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ABSTRACT

The polarimetric information has been widely used to inter-

pret the Synthetic Aperture Radar (SAR) scene. Hence, many

decompositions have been introduced to extract polarimetric

parameters with a physical meaning. Nevertheless, for most

of them, the reciprocity assumption is assumed. For a bistatic

PolSAR sensor, the cross-polarization terms of the scattering

matrix are not equal. This paper presents a generalization of

the Target Scattering Vector Model (TSVM) to the bistatic

case.

Index Terms— Bistatic Polarimetry, Polarimetric Syn-

thetic Aperture Radar, Roll-invariant decomposition, Target

Scattering Vector Model.

1. INTRODUCTION

In the context of Polarimetric Synthetic Aperture Radar (Pol-

SAR) imagery, the extraction of roll-invariant parameters is

one of the major point of interest for segmentation, classifica-

tion and detection. In 2007, for the monostatic case, Ridha

Touzi has proposed a new Target Scattering Vector Model

(TSVM) [1]. Based on the Kennaugh-Huynen decomposi-

tion, this model allows to extract four roll-invariant parame-

ters.

For the bistatic case, the reciprocity assumption is in gen-

eral no more valid. This paper presents a extension of the

TSVM when the cross-polarization terms are not equal. First,

a presentation of bistatic polarimetry is exposed by means of

the Kennaugh-Huynen decomposition [2]. Then, the TSVM

is introduced as a projection of the scattering matrix in the

Pauli basis to extract roll-invariant parameters [1] and a com-

parison with the monostatic case is carried out. Next, a pre-

sentation of the computation of the TSVM parameters is ex-

posed. Finally, some comparisons with the classical α/β
model are shown.

2. THE KENNAUGH-HUYNEN

CON-DIAGONALIZATION

Coherent targets are fully described by their scattering matrix

S. In the context bistatic polarimetry, S is a complex 2 × 2

matrix, S =

[

SHH SHV

SV H SV V

]

where the cross-polarization

elements SHV and SV H are not equal in general.

Kennaugh and Huynen have proposed to apply the char-

acteristic decomposition on the scattering matrix to retrieve

physical parameters [2] [3] [4]. The Kennaugh-Huynen de-

composition is parametrized by means of 8 independent pa-

rameters: θR, τR, θE , τE , ν, µ, κ and γ by [2] [5] [6]:

S = e−jθRσ3 e−jτRσ2 e−jνσ1 S0 ejνσ1 e−jτEσ2 ejθEσ3 (1)

where:

S0 = µejκ

[

1 0
0 tan2 γ

]

and ejασk = σ0 cos α+ jσk sinα.

(2)

σi are the spin Pauli matrices defined by:

σ1 =

[

1 0
0 1

]

, σ2 =

[

1 0
0 −1

]

,

σ3 =

[

0 1
1 0

]

, σ4 =

[

0 −j
j 0

]

. (3)

θR and θE are the tilt angles. τR and τE are the helicity.

The subscript R and E stand respectively for reception and

emission. µ is the maximum amplitude return. γ and ν are

respectively referred as the characteristic and skip angles. κ is

the absolute phase of the target, this term is generally ignored

except for interferometric applications.

Moreover, it can be shown that:

e−jνσ1 S0 ejνσ1 =

[

µe2j(ν+κ/2) 0
0 µ tan2 γ e−2j(ν−κ/2)

]

=

[

λ1 0
0 λ2

]

, (4)



where λ1 and λ2 are the two complex con-eigenvalues of S.

3. THE TARGET SCATTERING VECTOR MODEL

3.1. Definition

The TSVM consists in the projection in the Pauli basis of the

scattering matrix con-diagonalized by the Takagi method. It

yields that kP = 1/
√

2
[

SHH + SV V , SHH − SV V , SHV +

SV H , j(SHV − SV H)
]T

. After some mathematical manip-

ulations, one can express the target vector kP by means of

Huynen’s parameters (See (5) at the top of the next page).

