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The polarimetric information has been widely used to interpret the Synthetic Aperture Radar (SAR) scene. Hence, many decompositions have been introduced to extract polarimetric parameters with a physical meaning. Nevertheless, for most of them, the reciprocity assumption is assumed. For a bistatic PolSAR sensor, the cross-polarization terms of the scattering matrix are not equal. This paper presents a generalization of the Target Scattering Vector Model (TSVM) to the bistatic case.

INTRODUCTION

In the context of Polarimetric Synthetic Aperture Radar (Pol-SAR) imagery, the extraction of roll-invariant parameters is one of the major point of interest for segmentation, classification and detection. In 2007, for the monostatic case, Ridha Touzi has proposed a new Target Scattering Vector Model (TSVM) [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF]. Based on the Kennaugh-Huynen decomposition, this model allows to extract four roll-invariant parameters.

For the bistatic case, the reciprocity assumption is in general no more valid. This paper presents a extension of the TSVM when the cross-polarization terms are not equal. First, a presentation of bistatic polarimetry is exposed by means of the Kennaugh-Huynen decomposition [START_REF] Huynen | Phenomenological Theory of Radar Targets[END_REF]. Then, the TSVM is introduced as a projection of the scattering matrix in the Pauli basis to extract roll-invariant parameters [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF] and a comparison with the monostatic case is carried out. Next, a presentation of the computation of the TSVM parameters is exposed. Finally, some comparisons with the classical α/β model are shown.

THE KENNAUGH-HUYNEN CON-DIAGONALIZATION

Coherent targets are fully described by their scattering matrix S. In the context bistatic polarimetry, S is a complex

2 × 2 matrix, S = S HH S HV S V H S V V
where the cross-polarization elements S HV and S V H are not equal in general. Kennaugh and Huynen have proposed to apply the characteristic decomposition on the scattering matrix to retrieve physical parameters [START_REF] Huynen | Phenomenological Theory of Radar Targets[END_REF] [3] [START_REF] Huynen | Measurement of the Target Scattering Matrix[END_REF]. The Kennaugh-Huynen decomposition is parametrized by means of 8 independent parameters: θ R , τ R , θ E , τ E , ν, µ, κ and γ by [START_REF] Huynen | Phenomenological Theory of Radar Targets[END_REF] [5] [START_REF] Czyz | Fundamentals of Bistatic Radar Polarimetry Using the Poincare Sphere Transformations[END_REF]: S = e -jθ R σ3 e -jτ R σ2 e -jνσ1 S 0 e jνσ1 e -jτ E σ2 e jθ E σ3 [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF] where:

S 0 = µe jκ 1 0 0 tan 2 γ
and e jασ k = σ 0 cos α + jσ k sin α.

(2) σ i are the spin Pauli matrices defined by:

σ 1 = 1 0 0 1 , σ 2 = 1 0 0 -1 , σ 3 = 0 1 1 0 , σ 4 = 0 -j j 0 . (3) 
θ R and θ E are the tilt angles. τ R and τ E are the helicity. The subscript R and E stand respectively for reception and emission. µ is the maximum amplitude return. γ and ν are respectively referred as the characteristic and skip angles. κ is the absolute phase of the target, this term is generally ignored except for interferometric applications. Moreover, it can be shown that:

e -jνσ1 S 0 e jνσ1 = µe 2j(ν+κ/2) 0 0 µ tan 2 γ e -2j(ν-κ/2) = λ 1 0 0 λ 2 , (4) 
where λ 1 and λ 2 are the two complex con-eigenvalues of S.

THE TARGET SCATTERING VECTOR MODEL

Definition

The TSVM consists in the projection in the Pauli basis of the scattering matrix con-diagonalized by the Takagi method. It yields that

k P = 1/ √ 2 S HH + S V V , S HH -S V V , S HV + S V H , j(S HV -S V H ) T .
After some mathematical manipulations, one can express the target vector k P by means of Huynen's parameters (See [START_REF] Germond | Théorie de la Polarimétrie Radar en Bistatique[END_REF] at the top of the next page).

