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Based on the Kennaugh-Huynen decomposition, the Target Scattering Vector Model (TSVM) allows to extract four rollinvariant parameters. Those parameters are necessary for an unambiguous description of the target scattering mechanism. The proposed method consists in applying the TSVM prior to the GLRT-LQ detector for the detection of any oriented target.

INTRODUCTION

In this paper, a method is proposed for detecting Polarimetric Synthetic Aperture Radar (PolSAR) targets. The proposed method is a combination of the Target Scattering Vector Model (TSVM) and the Generalized Likelihood Ratio Test -Linear Quadratic (GLRT-LQ) detector. The TSVM provides an unique and roll-invariant decomposition of the observed target vector by means of four independent parameters. The combination of those two methods will allow the detection of any oriented targets (trihedral, dihedral, dipole, helix, . . .).

This paper is organized as follows. The context of the study is first described. Then, the TSVM algorithm is exposed. Next, the proposed algorithm for a roll-invariant target detection is presented. Then, some detection results are shown on a real PolSAR data-set acquired by the RAMSES sensor at X-band.

ROLL-INVARIANT TARGET DECOMPOSITION

Context

Let k dip and k dih be respectively the steering vectors in the Pauli basis of two oriented dipole and dihedral. They are respectively defined by:

k dip = 1 √ 2   1 cos(2ψ) sin(2ψ)   and k dih =   0 cos(2ψ) sin(2ψ)   (1)
where ψ is the orientation of the maximum polarization with respect to the horizontal polarization [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF].

Consequently, for a roll-invariant target dipole or dihedral detection, the tilt angle ψ should be removed. In 1993, Krogager has proposed an algorithm to derive ψ which uses the phase difference between right-right (S RR ) and left-left (S LL ) circular polarizations of the scattering matrix S [START_REF] Krogager | Aspects of Polarimetric Radar Imaging[END_REF]:

ψ Krogager = Arg S RR S * LL + π /4. (2) 
where S RR and S LL are respectively defined by :

S RR = (S HH -S V V + 2jS HV ) /2 S LL = (S V V -S HH + 2jS HV ) /2
This estimated orientation angle ψ Krogager is valid under certain condition on the target. To overcome this problem, authors propose to apply the TSVM method which provides an unique and roll-invariant decomposition of any targets [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF].

The Kennaugh-Huynen con-diagonalization

In PolSAR imagery, coherent targets are fully described by their scattering matrix S. To retrieve parameters with a physical meaning, Kennaugh and Huynen have proposed to apply the characteristic decomposition on the scattering matrix [START_REF] Kennaugh | Effects of Type of Polarization On Echo Characteristics[END_REF] [4] [START_REF] Huynen | Phenomenological Theory of Radar Targets[END_REF]. Under the reciprocity assumption, the cross-polarization terms S HV ans S V H are equal. It yields:

S = R(ψ)T(τ m )S d T(τ m )R(-ψ), (3) 
where R(ψ) and T(τ m ) are defined by :

R(ψ) = cos ψ -sin ψ sin ψ cos ψ , (4) 
and:

T(τ m ) = cos τ m -j sin τ m -j sin τ m cos τ m . ( 5 
)
S d is a diagonal matrix which contains the two complex coneigenvalues µ 1 and µ 2 of S as:

S d = me 2j(ν+ρ) 0 0 m tan 2 γ e -2j(ν-ρ) = µ 1 0 0 µ 2 . (6) 
The Kennaugh-Huynen con-diagonalization allows to characterize a coherent target by means of six independent parameters : ψ, τ m , m, γ, ν and ρ. ψ is the rotation angle (see [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF]). This parameter is used for the subtraction of the target orientation from the target vector, which leads to a roll-invariant decomposition. This step is named desying. τ m is the target helicity, it characterizes the symmetry of the target. m is the maximum amplitude return. γ and ν are respectively the characteristic and skip angles. ρ is the absolute phase of the target. This term is not observable except for interferometric applications.

