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ABSTRACT

Since the backscattered signal in PolSAR images is intrinsi-

cally linked with the physical characteristics of the objects in

the image, valuable information may be extracted therefrom.

The paper focus is to propose a new physical characterization

of the scattering target, inspired by the Blind Sources Separa-

tion techniques.

Index Terms— PolSAR, incoherent decomposition, ICA,

PCA.

1. INTRODUCTION

Appropriate backscattered signal stochastic models are es-

sential for correctly segmenting high-resolution Polarimetric

SAR (PolSAR) images. Modeling using multivariate, cen-

tered, circular Gaussian random process is no longer accept-

able for the new high quality images, since the reduced di-

mensions of the resolution cells increase the heterogeneity of

the observed scene and obsoletes the Gaussian polarimetric

model. Examples of advanced, non-Gaussian polarimetric

stochastic models are the SIRV model and various submod-

els (e.g. the KummerU model [1], which assumes a Fisher-

distributed texture).

During classification of image pixels in PolSAR, each

pixel receive the label of a class. This is illustrated in Fig. 1

[1] (classes are coded with colors). The segmentation algo-

rithm essentially relies on the underlying stochastic model

assumed for the backscattered radar signal (e.g. Gaussian,

SIRV/KummerU, etc.). As such, homogeneity of determined

classes is based on the statistical distribution of PolSAR im-

age pixels, and the physical characteristics of the objects in

the image are not considered at this stage.

In order to complement the stochastically-based pixel

classification, physical characterization may be also used.

Since the backscattered signal is intrinsically linked with the

physical characteristics of the objects in the image, valuable

information may be extracted therefrom. The paper focus is

to propose a new physical characterization of the scattering
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target, inspired by the Blind Sources Separation (BSS) tech-

niques.

(a) (b)

Fig. 1. Classification results for the X-band RAMSES data

over the Toulouse test-site (700 × 700 pixels) : (a) Colored

composition of the target vector [k]1-[k]3-[k]2. (b) Classifica-

tion using the Wishart criterion.

2. PHYSICAL CHARACTERIZATION

Efforts have been made in direction of characterizing the

physical structure of the objects observed by a radar from

their polarimetric echo. Several such decompositions have

been proposed: the Huynen decomposition [2], the H/α/A de-

composition [3], the Target Scattering Vector Model (TSVM)

decomposition [4], etc. The fundamental idea of those de-

composition is that each elementary reflector (surface, sphere,

dihedral, . . . ) has a particular backscattering mechanism and

that each target may be described as a superposition of such

elementary reflectors.

2.1. H/α/A and TSVM decompositions

The scattering matrix S contains the polarimetric compo-

nents:

S =

[

SHH SHV

SV H SV V

]

. (1)

For a monostatic radar in a homogeneous environment, the

reciprocity theorem [5] ensures that SHV = SV H . In this

case, the scattering vector is defined as a vectorization of the



scattering matrix S represented in the Pauli basis:

kP =
[

SHH + SV V SHH − SV V 2SHV

]T
. (2)

The coherency matrix T is defined as:

T = E
[

kP · k
†
P

]

. (3)

Several incoherent target decompositions (ICTD) theorems

have been proposed in the literature to compute polarimet-

ric parameters from the coherency matrix T. The H/α/A and

TSVM-ICTD decompositions extract a first set of parameters

computed from the eigenvalues of T, and a second set of pa-

rameters which is computed from the eigenvectors of T, us-

ing either the α/β model (for the H/α/A decomposition) [3]

or the TSVM model [4].

Since T is hermitian and positive semi-definite, it is pos-

sible to write:

T = VΣV
† =

3
∑

i=1

λikik
†
i , (4)

where Σ is the diagonal matrix of the eigenvalues of T (ar-

ranged in decreasing order), while V is the complex matrix

whose columns are the corresponding eigenvectors of T.

2.2. Parametrization of eigenvalues

Three roll-invariant parameters can be extracted from the

eigenvalues of T, namely the span: span =
∑3

i=1
λi; the en-

tropy: H =
∑3

i=1
−pi log3 pi where the pseudo-probabilities

pi are given by pi = λi
P

3

j=1
λj

and the anisotropy: A =

λ2−λ3

λ2+λ3

= p2−p3

p2+p3

.

2.3. Parametrization of eigenvectors

The parameters computed from the eigenvectors vary accord-

ing to the retained model.

In the α/β model [3], each eigenvector ki of the

coherency matrix T is parametrized using five angles

(αi, βi, γi, δi, θi):

ki = ejθi





cosαi

sinαi cosβie
jδi

sinαi sinβie
jγi



 . (5)

Global characterization of the target is achieved with

weighted averaged parameters (e.g. α = p1α1 + p2α2 +
p3α3). For the α/β model, only αi angles are roll-invariant.