By following the same procedure as proposed by Touzi

in [1], one can introduce the symmetric scattering type magni-

tude and phase parameters, denoted respectively αs and Φαs

by:

tan(αs) ejΦαs =
λ1 − λ2

λ1 + λ2
. (6)

According to (5), one can decompose kP as the product of

three terms (see (7) at the top of the next page). Φs corre-

sponds to the phase of λ1 + λ2. It can be noticed that the first

and second terms are ”rotation” matrices which depend only

on the tilt angles θR and θE .

3.2. Roll-invariant target vector

As a consequence, for the bistatic case, the expression of the

roll-invariant target vector k
roll−inv

P
is given by:

k
roll−inv

P
= µ









cos αs cos(τ1)
sinαse

jΦαs cos(τ2)
− j cos αs sin(τ1)

− j sinαse
jΦαs sin(τ2)









, (8)

where τ1 = τR + τE and τ2 = τR − τE . In the context of

bistatic polarimetry, five parameters (namely µ, τR, τE , αs

and Φαs
) are necessary for an unambiguous description of a

coherent target.

3.3. Link with the monostatic case

The monostatic case can be retrieved from the bistatic case by

assuming θ = θR = θE and τm = τR = τE . Consequently,

when the reciprocity assumption holds, the roll-invariant tar-

get vector, introduced by Touzi, is obtained:

k
roll−inv

P
= µ









cos αs cos(2τm)
sinαse

jΦαs

− j cos αs sin(2τm)
0









. (9)

4. TSVM PARAMETERS COMPUTATION

4.1. The Kennaugh matrix

The Kennaugh matrix K is another representation of the scat-

tering matrix S, its expression is given by K = 2A∗
WA

−1

with W = S ⊗ S. ⊗ is the Kronecker product, and:

A =









1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0









. (10)

4.2. The Kennaugh matrices of orders 0 to 2

Let O1, O2 and O3 be the three ”rotation matrices” defined

by [5]:

O1(2ν) =









1 0 0 0
0 1 0 0
0 0 cos(2ν) − sin(2ν)
0 0 sin(2ν) cos(2ν)









(11)

O2(2τ) =









1 0 0 0
0 cos(2τ) 0 sin(2τ)
0 0 1 0
0 − sin(2τ) 0 cos(2τ)









(12)

O3(2θ) =









1 0 0 0
0 cos(2θ) − sin(2θ) 0
0 sin(2θ) cos(2θ) 0
0 0 0 1









. (13)

The Kennaugh matrices of orders 0 to 2, denoted K
(i), are

defined by:







K
(2) = O3(−2θR) K O3(2θE)

K
(1) = O2(2τR) K

(2)
O2(−2τE)

K
(0) = O1(−2ν) K

(1)
O1(2ν)

(14)

4.3. TSVM parameters computation

4.3.1. Tilt angles

In practice, thanks to the scattering scattering matrix S, the

Kennaugh matrix K is first computed. The tilt angles θE and

θR are then directly deduced from the Kennaugh matrix K

by [7]:

tan(2θE) =
K02

K01
and tan(2θR) =

K20

K10
. (15)

In (15), Kij corresponds to the element of K at position (i +
1, j + 1). Once θE and θR are found, the Kennaugh matrix of

order 2, namely K
(2), is computed according to (14). As this

matrix does not depend on the tilt angles, it can be viewed as

the roll-invariant Kennaugh matrix.



kP =
1√
2









(λ1 + λ2) cos(τR + τE) cos(θR − θE) + j(λ1 − λ2) sin(τE − τR) sin(θE − θR)
(λ1 − λ2) cos(τR − τE) cos(θR + θE) + j(λ1 + λ2) sin(τR + τE) sin(θR + θE)
(λ1 − λ2) cos(τR − τE) sin(θR + θE) − j(λ1 + λ2) sin(τR + τE) cos(θR + θE)
(λ1 − λ2) sin(τE − τR) cos(θR − θE) + j(λ1 + λ2) cos(τr + τE) sin(θE − θR)









