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Abstract

Using one of the key property of copulas that they remainriavé under an arbitrary
monotonous change of variable, we investigate the null thgsis that the dependence between
financial assets can be modeled by the Gaussian copula. Wenhéihchost pairs of currencies
and pairs of major stocks are compatible with the Gaussigalachypothesis, while this hy-
pothesis can be rejected for the dependence between paiosofiodities (metals). Notwith-
standing the apparent qualification of the Gaussian copydathesis for most of the currencies
and the stocks, a non-Gaussian copula, such as the Studeptita, cannot be rejected if it
has sufficiently many “degrees of freedom”. As a consequehogay be very dangerous to
embrace blindly the Gaussian copula hypothesis, espgwibkn the correlation coefficient be-
tween the pair of asset is too high, so that the tail deperedesaglected by the Gaussian copula
can became large, leading to ignore extreme events whictog@y in unison.



1 Introduction

The determination of the dependence between assets @sd@diny financial activities, such as risk
assessment and portfolio management, as well as optidngpend hedging. Following (Markovitz
1959), the covariance and correlation matrices have, fong time, been considered as the main
tools for quantifying the dependence between assets. Rudlithension of risk captured by the
correlation matrices is only satisfying for elliptic distntions and for moderate risk amplitudes
(Sornetteet al. 2000b). In all other cases, this measure of risk is sevenglgmplete and can lead
to a very strong underestimation of the real incurred rigkslfrechtst al. 1999).

Although the unidimensional (marginal) distributions e$at returns are reasonably constrained
by empirical data and their tails are more or less satisfiidescribed by a power law with tail in-
dex ranging between 2 and 4 (De Vries 1994, Lux 1996, Pagah, R@llaumest al. 1997, Gopikr-
ishnanet al. 1998, McNiel and Frey 2000), by stretched exponentials ¢k@ie and Sornette
1998, Gouriéroux and Jasiak 1999, Sornettal. 2000a, Sornettet al. 2000b) or by log-Weibull
distributions (Malevergnet al. 2003), no equivalent results have been obtainedridtivariate
distributions of asset returns. Indeed, a brute force detation of multivariate distributions is
unreliable due to the limited data set (the curse of dimeadity), while the sole knowledge of
marginals (one-point statistics) of each asset is not seffico obtain information on the multivari-
ate distribution of these assets which involves allithgoints statistics.

Some progress may be expected from the concept of coputzs)tie proposed to be useful
for financial applications (Embrechtt al. 2001, Frees and Valdez 1998, Haas 1999, Klugman
and Parsa 1999). This concept has the desirable propertycougdling the study of the marginal
distribution of each asset from the study of their collextiehavior or dependence. Indeed, the
dependence between assets is entirely embedded in theicepuhat a copula allows for a simple
description of the dependence structure between assezindently of the marginals. For instance,
assets can have power law marginals and a Gaussian coplieroatively Gaussian marginals and
a non-Gaussian copula, and any possible combination thefaerefore, the determination of the
multivariate distribution of assets can be performed in $teps : (i) an independent determination
of the marginal distributions using standard techniquegligtributions of a single variable ; (ii) a
study of the nature of the copula characterizing complatedydependence between the assets. This
exact separation between the marginal distributions aadl&dpendence is potentially very useful
for risk management or option pricing and sensitivity aseysince it allows for testing several
scenarios with different kind of dependences between asgele the marginals can be set to their
well-calibrated empirical estimates. Such an approactbbas used by Embrechdsal. (2001) to
provide various bounds for the Value-at-Risk of a portfohiade of depend risks, and by Rosenberg
(1999) or Cherubini and Luciano (2000) to price and to araly®e pricing sensitivity of binary
digital options or options on the minimum of a basket of asset

A fundamental limitation of the copula approach is that ¢hisrin principle an infinite number
of possible copulas (Genest and MacKay 1986, Genest 198%d6and Rivest 1993, Joe 1993,
Nelsen 1998) and, up to now, no general empirical study hisrdened the classes of copulas that
are acceptable for financial problems. In general, the ehofa given copula is guided both by
the empirical evidences and the technical constraints,the number of parameters necessary to
describe the copula, the possibility to obtain efficientneators of these parameters and also the
possibility offered by the chosen parameterization tovalfor tractable analytical calculation. It
is indeed sometimes more advantageous to prefer a simplegtacto one that fit better the data,
provided that we can clearly quantify the effects of thisstitbtion.



In this vein, the first goal of the present article is to wond&ether the Gaussian copula pro-
vides a sufficiently good approximation of the unknown tropuda, on a statistical basis. Such an
investigation is really anchored at the heart of many firdnmioblems since the Gaussian copula
sustains almost all current financial theories. Obvioukly,Gaussian copula is rooted into the tra-
ditional theories relying on the multivariate Gaussiancdesion, but it is also widespread in the
most recent financial applications such as the modeling ¢pertent defaultsas exemplified by
the model of CreditMetrics or KMV, for instance or such as ghieing of credit derivatives ().
Thus, there is a real need for a test of the ability of the Ganssopula to model financial de-
pendencies. Our second goal is to draw the consequencee patameterization involved in the
Gaussian copula in term of potential over/underestimatibthne risks, in particular for large and
extreme events.

The paper is organized as follows.

In section 2, we first recall some important general defingiand theorems about copulas that
will be useful in the sequel. We then introduce the conceptibfdependence that will allow us
to quantify the probability that two extreme events mightwcsimultaneously. We define and
describe the two copulas that will be at the core of our stutlg Gaussian copula and the Student’s
copula and compare their properties particularly in this.tai

In section 3, we present our statistical testing procedurielwis applied to pairs of financial
time series. First of all, we determine a test statisticsctvileads us to compare the empirical
distribution of the data with &2-distribution using a bootstrap method. We also test theiteity
of our procedure by applying it to synthetic multivariatei@nt’'s time series. This allows us to
determine the minimum statistical test value needed to ketaldistinguish between a Gaussian
and a Student’s copula, as a function of the number of degriegsedom and of the correlation
strength.