By following the same procedure as proposed by Touzi in [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF], one can introduce the symmetric scattering type magnitude and phase parameters, denoted respectively α s and Φ αs by:

tan(α s ) e jΦα s = λ 1 -λ 2 λ 1 + λ 2 . ( 6 
)
According to [START_REF] Germond | Théorie de la Polarimétrie Radar en Bistatique[END_REF], one can decompose k P as the product of three terms (see [START_REF] Titin-Schnaider | Polarimetric Characterization of Bistatic Coherent Mechanisms[END_REF] at the top of the next page). Φ s corresponds to the phase of λ 1 + λ 2 . It can be noticed that the first and second terms are "rotation" matrices which depend only on the tilt angles θ R and θ E .

Roll-invariant target vector

As a consequence, for the bistatic case, the expression of the roll-invariant target vector k roll-inv P is given by:

k roll-inv P = µ     cos α s cos(τ 1 ) sin α s e jΦα s cos(τ 2 ) -j cos α s sin(τ 1 ) -j sin α s e jΦα s sin(τ 2 )     , (8) 
where

τ 1 = τ R + τ E and τ 2 = τ R -τ E .
In the context of bistatic polarimetry, five parameters (namely µ, τ R , τ E , α s and Φ αs ) are necessary for an unambiguous description of a coherent target.

Link with the monostatic case

The monostatic case can be retrieved from the bistatic case by assuming θ = θ R = θ E and τ m = τ R = τ E . Consequently, when the reciprocity assumption holds, the roll-invariant target vector, introduced by Touzi, is obtained:

k roll-inv P = µ     cos α s cos(2τ m ) sin α s e jΦα s -j cos α s sin(2τ m ) 0     . (9) 
4. TSVM PARAMETERS COMPUTATION

The Kennaugh matrix

The Kennaugh matrix K is another representation of the scattering matrix S, its expression is given by K = 2A * WA -1 with W = S ⊗ S. ⊗ is the Kronecker product, and:

A =     1 0 0 1 1 0 0 -1 0 1 1 0 0 j -j 0     .
(10)

The Kennaugh matrices of orders 0 to 2

Let O 1 , O 2 and O 3 be the three "rotation matrices" defined by [START_REF] Germond | Théorie de la Polarimétrie Radar en Bistatique[END_REF]:

O 1 (2ν) =     1 0 0 0 0 1 0 0 0 0 cos(2ν) -sin(2ν) 0 0 sin(2ν) cos(2ν)     (11) O 2 (2τ ) =     1 0 0 0 0 cos(2τ ) 0 sin(2τ ) 0 0 1 0 0 -sin(2τ ) 0 cos(2τ )     (12) O 3 (2θ) =     1 0 0 0 0 cos(2θ) -sin(2θ) 0 0 sin(2θ) cos(2θ) 0 0 0 0 1     . ( 13 
)
The Kennaugh matrices of orders 0 to 2, denoted K (i) , are defined by:

   K (2) = O 3 (-2θ R ) K O 3 (2θ E ) K (1) = O 2 (2τ R ) K (2) O 2 (-2τ E ) K (0) = O 1 (-2ν) K (1) O 1 (2ν) (14) 

TSVM parameters computation

Tilt angles

In practice, thanks to the scattering scattering matrix S, the Kennaugh matrix K is first computed. The tilt angles θ E and θ R are then directly deduced from the Kennaugh matrix K by [START_REF] Titin-Schnaider | Polarimetric Characterization of Bistatic Coherent Mechanisms[END_REF]:

tan(2θ E ) = K 02 K 01 and tan(2θ R ) = K 20 K 10 . (15) 
In (15), K ij corresponds to the element of K at position (i + 1, j + 1). Once θ E and θ R are found, the Kennaugh matrix of order 2, namely K (2) , is computed according to (14). As this matrix does not depend on the tilt angles, it can be viewed as the roll-invariant Kennaugh matrix.