. (5)

kP = µ ejΦs

2

6

6

4

1 0 0 0
0 cos(θR + θE) − sin(θR + θE) 0
0 sin(θR + θE) cos(θR + θE) 0
0 0 0 1

3

7

7

5

2

6

6

4

cos(θR − θE) 0 0 − sin(θR − θE)
0 1 0 0
0 0 1 0

− j sin(θR − θE) 0 0 −j cos(θR − θE)

3

7

7

5

2

6

6

4

cos αs cos(τR + τE)
sin αsejΦαs cos(τR − τE)
− j cos αs sin(τR + τE)

j sin αsejΦαs sin(τE − τR)

3

7

7

5

.

(7)

4.3.2. Helicity angles

Similarly, the helicity angles τR are τE are issued from the

Kennaugh matrix of order 2 by [7]:

tan(2τR) =
K

(2)
30

K
(2)
10

and tan(2τE) =
K

(2)
03

K
(2)
01

. (16)

4.3.3. Characteristic and skip angles

Next, the skip and characteristic angles (ν and γ) are deduced

from the Kennaugh matrices of order 1 and 0 by:

tan(4ν) =
K

(1)
32

K
(1)
33

and cos(2γ) = A ±
√

A2 − 1 (17)

with A =
K

(0)
11

K
(0)
01

. The solution adopted is the A ±
√

A2 − 1

ranging in the interval [−1, 1].

4.3.4. Symmetric scattering type magnitude and phase

Finally, the symmetric scattering type magnitude and phase,

αs and Φαs
, are directly deduced from parameters ν and γ

by:

tan(αs) ejΦαs =
λ1 − λ2

λ1 + λ2
=

e2jν − e−2jν tan2 γ

e2jν + e−2jν tan2 γ
= B.

(18)

It yields:

tanαs = |B| and Φαs
= arg(B). (19)

4.4. Con-eigenvalue phase ambiguity

Due to the con-eigenvalue phase ambiguity, Huynen’s param-

eters need to be reevaluated. To overcome this problem, Touzi

has proposed to restrict the tilt angles θ1 = θR + θE and

θ2 = θR − θE domain definition to the interval [−π/2, π/2]
[1] . If the tilts angles (θ1, θ2) are solution of (7), then (θ1 ±
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Fig. 1. Symmetric scattering type magnitude αs and helicity

τ2 Poincaré sphere (τ2 = 0 and Φαs
= 0).

π, θ2 ± π), (θ1 ± π, θ2) and (θ1, θ2 ± π) are also solutions of

(7). It yields the following three relations:

kP = kP(Φs ± π, θ1 ± π, θ2 ± π, τ1, τ2, µ, αs,Φαs
)

= kP(Φs, θ1 ± π, θ2,−τ1,−τ2, µ, αs,Φαs
± π)

= kP(Φs ± π, θ1, θ2 ± π,−τ1,−τ2, µ, αs,Φαs
± π).

Those equations are implemented to solve the con-eigenvalue

phase ambiguity problem. After this step θ1 and θ2 belong to

the interval [−π/2, π/2].

5. INTERPRETATION

5.1. Poincaré Sphere

To understand the influence of the 4 roll-invariant parameters

αs, Φαs
, τ1 and τ2, the Poincaré sphere representation can be

used. Here, only the symmetric scattering type magnitude αs

and helicity τ2 Poincaré sphere is shown (Fig. 1). The other

spheres can be found in [1]. A symmetric scatterer (τ1 = 0)

with a null symmetric scattering type phase (Φαs
= 0) is

uniquely mapped by a point located at a longitude τ2 and a

latitude π/2 − αs at the surface of this Poincaré sphere.

The symmetric target scattering type phase Φαs
is the

trihedral-dihedral channel phase difference. This roll-invariant

parameter can be exploited only under coherence conditions.