Section 4 presents the empirical results obtained for thewfing assets which are combined
pairwise in the test statistics:

e 6 currencies,
e 6 metals traded on the London Metal Exchange,

e 22 stocks chosen among the largest companies quoted on wh&dtlke Stocks Exchange.

We show that the Gaussian copula hypothesis is very reasof@bmost stocks and currencies,
while it is hardly compatible with the description of muldivate behavior for metals.

Section 5 summarizes our results and concludes.

2 Generalities about copulas

2.1 Definitions and important results about copulas

This section does not pretend to provide a rigorous matheah&ixposition of the concept of cop-
ula. We only recall a few basic definitions and theorems thlitbe useful in the following (for
more information about the concept of copula, see for icgdhelsen (1998).

Following the recommendations of the Basle committee orsigion banking (2001), the Gaussian copula must
be chosen to model the dependence between defaults.
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We first give the definition of a copula afrandom variables.

DEeFINITION 1 (COPULA)
AfunctionC : [0,1]" — [0, 1] is an-copula if it enjoys the following properties :

e Vuel0,1,C(1, - ,1ul---,1) =u,
e Vu; € [0,1], C(uq,--- ,u,) = 0if at least one of the,; equals zero ,

e ('is grounded and-increasing, i.e., th€’-volume of every box whose vertices liefin 1]™
IS positive.

It is clear from this definition that a copula is nothing but altivariate distribution with support
in [0,1]™ and with uniform marginals. The fact that such copulas cavelng useful for representing
multivariate distributions with arbitrary marginals isesefrom the following result.

THEOREM 1 (SKLAR’S THEOREM)
Given ann-dimensional distribution functiof’ with continuous marginal (cumulative) distributions
Fy,---, F,, there exists anique n-copulaC' : [0, 1] — [0, 1] such that :

F(xy1, - ,xn) = C(Fi(x1), -, Fy(zy)) . 1)

This theorem provides both a parameterization of multatardistributions and a construction
scheme for copulas. Indeed, given a multivariate distiopuf’ with marginalsfFy, - - - , F},, the
function

C(ulv"' >un):F(F1_1(u1)v"' >Fn_1(un)) (2)

is automatically a:-copulé&. This copula is the copula of the multivariate distributiBn We will
use this method in the sequel to derive the expressions mdiatd copulas such as the Gaussian
copula or the Student’s copula.

A very powerful property of copulas is their invariance undgbitrary strictly increasing map-
ping of the random variables :

THEOREM 2 (INVARIANCE THEOREM)
Considem continuous random variable(y, - - - , X, with copulaC'. Then, ifg; (X1), -+, gn(Xp)
are strictly increasing on the rangesXf, - - - , X,,, the random variables; = ¢;(X;),--- ,Y,, =
gn(X,,) have exactly the same copula

It is this result that shows us that the full dependence batvtieen random variables is completely
captured by the copula, independently of the shape of thginardistributions. This result is at
the basis of our statistical study presented in section 3.

2The quantile functiorE,~* of the distributionF; can be defined by:

F7'(w) =inf{z | Fi(z) > u}, Yue (0,1).

k3

When the distribution functio; is strictly increasingF;~! denotes the usual inverseBf. In fact, any quantile function
can be chosen. But, for non-continuous margins, the coglilai(l depend upon the precise quantile function which will
be selected.



2.2 Dependence between random variables

The dependence between two time series is usually desdripdteir correlation coefficient. This
measure is fully satisfactory only for elliptic distribatis (Embrechtst al. 1999), which are func-
tions of a quadratic form of the random variables, when omatésested in moderately size events.
However, an important issue for risk management concemddtermination of the dependence of
the distributions in the tails. Practically, the questiswihether it is more probable that large or
extreme events occur simultaneously or on the contrary moless independently. This is refered
to as the presence or absence of “tail dependence”.

The tail dependence is also an interesting concept in sigdyiecontagion of crises between
markets or countries. These questions have recently begnessgd by (Ang and Cheng 2001,
Longin and Solnik 2001, Starica 1999) among several othenge negative moves in a country or
market are often found to imply large negative moves in ather

Technically, we need to determine the probability that alcam variableX is large, knowing
that the random variabl¥ is large.

DEFINITION 2 (TAIL DEPENDENCE 1)
Let X andY be random variables witbontinuous marginalsF’y and Fy. The (upper) tail depen-
dence coefficient oK andY is, if it exists,

lim Pr{X > Fyl(w)Y > Fyt(w)} =X € 0,1]. (3)

In words, given that” is very large (which occurs with probability— «), the probability thatX is
very large at the same probability lewebefines asymptotically the tail dependence coefficlent

It turns out that this tail dependence is a pure copula ptgpérich is independent of the marginals.
Let C be the copula of theagsumed continuous) variablesX andY’, then

THEOREM 3
if the bivariate copula is such that

limM:/\ (4)
u—1 1 —u

exists (whereC (u, u) = 1 — 2u + C(u,u)), thenC has an upper tail dependence coefficient

If A > 0, the copula presents tail dependence and large eventsdeswtr simultaneously,
with the probabilityA. On the contrary, when = 0, the copula has no tail dependence in this
sense and large events appear to occur essentially indapgndrhere is however a subtlety in this
definition of tail dependence. To make it clear, first consttie case where for larg& andY” the
distribution functionF'(z, y) factorizes such that

e P @y () ®)

This means that, foX andY sufficiently large, these two variables can be consideraddepen-
dent. It is then easy to show that

lim1 Pr{X > F'(w)|Y > Fyl(u)} = lim1 1— Fx(Fx'(u)) (6)
= linﬁl—u:O, @)



so that independent variables really have no tail depemjescone can expect.