The Target Scattering Vector Model

In 2007, Touzi has proposed a new model: the Target Scattering Vector Model (TSVM). It consists in the projection in the Pauli basis of the scattering matrix con-diagonalized by the Takagi method [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF]. It leads:

-

→ e T SV = me jΦs   1 0 0 0 cos(2ψ) -sin(2ψ) 0 sin(2ψ) cos(2ψ)   ×   cos α s cos(2τ m ) sin α s e jΦα s -j cos α s sin(2τ m )   . (7) 
α s and Φ αs are the symmetric scattering type magnitude and phase. They are derived from the con-eigenvalues µ 1 and µ 2 of the scattering matrix S by:

tan(α s ) e jΦα s = µ 1 -µ 2 µ 1 + µ 2 . ( 8 
)
The symmetric scattering type magnitude α s reduces to the so-called α parameter issued from the Cloude-Pottier decomposition for a symmetric scatterer (i.e. τ m = 0). Due to the con-eigenvalue phase ambiguity, the Kennaugh-Huynen decomposition is not unique. Huynen's orientation angle ψ should be re-evaluated. To remove this ambiguity, the following relation is applied to restrict the domain definition of ψ to the interval [-π/4, π/4]:

-

→ e T SV (Φ s , ψ, τ m , m, α s , Φ αs ) = -→ e T SV (Φ s , ψ ± π 2 , -τ m , m, -α s , Φ αs ). (9) 
As the last term of ( 7) is independent of the target orientation angle, it yields that the four parameters m, α s , Φ αs and τ m are roll-invariant. In the following, the TSVM method is first applied on the original PolSAR data-set to provide a roll-invariant target vector. To compute the target orientation angle with the TSVM decomposition, the following relation is implemented [START_REF] Huynen | Phenomenological Theory of Radar Targets[END_REF] [6] [7]:

ψ T SV M = 1 2 Arctan   2ℜe (S * HH + S * V V )S HV ℜe (S * HH + S * V V )(S HH -S V V )   . (10) 

Comparison between ψ T SV M and ψ Krogager

According to the TSVM, the following relation between the orientation angle ψ T SV M estimated by the TSVM method and ψ Krogager estimated with the phase difference between right-right and left-left circular polarizations can be proved [START_REF] Bombrun | A combined TSVM model and GLRT detector for a roll invariant target detection[END_REF]: For τ m = 0, Φ αs = 0, α s = 0 or α s = π/2, the orientation angle estimated by the phase difference between rightright and left-left circular polarizations is equal to this estimated by the TSVM. It leads that both tilt angles are equal for a wide class of targets including trihedral, dihedral, helix, dipole, quarter wave, . . . For all other cases, the orientation angle ψ Krogager is biased, and ψ T SV M should be used instead for a roll-invariant target characterization.

ψT SV M = ψKrogager - 1 4 

ROLL-INVARIANT TARGET DETECTION

The general principle of the proposed roll-invariant target detection algorithm can be divided into five steps. First, the orientation angle ψ is computed and the "roll-invariant" target vector is extracted. This step is named desying. Then, the covariance matrix [M ] of the clutter is estimated. Next, the similarity measure between the steering vector and the "rollinvariant" target vector is computed. The false alarm probability is fixed, and finally we conclude or not on the detection.

Binary hypothesis test

The target detection problem can be formulated as a binary hypothesis test shown in (12). Under the null hypothesis H 0 , the observed target vector k is only the clutter c. Under the alternative hypothesis H 1 , the backscattered signal can be decomposed as the sum of the reference signal p times an unknown scalar complex parameter α with the clutter c. Here, the clutter is modeled as a Spherically Invariant Random Vector (SIRV), i.e. c = √ τ z. c is defined as the product of a square root of a positive random variable τ (representing the texture) with an independent circular complex Gaussian vector z with zero-mean and covariance matrix [M ] = E{zz H } (representing the speckle).

H 0 : k = c H 1 : k = αp + c (12)
The optimal detector under the SIRV hypothesis is given by the following relation:

Λ ([M ]) = p k (k/H 1 ) p k (k/H 0 ) = h p (k -p) H [M ] -1 (k -p) h p k H [M ] -1 k H1 ≷ H0 λ.
where h p (•) is the density generator function. Its expression is given by:

h p (x) = +∞ 0 1 τ p exp - x τ p τ (τ ) dτ.
This optimal detector depends on the texture probability density function p τ .

GLRT-LQ detector

The Generalized Likelihood Ratio Test -Linear Quadratic (GLRT-LQ) detector can be used to detect a particular target. Let p be a steering vector and k the observed signal. The GLRT-LQ between p and k is given by [START_REF] Conte | Adaptive Radar Detection in Compound-Gaussian Clutter[END_REF]:

Λ ([M ]) = |p H [M ] -1 k| 2 (p H [M ] -1 p) (k H [M ] -1 k) H1 ≷ H0 λ, (13) 
where [M ] is the covariance matrix of the population under the null hypothesis H 0 , i.e. the observed signal is only the clutter.