The degree of coherence of Φαs
(denoted pΦαs

) is therefore

introduced. Its expression is given by:

pΦαs
=

√

(

〈

|a|2 − |b|2
〉

)2

+ 4|
〈

a · b∗
〉

|2

〈
∣

∣a|2 + |b|2
〉 , (20)

where a = cos αs cos τ1 and b = sin αse
jΦαs cos τ2 for a

bistatic polarimetric radar. Therefore, a partially coherent

scatterer is represented as a point inside the Poincaré sphere

at a distance pΦαs
from the sphere center.

5.2. Comparison with the α/β bistatic model

In 2005, S.R. Cloude has proposed to extend the well-known

α/β model to the bistatic case [8]. The target vector kP is

defined by means of 8 parameters:

kP = µejΦS









cos α
sinα cos βejδ

sinα sin β cos χejγ

sinα sin β sinχejǫ









. (21)

For the monostatic case (χ = 0 or θR = θE and τR = τE),

the α angle has been widely used to characterize the backscat-

tered mechanism. Indeed, Touzi has proved in [1] that the

symmetric scattering type magnitude αs is equal to α for a

symmetrical target (τm = 0) which corresponds to a wide

class of targets including dihedral, trihedral, dipole, . . . Fig. 2

shows a comparison between parameters α and αs issued re-

spectively from the α/β model and the bistatic TSVM. This

plot shows their evolution as a function of the tilt angle θ2 =
θR − θE for different set of target helicity τ2 = τR − τE .

Fig. 2(a) and 2(b) are respectively done for τ1 = 0 and τ1 6= 0.

First, it can be seen that α depends on the tilt angle θ2. It

yields that, for the bistatic case, α is not a roll-invariant pa-

rameter.

In the monostatic case, α and αs are equal for a symmetrical

target. This phenomenon is observed in Fig. 2(a). Indeed, a

symmetrical target has a null target helicity (i.e. τm = 0 =
τ1/2) and the monostatic case is retrieved for θR = θE (i.e.

θ2 = 0).

It yields that the α/β model cannot be directly transposed

to the bistatic case to extract a roll-invariant quantity. The

bistatic TSVM should be used instead to provide an unique

and roll-invariant target decomposition by means of five inde-

pendent parameters αs, Φαs
, τ1, τ2 and µ. As for the monos-

tatic case, those parameters are necessary for an unambiguous

description of the backscattering mechanism.

6. CONCLUSION

In this paper, a generalization of the Target Scattering Vector

Model to the bistatic case has been proposed. Based on the

Kennaugh-Huynen decomposition, five parameters, namely

−1.5 −1 −0.5 0 0.5 1 1.5

0.4

0.6

0.8

1

1.2

1.4

1.6

θ
2
 = θ

R
 − θ

E

α 
pa

ra
m

et
er

 

 

τ
2
 = −π/2

τ
2
 = −π/4

τ
2
 = 0

τ
2
 = π/4

τ
2
 = π/2

α
s

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

0.4

0.6

0.8

1

1.2

1.4

1.6

θ
2
 = θ

R
 − θ

E

α 
pa

ra
m

et
er

 

 

τ
2
 = −π/2

τ
2
 = −π/4

τ
2
 = 0

τ
2
 = π/4

τ
2
 = π/2

α
s

(b)

Fig. 2. Comparison between α and αs as a function of θ2 and

τ2 with θ1 = π/3 for: (a) τ1 = 0 and (b) τ1 6= 0

αs, Φαs
, τ1, τ2 and µ, are necessary for an unambiguous de-

scription of a coherent target. The ”monostatic” TSVM has

been retrieved as a particular case of the proposed bistatic

decomposition. Some comparisons with the so-called α/β
model parameters have been done. It yields that α is not roll-

invariant for the general case of bistatic polarimetry.

Further works will deal with the development of a bistatic

incoherent target decomposition in terms of roll-invariant pa-

rameters.
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[5] A.-L. Germond, Théorie de la Polarimétrie Radar en Bistatique,
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