Unfortunately, the converse does not holds : a value 0 does not automatically imply true
independence, namely thal(x, y) satisfies equation (5). Indeed, the tail independenceriorite
A = 0 may still be associated with an absence of factorizatiorhefrultivariate distribution for
large X andY'. In a weaker sense, there may still be a dependence in tlewéailwhen\ = 0. Such
behavior is for instance exhibited by the Gaussian coputegimhas zero tail dependence according
to the definition 2 but nevertheless does not have a factdezaultivariate distribution, since the
non-diagonal term of the quadratic form in the exponentiatction does not become negligible in
general as¥ andY go to infinity. To summarize, th&il independence, according to definition 2,
is not equivalent to thendependence in the tail as defined in equation (5).

After this brief review of the main concepts underlying clas, we now present two special
families of copulas : the Gaussian copula and the Studenpsla.

2.3 The Gaussian copula

The Gaussian copula is the copula derived from the muléit@Gaussian distribution. Létdenote
the standard Normal (cumulative) distribution asg,, the n-dimensional Gaussian distribution
with correlation matrixp. Then, the Gaussiam-copula with correlation matrix is

Cp(ula C L Up) = D, (q)_l(ul)a T »q)_l(un)) ) (8)
whose density 56, )
Up, -, Up
Cp(ul’ o ,un) - 5u11. - ou ©)
reads
1 1, 1
Cp(ub T 7un) = \/m exXp _iy(u) (p - Id)y(u) (10)

with yy(u) = ®~1(uy). Note that theorem 1 and equation (2) ensure @t - - - ,uy,) in equa-
tion (8) is a copula.

As we said before, the Gaussian copula does not have a taihdepce :

lim Cplu,v)

u—l 1—u

=0, Vpe (-1,1). (11)

This result is derived for example in (Embrecletsal. 2001). But this does not mean that the
Gaussian copula goes to the independent (or product) copla us) = wu; - uy when (uy, usg)
goes to one. Indeed, consider a distributiofx, y) with Gaussian copula :

Its density is
fx.y) = cp(Fx (), Fy (y)) - fx (@) - fy (y), (13)
wherefx and fy are the densities o andY'. Thus,
f(z,y)

e Ta) ) e P O .



which should equal 1 if the variable¥ andY were independent in the tail. Reasoning in the
quantile space, we set= F'(u) andy = F}-'(u), which yield

flzy)
(oo T(a) - frly) e L) (19)

Using equation (10), it is now obvious to show thgtu, «) goes to one when goes to one, if
and only ifp = 0 which is equivalent t@',—o(u1, uz) = II(u1, ug) for every(ui, uz). Whenp > 0,
¢, (u, w) goes to infinity, while forp negativec,(u, u) goes to zero ag — 1. Thus, the dependence
structure described by the Gaussian copula is very diftéfrem the dependence structure of the
independent copula, except for= 0.

The Gaussian copula is completely determined by the knayeled the correlation matrix.
The parameters involved in the description of the Gaussigula are very simple to estimate, as
we shall see in the following.

In our tests presented below, we focus on pairs of assetgn.&aussian copulas involving only
two random variables. Obviously, for risk management psegp baskets or portfolios af > 2
assets must be considered. Our restriction is not cruciekghe testing procedure exposed in sec-
tion 3 can be applied to any number of assets and it is oniyhfsimplicity of the exposition that
we will present the case where only two assets are considetagtover, testing the Gaussian cop-
ula hypothesis for two random variables gives useful infiom for a larger number of dependent
variables constituting a large basket or portfolio. Inddetius assume that each péir, ), (b, c)
and(c, a) have a Gaussian copula, and in addition that the copula dfigiet (a, b, ¢) is elliptical,
which is a reasonable assumption. Then, the trifleb, ¢) has also a Gaussian copula. This result
generalizes to an arbitrary number of random varigbles

2.4 The Student’s copula

The Student’s copula is derived from the Student’s muliatardistribution. Given a multivariate
Student’s distributiorY, , with v degrees of freedom and a shépeatrix p

1 l/+n
T, , 16
P, ( ) \/WF 7.”/ N/2/ /_ 1+xp 1x>u;n ( )

the corresponding Student’s copula reads :

Cp,l/(ula T 7un) = Tp,l/ (t;l(ul)a e 7t;1(un)) ) (17)

wheret, is the univariate Student’s distribution withdegrees of freedom. The density of the
Student’s copula is thus

v+1

ey = LD ) T (15 5) a9
PV ) y Un \/m (V_)]n s

t —1 2
(1_|_yPV y)

3An elliptical distribution, and then an elliptical copula,fully determined by the knowledge of its mean, shape (or
covariance) matrix and the generator of its type. Once theilitions of every pairs of random variableX;, X),
i,j7 € {1,---,N} are known, the type of the generator is fixed and the mean andtpe matrix of the joined
distribution of (X1, X»,--- , Xn') can be reconstructed.

“The shape matriy is equal to the correlation matrix whenis larger than two, namely when the second moments
of the variablesX;’s exist.




wherey, =t (ug).

Since the Student’s distribution tends to the normal distion whenyv goes to infinity, the
Student’s copula tends to the Gaussian copula as+oo. In contrast to the Gaussian copula, the
Student’s copula for finite presents a tail dependence given by :

Mlp) = lim S8 _op, (—V”jfT M) , (19)
u— — p

wheret, . is the complementary cumulative univariate Student'srilistion with v + 1 degrees

of freedom (see (Embrechés al. 2001) for the proof). Figure 1 shows the upper tail depenglenc
coefficient as a function of the correlation coefficignfor different values of the number of
degrees of freedom. As expected from the fact that the Stsdsospula becomes identical to the
Gaussian copula far — +oc for all p # 1, A, (p) exhibits a regular decay to zero asncreases.
Moreover, forv sufficiently large, the tail dependence is significantlyffedi#nt from0 only when
the correlation coefficient is sufficiently close 1o This suggests that, for moderate values of the
correlation coefficient, a Student’s copula with a large banof degrees of freedom may be difficult
to distinguish from the Gaussian copula from a statisticahiof view. This statement will be made
guantitative in the following.