In general, the covariance matrix is unknown. One solution consists in estimating the covariance matrix [M ] by [ M ] F P , the fixed point covariance matrix estimator. It is the maximum likelihood estimator of the normalized covariance matrix under the deterministic texture in a Spherically Invariant Random Process. Its expression is given by the solution of the following recursive equation [START_REF] Gini | Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[END_REF]:

[ M ] F P = f ([ M ] F P ) = p N N i=1 k i k H i k H i [ M ] -1 F P k i . ( 14 
)
Replacing [M ] by [ M ] F P in (13) leads to an adaptive version of the GLRT-LQ detector.

If the covariance matrix is estimated by the fixed point estimator (14), it has been proved, for large N , the relation between the false alarm probability p f a and the detection threshold λ: 

p f a = (1 -λ) (a-1) 2 F 1 (a, a -1; b -1; λ), (15) 

DETECTION RESULTS ON A RAMSES X-BAND DATA-SET

In this section, a real data-set acquired by the RAMSES sensor at X-band is analyzed. Fig. 2 shows a colored composition in the Pauli basis of the target vector. This data-set is 

CONCLUSION

In this paper, authors have proposed to the use Target Scattering Vector Model to extract the roll-invariant target vector. Some comparisons have been done between the orientation angle estimated with the phase difference between right-right and left-left circular polarizations and this issued from the TSVM. Next, authors have proposed to use the TSVM for a roll-invariant target detection. The GLRT-LQ similarity measure has been implemented and validated on high resolution PolSAR data for the detection of particular targets such as an oriented dihedral. Further works will deal with the use of optimal detectors based on the statistics of the PolSAR clutter. Special interest will also be dedicated to bistatic PolSAR imagery where the cross-polarization terms of the scattering matrix S are not equal in general [START_REF] Bombrun | Extension of the Target Scattering Vector Model to the Bistatic Case[END_REF]. In this case, two orientation angles, one at the emission and one at the reception, should be taken into account.

Fig. 1

 1 Fig.1shows a comparison between the orientation angle ψ T SV M estimated via the TSVM and ψ Krogager as a function of three roll-invariant TSVM parameters: τ m , Φ αs and α s . Fig.1(a) shows the evolution of ψ T SV M and ψ Krogager with the helicity τ m for α s = π/3 and Φ αs = π/3. Fig.1(b)and Fig.1(c) show respectively this relation as a function of the target scattering phase Φ αs for α s = π/3 and τ m = π/8, and as a function of α s for Φ αs = π/3 and τ m = π/8. For τ m = 0, the target is symmetric. It leads that ψ T SV M is equal to ψ Krogager , as observed in black in Fig.1(a). Moreover, for a null target scattering phase Φ αs , ψ Krogager and ψ T SV M are equal. Similar observations can be done for α s = 0 and α s = π/2 as shown in Fig.1(c).For τ m = 0, Φ αs = 0, α s = 0 or α s = π/2, the orientation angle estimated by the phase difference between rightright and left-left circular polarizations is equal to this estimated by the TSVM. It leads that both tilt angles are equal for a wide class of targets including trihedral, dihedral, helix, dipole, quarter wave, . . . For all other cases, the orientation angle ψ Krogager is biased, and ψ T SV M should be used instead for a roll-invariant target characterization.

Fig. 1 .

 1 Fig. 1. Comparison between ψ T SV M and ψ Krogager : (a) as a function of τ m for α s = π/3 and Φ αs = π/3, (b) as a function of Φ αs for α s = π/3 and τ m = π/8 and (c) as a function of α s for Φ αs = π/3 and τ m = π/8

with a = p p + 1 N -p + 2 and b = p p + 1 N

 11 + 2. N is the number of pixels used to estimate the covariance matrix [M ]. p is the dimension of the target vector (p = 3 for the monostatic case). 2 F 1 (•, •; •; •) is the Gauss hypergeometric function.

Fig. 2 .

 2 Fig. 2. Toulouse, RAMSES PolSAR data, X-band (150 × 150 pixels). Colored composition in the Pauli basis of the target vector [k] 1 -[k] 3 -[k] 2 . Images containing a dihedral (a) and a narrow diplane (b).

Table 1 .

 1 1. Detector characteristics for the dihedral and the the narrow diplane.

				dihedral		
		GLRT-LQ	ψ	αs	Φα s	τm
	Krogager	0.912	0.761			
	TSVM	0.956	0.770	-1.453	0.450	-0.178
	Pure target			1.571	∞	0
			narrow diplane		
		GLRT-LQ	ψ	αs	Φα s	τm
	Krogager	0.828	-0.023			
	TSVM	0.849	-0.026	1.210	-0.172	0.052
	Pure target			1.249	0	0
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