of exact estimates using the 

GAMS XPRESS MIP solver (version 15.25) required significant computation time: on a 

standard (Windows XP) notebook with a 1.73 GHz Pentium M processor and 512MB 

RAM it took approximately 10.5 hours (37,516 CPU seconds to solve approximately 5 

million linear programs). The total computation time depends on the quality of the solver 

used and we observed significant speed-ups with the CPLEX 11 solver and slow-down 

with the open-source SCIP solver. It is also crucial to note that in our experiments we 

observed that the exact maximum can often be obtained very quickly, within a few 

minutes, but what takes longer is for the algorithm to prove that the maximum found is 

indeed exact; this suggests that satisfactory results are obtainable even with severe 

computation constraints. 

It is relevant to address the issue of how algorithm performance scales across the 

range of sizes of realistic applications and compare this with the performance of the only 

alternative available algorithm for computing exact estimates, i.e. Pinkse’s (1993) HI 

algorithm, implemented by us in Fortran. As we discussed in the introduction for 

problems of the order of the work-trip mode choice application the HI algorithm will be 

unacceptably slow for most users with access to standard technology. Indeed, the exact 

HI Fortran algorithm took 658,001 CPU seconds to solve approximately 21 billion 4-by-4 
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linear systems – which is an order of magnitude slower than the MIP approach. In what 

follows, we evaluate the robustness of this result in realistically sized applications. We do 

not provide comparisons to results from GCS computations since we have already seen 

that such computations tend to be extremely inaccurate. 

As it happens, the work-trip mode choice application of the previous subsection is 

average sized relative to the published literature. In order to gauge the scalability and 

randomness in performance across realistic applications, we performed a small Monte 

Carlo study the results of which are reported in Table 2. Specifically, ten samples of size 

250, 500 and 1000 were randomly constructed by sampling without replacement from the 

data of the previous subsection. Since the original data contained only 842 observations, 

the Monte Carlo samples with 1000 observations were created by choosing 158 

observations randomly without replacement from the original sample to occur twice in 

the Monte Carlo samples (together with the original 842 observations). We estimated 

linear models with two, three, four and five explanatory variables where the fifth 

explanatory variable was traveller income (INC, in thousands of dollars) - a variable not 

used in the original study. Thus in total, 3 4 10 120× × =  estimated models were 

computed. 

 From Table 2 two clear qualitative conclusions emerge: First, even for very small 

estimation problems the HI algorithm has no advantage over the MIP formulation. More 

importantly, it scales much worse than the MIP formulation and is probably impractical 

for most users if there are either more than 500 observations or more than three estimated 

parameters (the performance differential increases much more dramatically with the 

number of estimated parameters than sample size). Second, the MIP performance can 
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vary significantly from one data set to another, whereas the HI algorithm’s performance 

is practically constant. This is not surprising since the MIP algorithm exploits sample-

specific features of each optimisation to avoid unnecessary computations whereas the HI 

algorithm involves computations the number of which is invariant across problems of the 

same size. 

 Without emphasising quantitative differences in algorithm performance (since 

these can depend significantly on our software and hardware implementations which 

however are almost certainly advantageous for the HI algorithm) we can confirm what is 

expected from complexity considerations, i.e. that for medium sized problems the HI 

algorithm becomes impractical. But exact rather than heuristic computation of max score 

estimators is definitely necessary so computing max score estimators as MIP may be the 

only viable approach in realistically sized applications. 

 

4. Concluding remarks 

The purpose of this note is to communicate the observation that max weighted  score 

estimators can be computed exactly using mixed integer programming methods and that 

this is practical in realistic applications. We apply our proposed MIP approach to max 

score estimation of a widely cited work-trip mode choice model and find our exact 

estimates lead to a different economic interpretation than published approximate 

estimates. In particular, for the vast majority, commuting by car occurs if and only if at 

least one car is owned, presumably because the decision to buy a car is very closely tied 

with the desire to drive to work; contrary to what was previously believed, travel costs 

and the total number of cars add no additional information. This illustrates the importance 
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of exact computation of estimators emphasized also by Andrews (1997) and suggests that 

‘computation uncertainty’ (as an analog of estimation or model uncertainty) can be a 

major unquantified source of uncertainty about empirical results. The approach proposed 

here and the accompanying code we provide for computing max weighted score 

estimators should help eliminate this source of uncertainty in future studies. 