Figure 2 presents the same information in a different way hywing the maximum value
of the correlation coefficienp as a function ofv, below which the tail dependence,(p) of a
Student’s copula is smaller than a given small value, hédentaqual tol %, 2.5%, 5% and 10%.
The choice)\, (p) = 5% for instance corresponds tcevent in20 for which the pair of variables are
asymptotically coupled. At the5% probability level, values ok, (p) < 5% are undistinguishable
from 0, which means that the Student’s copula can be approximateddaussian copula.

The description of a Student’s copula relies on two pararsetehe correlation matriy, as
in the Gaussian case, and in addition the number of degreésafomr. The estimation of
the parametev is rather difficult and this has an important impact on thérested value of the
correlation matrix. As a consequence, the Student’s copufaore difficult to calibrate and use
than the Gaussian copula.

3 Testing the Gaussian copula hypothesis

In view of the central role that the Gaussian paradigm hagepland still plays in particular in
finance, it is natural to start with the simplest choice ofatefence between different random vari-
ables, namely the Gaussian copula. It is also a natural feptas the Gaussian copula imposes
itself in an approach which consists in (1) performing a mwdr transformation on the random
variables into Normal random variables (for the marginatjch is always possible and (2) in-
voking a maximum entropy principle (which amounts to addl#ast additional information in the
Shannon sense) to construct the multivariable distributibthese Gaussianized random variables
(Sornettest al. 2000b, Sornettet al. 2000a, Andersen and Sornette 2001).

In the sequel, we will denote b¥, the null hypothesis according to which the dependence
between two (or more) random variabl&sandY can be described by the Gaussian copula.



3.1 Test Statistics

We now derive the test statistics which will allow us to réj@cnot our null hypothesi#l, and state
the following proposition:

PROPOSITION1
Assuming that theV-dimensional random vectot = (x1,--- ,zy) with distribution functionF'
and marginald;, satisfies the null hypothesig, then, the variable

N
2= N (Fi(w) (07 )y 7 (Fi(ay), (20)
ji=1
where the matriy is
pij = Cov[®™H(Fi(z:)), @ (Ej(z;))], (21)

follows ax2-distribution with N degrees of freedom.

To prove the proposition above, first considerédimensional random vectar= (z1,--- ,zn).
Let us denote by its distribution function and by; the marginal distribution of each;. Let us
now assume that the distribution functién satisfiesH,, so thatF' has a Gaussian copula with
correlation matrixp while the F;’s can be any distribution function. According to theorentthe
distribution ' can be represented as :

F(ay,--an) = @, n(@ 7 (Fi(21)),- -, @ (Fn(2n))) - (22)
Let us now transform the;’s into Normal random variableg’s :
yi = @ (Fi(x)) - (23)

Since the mapping@~!(F;(-)) is obviously increasing, theorem 2 allows us to conclude tihea
copula of the variableg;’s is identical to the copula of the variabless. Therefore, the variables
y;'s have Normal marginal distributions and a Gaussian copitla correlation matrixp. Thus,
by definition, the multivariate distribution of thg's is the multivariate Gaussian distribution with
correlation matrixp :

Gly) = @,n (@ '(Fi(z1), .2 (Fn(zn))) (24)
— (I)p,N(yly"' 7yN)> (25)

andy is a Gaussian random vector. From equations (24-25), weobli have
pij = Cov[® ! (Fi(z;)), @~ (Fj(;))]- (26)

Consider now the random variable
N
Z=y'o Ty = v i, (27)
i,j=1

where:! denotes the transpose operator. Itis well-known that tHealsie 22 follows a2-distribution
with N degrees of freedom. Indeed, sincés a Gaussian random vector with covariance matrix
p, it follows that the components of the vector

y = Ay, (28)

SUp to now, the matrix was namedorrelation matrix. But in fact, since the variablag’s have unit variance, their
correlation matrix is also thegovariance matrix.
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are independent Normal random variables. Hereé\ denotes the square root of the matpix!,
obtained by the Cholevsky decomposition, so thA4A = p~!. Thus, the sunyty = 22 is the sum
of the squares alV independent Normal random variables, which followg?adistribution with N
degrees of freedom.

3.2 Testing procedure

The testing procedure used in the sequel is now described:oWeder twé financial series§ =

2) of sizeT: {z1(1), - ,z1(t), - ,z1(T)} and{xa(1), -+ ,x2(t), -+ ,22(T)}. We assume that
the vectors(t) = (z1(t), z2(t)), t € {1,--- , T} are independent and identically distributed with
distribution F', which implies that the variables; (¢) (respectivelyzs(t)), t € {1,--- , T}, are also
independent and identically distributed, with distrious F; (respectivelyFs)”.

The cumulative distributior, of each variable:;, which is estimated empirically, is given by

T

A 1

Fi(@i) = 7 > k<o (29)
=1

wherely , is the indicator function, which equals one if its argumerttile and zero otherwise. We
use these estimated cumulative distributions to obtairfSdugssian variableg as :

~

gi(k) = o7 (Fiwik) ke {1, T}, (30)

The sample covariance matyixs estimated by the expression :

.1
p:

=l

T
> 9900 (31)
i=1
which allows us to calculate the variable

i(k) (0715 95(K) (32)

R
—
RA
S~—
Il
(]
<

as defined in (27) fok € {1,--- , T}, which should be distributed according tq-&distribution if
the Gaussian copula hypothesis is correct.