The (incoherent) H/α/A decomposition reunites the H , α and

A parameters.

The (incoherent) TSVM decomposition, proposed by

Touzi in 2007, consists in the following parametrization of

coherence matrix T eigenvectors ki (see [4] for details). It

leads:

ki = ejΦsi





1 0 0
0 cos(2ψi) − sin(2ψi)
0 sin(2ψi) cos(2ψi)





×





cosαsi
cos(2τmi

)

sinαsi
ejΦαsi

− j cosαsi
sin(2τmi

)



 . (6)

ψi is the orientation of the maximum polarization with re-

spect to the horizontal polarization. τm is the target helicity,

it characterizes the symmetry of the target. αs and Φαs
are

the symmetric scattering type magnitude and phase. They are

derived from the con-eigenvalues µ1 and µ2 of the scattering

matrix S by:

tan(αs) e
jΦαs =

µ1 − µ2

µ1 + µ2

. (7)

The TSVM decomposition gives four roll-invariant (indepen-

dent of ψi) parameters for each eigenvector, namely αsi
,

Φαsi
, τmi

and λi.

3. BLIND SOURCES SEPARATION TECHNIQUES

An alternative to the physical decompositions based on the

covariance matrix is to use the techniques dedicated for blind

source separation (BSS). In its simplest form, the latter as-

sumes that several sensors record different linear combina-

tions of an equal number of sources. Making use of relatively

weak hypothesis on the original sources (e.g. the statistical

independence of the random sources), the BSS techniques at-

tempt to retrieve the coefficients of the linear combinations

(e.g. the mixing matrices) and, correspondingly, the signals

transmitted by the sources.

3.1. ICA- and PCA-decomposition

Under the hypothesis that PolSAR image pixels are realiza-

tions of a multivariate (three-dimensional) stochastic process

(for example, the KummerU model [1]), whose components

are linear combinations of one-dimensional sources, the scat-

tering vectors may be written as:

kP = A





s1
s2
s3



 = B





v1
v2
v3



 . (8)

In the equation above, sources s1, s2 and s3 (forming vector

s) are assumed to be statistically independent, while sources

v1, v2 and v3 (forming vector v) are assumed to be statisti-

cally uncorrelated. Obviously, the latter hypothesis is weaker,

since components of s are also uncorrelated. More, compo-

nents of s and v are assumed to have unit power (their correla-

tion matrices are the identity matrix). A and B are the corre-

sponding 3×3 mixing matrices. There are those matrices that



bear information about the relative energies of components in

vectors s and v.

One should note that the decompositions above are not al-

ways pertinent since not always the components of kP are ob-

tained through linear mixing of some statistically independent

(or statistically uncorrelated) random sources. In the particu-

lar case of PolSAR images, those sources should represent

elementary scattering mechanisms (dihedral angle, surface,

etc.). The presence of those scattering mechanism in a con-

sidered pixel (cell resolution) is debatable.

Based on the statistical assumptions regarding compo-

nents of s and v, the decomposition As is called ICA-

decomposition and, respectively, the decomposition Bv is

called PCA-decomposition. The relations between T, A and

B are:

T = AA
† = BB

†

A = BP (9)

PP
† = I3

Basically, both A and B are factorizations (”square roots”) of

matrix T. The unitary matrix P is assimilable to a rotation.

Mixing matrices A and B are not known, but they may be

retrieved under two paradigms.

First, since the only constraint placed on B is described in

second-order statistics (that correlation matrix of v is identity

matrix), it follows that B is retrievable through an analysis

of the second-order statistics (i.e. the coherency matrix T).

Indeed, it follows that choosing the columns of B to be the

very eigenvectors of T (more precisely, their un-normalized

versions, i.e. multiplied with square roots of corresponding

eigenvalues) is such a sufficient constraint.

However, the choice made above is not unique, since

there are many other choices that ensure uncorrelation be-

tween components of v: multiplication of B with an arbitrary

but unitary matrix P still ensures lack of correlation between

components of v.

On the other hand, choosing the eigenvectors of T for

the columns of B ensures the fact that maximum energies

are achieved for components of v. From the particular struc-

ture of T it also follows that the eigenvectors are orthogonal.

These properties are lost through multiplication with P.

Second, matrix A cannot be retrieved under the same

paradigm, since statistical independence cannot be tested in

the restricted framework of second-order statistics, unless

multivariate Gaussian is assumed. Hence, while intrinsically

linked to T, A cannot be retrieved through an analysis of T

only. Equivalently, one could say that the ”floating” matrix P

cannot be determined from T (there is no link between P and

T).