We believe there is much scope for application of MIP in econometrics. In auxiliary 

results reported in online appendix E, we have shown that the sum of absolute deviations 

estimator of the ordered response model and the mode regression estimator of the 

censored regression model can also be treated as MIP problems; together with the 

application of MIP by Jouneau-Sion and Torres (2006) and our results here, this suggests 

that MIP may be become a broadly useful tool for econometricians. The close connection 

between the weighted score and certain objectives studied by the Operations Research 

community is also an intriguing avenue for future research. 
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  INTCPT CARS DOVTT DIVTT DCOST % Max 

score 
Absolute 

Max score 
MIP (raw)  -110.08 170.67 3.630 0.8477 1.0 0.9086 765 

MIP (norm) 5.122 3.916 0.962 0.401 1.0 0.9086 765 
GCS (raw) 47.78 4.152 0.3785 -0.7475 -1.0 0.7850 661 

GCS (norm) 1.5558 0.09526 0.1003 -0.3536 -1.0 0.7850 661 
HOR (raw) -1.6466 

(0.1374) 
2.2520 

(0.1480) 
0.0411 

(0.0294) 
0.0110 

(0.0106) 
1.0 0.5736 483 

HOR (norm) -0.27619 0.05167 0.01089 0.00520 1.0 0.5736 483 
Table 1: Parameter and max score results for Horowitz (1993) work-trip mode choice data by exact mixed 
integer program (MIP) and heuristic LIMDEP implementation of the great circle search (GCS) method 
together with results reported in Horowitz (1993) as computed by an alternative implementation of GCS. 
The parameters are reported for raw and standardised (to mean zero and unit standard deviation) data. In an 
auxiliary analysis we exhaustively searched the parameter space (for the standardized regressors) and found 
that the parameter region in which the exact maximum and near maxima are achieved is both narrow and 
unique. 
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p T 
 2 3 4 5 

  HI MIP HI MIP HI MIP HI MIP 
0.244 0.24 22.22 1.6 1566 10 87806 89 
0.003 0.06 0.14 0.9 9 6 243 79 
0.244 0.23 22.19 1.3 1564 10 87695 58 
0.240 0.16 22.02 0.9 1559 3 87580 17 

250 Mean 
Std.Dev. 
Median 
Min 
Max 0.251 0.36 22.42 3.7 1583 26 88330 244 

      

1.960 1.4 350.4 37 48536 920 
0.022 0.3 2.3 15 202 666 
1.958 1.3 350.5 33 48559 761 
1.924 1.0 345.7 22 48154 190 

500 Mean 
Std.Dev. 
Median 
Min 
Max 2.003 1.8 354.0 66 48816 2269 

 

      
16.06 12 5729 4339 
0.14 4 42 1885 

16.04 12 5706 4563 
15.77 7 5690 1989 

1000 Mean 
Std.Dev. 
Median 
Min 
Max 16.35 17 5796 6584 

  

Table 2: CPU time in seconds for HI and MIP algorithms using simulation data. The MIP runs were 
executed on a notebook with a Pentium M processor of 1.73 GHz and 512MB RAM running Windows XP 
using GAMS XPRESS software. The HI runs were executed on a workstation with two dual core AMD 
Opteron 880 processors (only one processor was used for this run) and 8GB RAM running SuSe Linux64 
using g77 open source FORTRAN77 compiler. A graphical representation of this table is available in 
online appendix D. 
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Figure 1: Convergence of the MIP approach applied to the work-trip mode choice max score 
estimator. The dashed line represents an upper bound on the max score and the solid line 
represents the computed maximum score as a function of time (nodes in the first panel and CPU 
secs in the second). In total, 4,955,300 nodes are solved and account for 37516 CPU sec. The run 
was executed on a notebook with a Pentium M technology processor of 1.73 GHz and 512MB 
RAM running Windows XP using GAMS XPRESS software. 
 

 