The usual way for comparing an empirical with a theoretiaatribution is to measure the
distance between these two distributions and to performKtiimogorov test or the Anderson-
Darling (Anderson and Darling 1952) test (for a better aacyiin the tails of the distribution). The

6As explained in section 2.3, the cade = 2 is not restrictive at all, even if it couldy priori, appear of limited
interest. Indeed, for portfolio analysis and risk managenmrposes, larger basket of assets should be considered.
However, the testing procedure exposed here can be applaty/tnumber of assets, and it is only for the sake simplicity
of the exposition that we have restricted our investigatiothe bivariate case.

" The assumption of independently distributed data is not remlistic. Indeed, it is well-know that daily returns are
uncorrelated but that their volatility exhibits long ramdgpendence. One can then wonder why we have not filtered the
data by an ARCH or GARCH process (as in Patton (2001)) andabety our testing procedure to the residuals. The
main limitation of this approach is the following. The filieg of the data does not let the dependence structure hee., t
copula, unchanged. Thus, the copula of the residuals isheosame as the copula of the raw returns. Moreover, the
copula of the residual changes with the chosen filter. Ratgdare not the same when one filters the data with an ARCH,
a GARCH or a Multifractal Random Walk (Muzst al. 2000, Muzyet al. 2001). Therefore, our standpoint has been to
perform a model-free analysis, and thus not to filter the.dataviously, the price to pay for such a model-free approach
is a weakening of the power of the statistical test due to thegnce of (temporal) dependence between data.
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Kolmogorov distance is the maximum local distance alonggilentile which most often occur in
the bulk of the distribution, while the Anderson-Darlingsi@ince puts the emphasis on the tails of
the two distributions by a suitable normalization. We psgto complement these two distances
by two additional measures which are defined as average® ¢dimogorov distance and of the
Anderson-Darling distance respectively:

Kolmogorov : d; = max|F,2(2?) — sz(z2)| (33)
average Kolmogorov : dy = / |F,2 (22) — F\e (22)\ dFX2(22) (34)
F 2\ F 2
Anderson — Darling : d3 = max [P () Xz(z ) (35)
: \/FX2(z2)[1 — F\a(22)]

— F

e (2%)]

dF2(2*)  (36)

average Anderson — Darling : dy = /

The Kolmogorov distancé, and its average, are more sensitive to the deviations occurring in the
bulk of the distributions. In contrast, the Anderson-Dagldistancels and its averagéd, are more
accurate in the tails of the distributions. We present cafistical tests for these four distances in
order to be as complete as possible with respect to the eliffesensitivity of the tests.

The distancegl, andd, are not of common use in statistics, so let us justify our @oiOne
usually uses distances similar dg andd, but which differ by the square instead of the modulus
of F,2(2?) — F,2(z%) and lead respectively to the-test and the2-test, whose statistics are the-
oretically known. The main advantage of the distanégsndd, with respect to the more usual
distancesv and (2 is that they are simply equal to the averagedpfandds. This averaging is
very interesting and provides important information. ledethe distanceg, andds are mainly
controlled by the point that maximizes the argument witta mhax(-) function. They are thus
sensitive to the presence of an outlier. By averagiidgandd, become less sensitive to outliers,
since the weight of such points is only of ordefI" (whereT is the size of the sample) while it
equals one fotr; andds. Of course, the distancesand(? also perform a smoothing since they are
averaged quantities too. But they are the average of thee@fid, andds which can lead to an
undesired overweighing of the largest events. Of courgd) an overweighing of large events can
be interesting when one want to particularly focus on tadres. In fact, a trade-off between the
sensitivity to (desired) tail events and to (undesired)iengt must be found. That is why we have
preferedds andd,, which have seemed to us more convenient, in this respeut, ttte omega’s
distances. Moreover, the square function is chosen as &c@mt analytical form that allows one
to derive explicitely the theoretical asymptotic statistior thew and 2-tests. In contrast, using
the modulus of2 (%) — F,2(2?) instead of its square in the expressionigfandd,, no theoret-
ical test statistics can be derived analytically. In surme,gble advantage of the standard distances
w and ) with respect to the distances andd, introduced here is the theoretical knowledge of
their distributions. However, this advantage disappeasur present case in which the covariance
matrix is not knowna priori and needs to be estimated from the empirical data: indeedgxact
knowledge of all the parameters is necessary in the devivali the theoretical statistics of the
and(2-tests (as well as the Kolmogorov test). Therefore, we cadinectly use the results of these
standard statistical tests. As a remedy, we propose a baptsiethod (Efron and Tibshirani 1986),
whose accuracy is proved by (Chen and Lo 1997) to be at legstaabas that given by asymptotic
methods used to derive the theoretical distributions. F@present work, we have determined that
the generation of 10,000 synthetic time series was suffitteabtain a good approximation of the
distribution of distances described above. Since a baptsirethod is needed to determine the tests
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statistics in every case, it is convenient to choose funatiforms different from the usual ones in
thew and()-tests as they provide an improvement with respect to statigeliability, as obtained
with thed, andd, distances introduced here.

To summarize, our test procedure is as follows.

1. Given the original time series(t), t € {1,--- , T}, we generate the Gaussian variatj€s),
te{l,---,T}

2. We then estimate the covariance mafsinf the Gaussian variableg, which allows us to
compute the variables? and then measure the distance of its estimated distribttidhe
x2-distribution.

3. Given this covariance matrgx we generate numerically a time series/loGaussian random
vectors with the same covariance maigix

4. For the time series of Gaussian vectors syntheticallgiggad with covariance matrix we
estimate its sample covariance mafFix

5. To each of th@" vectors of the synthetic Gaussian time series, we assdh@tmrresponding
realization of the random variabt&, calledz?(t).