However, under some fairly weak assumptions (non-

symmetric probability densities of s), matrix A can be es-

timated under the BSS paradigm, through ICA. While this

technique is rather classical today, extra-care is required when

dealing with complex random vectors. The method used in

this paper is FastICA [6]. This is a rapidly converging (it

uses a fixed-point iteration scheme) algorithm, maximizing

the non-Gaussianity as a measure of statistical independence.

3.2. Reworking the H/A, α/β and TSVM decompositions

Here we present a reformulation of the incoherent decompo-

sitions given in section 2.1. The goal is to drop references to

the matrix T and to give instead formulations based on equa-

tion 8, which will create an unifying framework. It is assumed

that B is chosen so that its columns are the weighted eigen-

vectors of T. In this case, the decompositions in section 2.1

remain basically unchanged. However, supplanting the PCA-

decomposition with the ICA-decomposition is also envisaged

here. This will lead to new, alternative decompositions.

3.2.1. Reworking the H/A model

Both H and A are computed from the eigenvalues of T. These

eigenvalues are none others than the energies (squared norms)

of columns of B or, equivalently, the diagonal elements of

matrix B
†
B. Actually, H and A are identical with their PCA-

based counterparts.

On the other hand, it is envisaged to use the energies

(squared norms) of columns of A instead of eigenvalues of T

when computing H and A. This leads to ICA-based versions

of H and A and will be no longer identical to their PCA-based

counterparts. More, since columns of A are no longer or-

thogonal in the ICA-based versions, a somewhat distorted in-

formation is expected (information contained in non-diagonal

elements of matrix A
†
A is lost).

3.2.2. Reworking the α/β and TSVM models

The α/β and TSVM models rely on parameterizing the eigen-

vectors of T. These are identical to the columns of B, nor-

malized (to have unit energy). Hence, the PCA-based ver-

sions, which use the normalized columns of B are identical

to the classical α/β and TSVM models. On the other hand,

the ICA-based versions (parameterizing the normed columns

of A) will give different results, since the columns of A are

not the same as columns of B.

4. RESULTS

4.1. On a synthetic data-set

In this section, a synthetic data-set is analyzed. Let A be the

mixing matrix of dimension 3 × 3. This matrix is composed

by three target vector, namely k1, k2 and k3, which repre-

sents three different scattering mechanisms. (10) shows the

roll-invariant mixing matrix, denoted Aroll-inv, i.e. the mixing

matrix which contains the three roll-invariant target vector.

Three sources (s1, s2 and s3) issued respectively from three



different distributions are simulated. Next, the observed sig-

nal kP = As is formed, where s = [s1, s2, s3]
T .

A
roll-inv = [kroll-inv

1 , kroll-inv
2 , kroll-inv

3 ]

=

[

0.901 0.433 0.294

0.217 + 0.376i 0.470 − 0.171i 0.294 + 0.096i

0 0.750i −0.905i

]

.

(10)

ICA and PCA decompositions are next applied on this

synthetic data-set. (11) and (12) shows the roll-invariant es-

timated mixing matrix for respectively the ICA (Â
roll-inv

ICA ) and

the PCA decomposition (Â
roll-inv

PCA ). As the three sources are

statistically independent, the ICA decomposition is able to

retrieve perfectly the three scattering mechanism. Neverthe-

less, as the three target scattering vector are not orthogonal,

the PCA decomposition fails as observed in (12). The ICA

decomposition gives another interpretation of the PolSAR im-

ages.

Â
roll-inv

ICA = (11)

=

2

4

0.170 0.386 0.901

0.310 − 0.126i 0.489 − 0.118i 0.216 + 0.377i

− 0.927i 0.773i −0.001i

3

5 .

Â
roll-inv

PCA = (12)

=

2

4

0.437 0.250 0.864

− 0.484 + 0.665i −0.688 + 0.631i 0.194 − 0.464i

− 0.365i 0.259i 0.007i

3

5 .

4.2. On a real data-set

In this part, the X-band RAMSES data-set over the Toulouse

test-site shown in Fig. 1(a) is analyzed. The ICA decompo-

sition is applied on a 7 × 7 sliding square window. Fig. 2

shows the four roll-invariant parameters (α, αs, Φαs
and τm)

extracted from the dominant component.

5. CONCLUSIONS AND PERSPECTIVES

The paper presented a re-formulation (and an extension) of

the incoherent PolSAR H/A, α/β and TSVM decompositions

in terms of Principal Component and Independent Compo-

nent analysis. For the former, the decompositions reduce to

their classical formulation but, for the latter, they give differ-

ent results. Future work should be directed at a more thorough

analysis of the information obtained from ICA-based decom-

positions.

(a) (b)

(c) (d)

Fig. 2. ICA results for the X-band RAMSES data over the

Toulouse test-site (700 × 700 pixels). Roll-invariant parame-

ters issued from the dominant component: (a) α. (b) αs, (c)

Φαs
, (d) τm.
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