k P = 1 √ 2     (λ 1 + λ 2 ) cos(τ R + τ E ) cos(θ R -θ E ) + j(λ 1 -λ 2 ) sin(τ E -τ R ) sin(θ E -θ R ) (λ 1 -λ 2 ) cos(τ R -τ E ) cos(θ R + θ E ) + j(λ 1 + λ 2 ) sin(τ R + τ E ) sin(θ R + θ E ) (λ 1 -λ 2 ) cos(τ R -τ E ) sin(θ R + θ E ) -j(λ 1 + λ 2 ) sin(τ R + τ E ) cos(θ R + θ E ) (λ 1 -λ 2 ) sin(τ E -τ R ) cos(θ R -θ E ) + j(λ 1 + λ 2 ) cos(τ r + τ E ) sin(θ E -θ R )     .
(5)

k P = µ e jΦs 2 6 6 4 
1 0 0 0 0 cos(θ R + θ E ) -sin(θ R + θ E ) 0 0 sin(θ R + θ E ) cos(θ R + θ E ) 0 0 0 0 1 3 7 7 5 2 6 6 4 
cos(θ R -θ E ) 0 0 -sin(θ R -θ E ) 0 1 0 0 0 0 1 0 -j sin(θ R -θ E ) 0 0 -j cos(θ R -θ E ) 3 7 7 5 2 6 6 4 
cos αs cos(τ R + τ E ) sin αse jΦα s cos(τ R -τ E ) -j cos αs sin(τ R + τ E ) j sin αse jΦα s sin(τ E -τ R ) 3 7 7 5 . (7)

Helicity angles

Similarly, the helicity angles τ R are τ E are issued from the Kennaugh matrix of order 2 by [START_REF] Titin-Schnaider | Polarimetric Characterization of Bistatic Coherent Mechanisms[END_REF]:

tan(2τ R ) = K (2) 30 K (2) 10
and tan(2τ

E ) = K (2) 03 K (2) 01
.

(16)

Characteristic and skip angles

Next, the skip and characteristic angles (ν and γ) are deduced from the Kennaugh matrices of order 1 and 0 by:

tan(4ν) = K (1) 32 K 
(1) 33

and cos(2γ

) = A ± A 2 -1 (17) with A = K (0) 11 K (0) 01
. The solution adopted is the

A ± √ A 2 -1 ranging in the interval [-1, 1].

Symmetric scattering type magnitude and phase

Finally, the symmetric scattering type magnitude and phase, α s and Φ αs , are directly deduced from parameters ν and γ by:

tan(α s ) e jΦα s = λ 1 -λ 2 λ 1 + λ 2 = e 2jν -e -2jν tan 2 γ e 2jν + e -2jν tan 2 γ = B.
(18) It yields:

tan α s = |B| and Φ αs = arg(B). ( 19 
)

Con-eigenvalue phase ambiguity

Due to the con-eigenvalue phase ambiguity, Huynen's parameters need to be reevaluated. To overcome this problem, Touzi has proposed to restrict the tilt angles 

θ 1 = θ R + θ E and θ 2 = θ R -θ E domain
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Fig. 1. Symmetric scattering type magnitude α s and helicity τ 2 Poincaré sphere (τ 2 = 0 and Φ αs = 0). π, θ 2 ± π), (θ 1 ± π, θ 2 ) and (θ 1 , θ 2 ± π) are also solutions of [START_REF] Titin-Schnaider | Polarimetric Characterization of Bistatic Coherent Mechanisms[END_REF]. It yields the following three relations:

k P = k P (Φ s ± π, θ 1 ± π, θ 2 ± π, τ 1 , τ 2 , µ, α s , Φ αs ) = k P (Φ s , θ 1 ± π, θ 2 , -τ 1 , -τ 2 , µ, α s , Φ αs ± π) = k P (Φ s ± π, θ 1 , θ 2 ± π, -τ 1 , -τ 2 , µ, α s , Φ αs ± π).
Those equations are implemented to solve the con-eigenvalue phase ambiguity problem. After this step θ 1 and θ 2 belong to the interval [-π/2, π/2].