6. We can then construct the empirical distribution for thgablez? and measure the distance
between this distribution and the-distribution.

7. Repeating 10,000 times the steps 3 to 6, we obtain an dgecestimate of the cumulative
distribution of distances between the distribution of thitketic Gaussian variables and the
theoreticaly?-distribution. This cumulative distribution represent® test statistic, which
will allow us to reject or not the null hypothesig, at a given significance level.

8. The significance of the distance we got at step 2 for theviaiables - i.e., the probability to
observe, at random and undéy, a distance larger than the empirically estimated distaige
finally obtained by a simple reading on the complementaryudative distribution estimated
at step 7.

3.3 Sensitivity of the method

Before presenting the statistical tests, it is importanbvestigate the sensitivity of our testing pro-
cedure. More precisely, can we distinguish for instancevbenh a Gaussian copula and a Student’s
copula with a large number of degrees of freedom, for a giauevof the correlation coefficient?
Formally, denoting byH,, the hypothesis according to which the true copula of the dateze Stu-
dent’s copula withv degrees of freedom, we want to determine the minimum sigmdée level
allowing us to distinguish betwedt, and H,,.

3.3.1 Importance of the distinction between Gaussian and 8tlent’s copulas

This question has important practical implications beeaas discussed in section 2.4, the Stu-
dent’s copula presents a significant tail dependence wiileaussian copula has no asymptotic
tail dependence. Therefore, if our tests are unable tondigish between a Student’s and a Gaus-
sian copula, we may be led to choose the later for the sakergflisity and parsimony and, as a
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consequence, we may underestimate severely the deperuEneen extreme events if the correct
description turns out to be the Student’s copula. This mas ltatastrophic consequences in risk
assessment and portfolio management.

Figure 1 provides a quantification of the dangers incurrednistaking a Student’s copula for
a Gaussian one. Consider the case of a Student’s copula/witi20 degrees of freedom with a
correlation coefficienp lower than0.3 ~ 0.4 ; its tail dependence,, (p) turns out to be less than
0.7%, i.e., the probability that one variable becomes extrenmning that the other one is extreme
is less thar0.7%. In this case. the Gaussian copula with zero probabilityirafitaneous extreme
events is not a bad approximation of the Student’s copulacotrirast, let us take a correlatign
larger than0.7 — 0.8 for which the tail dependence becomes larger thafi, corresponding to a
non-negligible probability of simultaneous extreme egefthe effect of tail dependence becomes
of course much stronger as the numbeaf degrees of freedom decreases.

These examples stress the importance of knowing whethetesting procedure allows us to
distinguish between a Student’s copula with= 20 (or less) degrees of freedom and a given
correlation coefficienp = 0.5, for instance, and a Gaussian copula with an appropriatelaton
coefficientp’.

3.3.2 Statistical test on the distinction between Gaussiaand Student’s copulas

To address this question, we have generated 1,000 paimm®ftries of siz&” = 1250, each pair
of random variables following a Student’s bivariate dmition with » degrees of freedom and a
correlation coefficienp between the two simultaneous variables of the same paile ¥id variables
along the time axis are all independent. We have then aptleedrevious testing procedure to each
of the pairs of time series.

Specifically, for each pair of Student’s time series, we troies the marginal distributions and
transform the Student’s variables(k) into their Gaussian counterpansg k) via the transforma-
tion (23). For each paity, (k),y2(k)), k € {1,---,T}, we estimate its correlation matrix, then
construct the time series with realizations of the random variabié (k) defined in (27). The set
of T variablesz? then allows us to construct the distributionz8f(with N = 2) and to compare it
with the y2-distribution with two degrees of freedom. We then measeatistances;, d», ds and
d, defined by (33-36) between the distributionzéfand they2-distribution. The significancg; of
these distances; is calculated by generating 1,000 Gaussian time seriesangtbrrelation matrix
equal to the correlation matrix estimated from the origiaident’s time series, according to the
steps 3 to 8 of the testing procedure described in section@iven a Student’s time series with
distanced;, the significance of this distance is

1000

1
Di = m Z 1{d¢(22(y(k)),xz)>di}’ (37)
k=1

wherey*) = ( t(k))lgtg denotes thé'" replication of a bivariate Gaussian time series of lefigth
and correlation coefficient equal to the correlation coigffitestimated from the original Student’s
time series.

Repeating this protocol 1,000 times for Student’s timeesewith the same and p, we then
construct the cumulative distribution functidw (p), ¢ € {1,2, 3,4} of the significance obtained
for each of the four distance§, ds, d3 andd,. It thus allows us to get the minimum significance
level p such that we can discriminate a Student’s copula witlegrees of freedom and correlation
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coefficientp from a Gaussian copula with the same correlation coefficesnthe confidence level
D;(p), according to the test based upon distadceFor instance, the minimum significance level
such that we can discriminate a Student’s copula witlegrees of freedom from a Gaussian copula
with the same correlation coefficient, at theconfidence level, according to distanteis given by
D;(po) = . A small value ofp,, corresponds to a clear distinction between Student’s and<kan
vectors, at thev-confidence level, as it is improbable that Gaussian veetdngit a distance larger
than found for the Student’s vectors.

The cumulative distribution®; (p) for each of the four distances, i € {1, 2, 3,4} are shown in
figure 3 forv = 4 degrees of freedom and in figure 4 fore= 20 degrees of freedom, fdrdifferent
values of the correlation coefficiept= 0.1,0.3,0.5,0.7 and0.9. The very steep increase observed
for almost all cases in figure 3 reflects the fact that most ®fitf®00 Student’s vectors with= 4
degrees of freedom have a smalli.e., their copula is easily distinguishable from the Gaars
copula. The same cannot be stated for Student’s vectorswitt20 degrees of freedom. Note also
that the distances,, d, andd, give essentially the same result while the Anderson-Daudiistance
ds is more sensitive tp, especially for smali.

Fixing for instance the confidence levelat= 95%, we can read from each of these curves in
figures 3 and 4 the minimumy;-,-value necessary to distinguish a Student’s copula witivengt
from a Gaussian copula. Thigsy is the abscissa corresponding to the ordinategs,;) = 0.95.
These valuepgyss, are reported in table 1, for different values of the numbef degrees of freedom
ranging fromv = 3 to v = 50 and correlation coefficients = 0.1 to 0.9. The values 0pgsy, (v, p)
reported in table 1 are the minimum values that the statistignificancep should take in order
to be able to reject the hypothesis that a Student’s copulamilegrees and correlatigncan be
mistaken with a Gaussian copula at the 95% confidence level.

The results of the table 1 are depicted in figures 5-6 and septehe “power” of the test.
The statistical power is usually defined as the probabilityefection of null hypothesis when false.
Here, we have not exactly depicted the conventional stalgiower of the test, but, more precisely,
the minimum significance level allowing for the discrimiioat betweenH|, (the Gaussian copula)
and the alternative hypothestf, -1y (Student’s copula withv degrees of freedom).

In the abscissa of figures 5-6 is ploted the inversé of the number of degrees of freedom,
which provides a natural “distance” between the Gaussipulachypothesidi, = H,-1_,) and
the Student’s copula hypothesi, -1y. The typical shape of these curves is a sigmoid, starting
from a value very close to one for! — 0, decreasing as~! increases and going to 0 as'
becomes large enough. This typical shape simply exprebsefadt that it is easy to separate a
Gaussian copula from a Student’s copula with a small numbdegrees of freedom, while it is
difficult and even impossible for too large a number of degi&dreedom.

The figure 5 shows us that the distaneks d> and ds are not sensitive to the value of the
correlation coefficienp, while the discriminating power afs increases wittp. On figure 6, we
note thatd, andd, have the same discriminating power for a8 (which makes them somewhat
redundant) and that they are the most efficient to diffea¢mii/,, from H, for small p. Whenp is
about 0.5, d3 andd, (and maybel,) are equivalent with respect to the differential power, le/hi
for largep, ds becomes the most discriminating one with high significance.

This study of the test sensitivity involves a non-paramedpproach and the question may arise
why it should be prefered to a direct parametric test invajvior instance the calibration of the
Student copula. First, a parametric test of copulas woud fae “curse of dimensionality”, i.e., the
estimation of functions of several variables. With the tedidata set available, this does not seem
a reasonable approach. Second, we have taken the Studeid espan example of an alternative
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to the Gaussian copula. However, our tests are indepentidns @hoice and aim mainly at testing
the rejection of the Gaussian copula hypothesis. They aedha more general nature than would
be a parametric test which would be forced to choose one yashitopulas with the problem of
excluding others. The parametric test would then be exptustitk criticism that the rejection of a
given choice might not be of a general nature.

In the sequel, we will choose the level@f% as the level of rejection, which leads us to neglect
one extreme event out of twenty. This is not unreasonabléein of the other significant sources
of errors resulting in particular from the empirical deteration of the marginals and from the
presence of outliers for instance.

4 Empirical results

We investigate the following assets :

e foreign exchange rates,
e metals traded on the London Metal Exchange,

e stocks traded on the New York Stocks Exchange.

4.1 Currencies

The sample we have considered is made of the daily returnthéospot foreign exchanges for
6 currencie$ : the Swiss Franc (CHF), the German Mark (DEM), the Japanese(IPY), the
Malaysian Ringgit (MYR), the Thai Baht (THA) and the Britiffound (UKP). All the exchange
rates are expressed against the US dollar. The time intamalover ten years, from January 25,
1989 to December 31, 1998, so that each sample contains 258@aints.

We apply our test procedure to the entire sample and to twasaniples of 1250 data points so
that the first one covers the time interval from January 28918 January 11, 1994 and the second
one from January 12, 1994 to December 31, 1998. The reseltprasented in tables 2 to 4 and
depicted in figures 7 to 9.

Tables 2-4 give, for the total time interval and for each @f tlwo sub-intervals, the probability
p(d) to obtain from the Gaussian hypothesis a deviation betweelistribution of the:> and the
x2-distribution with two degrees of freedom larger than theesised one for each of the 15 pairs of
currencies according to the distaneksd, defined by (33)-(36).

The figures 7-9 organize the information shown in the tablgst® representing, for each
distanced; to d4, the number of currency pairs that give a test-vglueithin a bin interval of
width 0.05. A clustering close to the origin signals a significant regect of the Gaussian copula
hypothesis.

At the 95% significance level, table 2 and figure 7 show thag dAP6 (according ta; andds)
but 60% (according td, anddy) of the tested pairs of currencies are compatible with thesGian
copula hypothesis over the entire time interval. Duringftret half-period from January 25, 1989
to January 11, 1994 (table 3 and figure 8), 47% (according}X@and up to about 75 % (according

8The data come from the historical database of the FederarReBoard.
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to d» andd,) of the tested currency pairs are compatible with the astompf Gaussian copula,
while during the second sub-period from January 12, 1994eteimber 31, 1998 (table 4 and figure
9), between 66% (according th) and about 75% (according th, d3 andd,) of the currency pairs
remain compatible with the Gaussian copula hypothesiss& hesults raise several comments both
on a statistical and an economic point of view.