INTERPRETATION

Poincaré Sphere

To understand the influence of the 4 roll-invariant parameters α s , Φ αs , τ 1 and τ 2 , the Poincaré sphere representation can be used. Here, only the symmetric scattering type magnitude α s and helicity τ 2 Poincaré sphere is shown (Fig. 1). The other spheres can be found in [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF]. A symmetric scatterer (τ 1 = 0) with a null symmetric scattering type phase (Φ αs = 0) is uniquely mapped by a point located at a longitude τ 2 and a latitude π/2 -α s at the surface of this Poincaré sphere. The symmetric target scattering type phase Φ αs is the trihedral-dihedral channel phase difference. This roll-invariant parameter can be exploited only under coherence conditions.

The degree of coherence of Φ αs (denoted p Φα s ) is therefore introduced. Its expression is given by:

p Φα s = |a| 2 -|b| 2 2 + 4| a • b * | 2 a| 2 + |b| 2 , ( 20 
)
where a = cos α s cos τ 1 and b = sin α s e jΦα s cos τ 2 for a bistatic polarimetric radar. Therefore, a partially coherent scatterer is represented as a point inside the Poincaré sphere at a distance p Φα s from the sphere center.

Comparison with the α/β bistatic model

In 2005, S.R. Cloude has proposed to extend the well-known α/β model to the bistatic case [START_REF] Cloude | On the Status of Bistatic Polarimetry Theory[END_REF]. The target vector k P is defined by means of 8 parameters:

k P = µe jΦ S     cos α sin α cos βe jδ sin α sin β cos χe jγ sin α sin β sin χe jǫ     . (21)
For the monostatic case (χ = 0 or θ R = θ E and τ R = τ E ), the α angle has been widely used to characterize the backscattered mechanism. Indeed, Touzi has proved in [START_REF] Touzi | Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters[END_REF] that the symmetric scattering type magnitude α s is equal to α for a symmetrical target (τ m = 0) which corresponds to a wide class of targets including dihedral, trihedral, dipole, . . . Fig. 2 shows a comparison between parameters α and α s issued respectively from the α/β model and the bistatic TSVM. This plot shows their evolution as a function of the tilt angle θ 2 = θ R -θ E for different set of target helicity τ 2 = τ R -τ E . Fig. 2(a) and 2(b) are respectively done for τ 1 = 0 and τ 1 = 0. First, it can be seen that α depends on the tilt angle θ 2 . It yields that, for the bistatic case, α is not a roll-invariant parameter. In the monostatic case, α and α s are equal for a symmetrical target. This phenomenon is observed in Fig. 2(a). Indeed, a symmetrical target has a null target helicity (i.e. τ m = 0 = τ 1 /2) and the monostatic case is retrieved for θ R = θ E (i.e. θ 2 = 0). It yields that the α/β model cannot be directly transposed to the bistatic case to extract a roll-invariant quantity. The bistatic TSVM should be used instead to provide an unique and roll-invariant target decomposition by means of five independent parameters α s , Φ αs , τ 1 , τ 2 and µ. As for the monostatic case, those parameters are necessary for an unambiguous description of the backscattering mechanism.

CONCLUSION

In this paper, a generalization of the Target Scattering Vector Model to the bistatic case has been proposed. Based on the Kennaugh-Huynen decomposition, five parameters, namely α s , Φ αs , τ 1 , τ 2 and µ, are necessary for an unambiguous description of a coherent target. The "monostatic" TSVM has been retrieved as a particular case of the proposed bistatic decomposition. Some comparisons with the so-called α/β model parameters have been done. It yields that α is not rollinvariant for the general case of bistatic polarimetry. Further works will deal with the development of a bistatic incoherent target decomposition in terms of roll-invariant parameters.
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 2 Fig. 2. Comparison between α and α s as a function of θ 2 and τ 2 with θ 1 = π/3 for: (a) τ 1 = 0 and (b) τ 1 = 0
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