We first note that the most significant rejection of the Garssiopula hypothesis is obtained
for the distancels, which is indeed the most sensitive to the events in the fal@distributions.
The test statistics given by this distance can indeed besasTsitive to the presence of a single large
event in the sample, so much so that the Gaussian copulah®gi®tcan be rejected only because
of the presence of this single event (outlier). The diffeeshetween the results given By andd,
(the averageds) are very significant in this respect. Consider for instaheecase of the German
Mark and the Swiss Franc. During the time interval from Jayd&, 1994 to December 31, 1998,
we check on table 4 that the non-rejection probability) is very significant according ta;, ds
anddy (p(d) > 31%) while it is very low according tais: p(d) = 0.05%, and should lead to the
rejection of the Gaussian copula hypothesis. This suggfesisresence of an outlier in the sample.

To check this hypothesis, we show in the upper panel of figQriné function
_ 220 - B3]

VEe 0O = B ()]
used in the definition of the Anderson-Darling distante= max, f3(z) (see definition (35)),

expressed in terms of timerather thanz?. The function have been computed over the two time
sub-intervals separately.

f3(t) : (38)

Apart from three extreme peaks occurring on J20e£1989, Augustl9, 1991 and September
16, 1992 during the first time sub-interval and one extreme mraSeptembet0, 1997 during
the second time sub-interval, the statistical fluctuatimesisured byf3(¢) remain small and of the
same order. Excluding the contribution of these outliemévéods, the new statistical significance
derived according tds becomes similar to that obtained with, d, andd, on each sub-interval.
From the upper panel of figure 10, it is clear that the AndeiBariing distancels is equal to the
height of the largest peak corresponding to the event on stu§. 1991 for the the first period and
to the event on Septembgd, 1997 for the second period. These events are depicted bygladi
dot in the two lower panels of figure 10, which represent therneof the German Mark versus the
return of the Swiss Franc over the two considered time psriod

The event on August9, 1991 is associated with the coup against Gorbachev in Mastiee
German mark (respectively the Swiss franc) lost 3.37% @etsgely 0.74%) in daily annualized
value against the US dollar. The 3.37% drop of the German N&atke largest daily move of
this currency against the US dollar over the whole first ger@@n September0, 1997, the German
Mark appreciated by 0.60% against the US dollar while thesSWwranc lost 0.79% which represents
a moderate move for each currency, but a large joint moves dfent is related to the contradictory
announcements of the Swiss National Bank about the monptdigy, which put an end to a rally
of the Swiss Franc along with the German mark against the W&rdo

Thus, neglecting the large moves associated with majoorigal events or events associated
with unexpected incoming informati®nwhich cannot be taken into account by a statistical study,
we obtain, fords, significance levels compatible with those obtained with dther distances. We
can thus conclude that, according to the four distancesngltine time interval from January 12,

®The outlier nature of the event on August 19, 1991 has beenlgldemonstrated by Sornetteal. (2003).
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1994 to December 31, 1998 the Gaussian copula hypothesistdaa rejected for the couple Ger-
man Mark / Swiss Franc.

However, the non-rejection of the Gaussian copula hyp@&tiees not always have minor con-
sequences and may even lead to serious problem in stresgisserAs shown in section 3.3, the
non-rejection of the Gaussian copula hypothesis does raitigkx, at the 95% significance level,
that the dependence of the currency pairs may be accountdyy fa Student’s copula with ade-
guate values of andp. Still considering the pair German Mark / Swiss Franc, weisdable 1
that, according tal;, d; andd,, a Student’s copula with about five degrees of freedom allowvs
reach the test values given in table 4. But, with the corigatoefficientp = 0.92 for the German
Mark/Swiss Franc couple, the Gaussian copula assumptiad &ad to neglect a tail dependence
coefficient\5(0.92) = 63% according to the Student’s copula prediction. Such a laasjeevof
A5(0.92) means that when an extreme event occurs for the German Maigoitoccurs for the
Swiss Franc with a probability equals #63. Therefore, a stress scenario based on a Gaussian
copula assumption would fail to account for such coupledeexé events, which may represent as
many as two third of all the extreme events, if it would turrt that the true copula would be the
Student’s copula with five degrees of freedom. In fact, witblsa value of the correlation coeffi-
cient, the tail dependence remains high even if the numbdegiees of freedom reach twenty or
more (see figure 1).

The case of the Swiss Franc and the Malaysian Ringgit offetiskaéng difference. For instance,
in the second half-period, the test statisfi¢g) are greater than 70% and even reach 91% while the
correlation coefficient is only = 0.16, so that a Student’s copula with 7-10 degrees of freedom can
be mistaken with the Gaussian copula (see table 1). Evee mdst pessimistic situatian= 7, the
choice of the Gaussian copula amounts to neglecting a tpériience coefficient; (0.16) = 4%
predicted by the Student’s copula. In this case, stressasosrbased on the Gaussian copula would
predict uncoupled extreme events, which would be shown gvooty once out of twenty five times.

These two examples show that, more than the number of degféeedom of the Student’s
copula necessary to describe the data, the key parameteréstrelation coefficient.

From an economic point of view, the impact of regulatory nztitms between currencies or
monetary crisis can be well identified by the rejection orglog of rejection of our null hypothesis.
Indeed, consider the couple German Mark / British Pound.idguihe first half period, their cor-
relation coefficient is very highp(= 0.82) and the Gaussian copula hypothesis is strongly rejected
according to the four distances. On the contrary, duringsde®nd half period, the correlation co-
efficient significantly decreasep & 0.56) and none of the four distances allows us to reject our
null hypothesis. Such a non-stationarity can be easilyametl. Indeed, on January 1, 1990, the
British Pound entered the European Monetary System (EMSha the exchange rate between
the German Mark and the British Pound was not allowed to fatetbbeyond a margin of 2.25%.
However, due to a strong speculative attack, the BritismBouas devaluated on September 1992
and had to leave the EMS. Thus, between January 1990 anch8ept&€992, the exchange rate of
the German Mark and the British Pound was confined within aomaspread, incompatible with
the Gaussian copula description. After 1992, the Britishritioexchange rate floated with respect to
German Mark, the dependence between the two currenciesadect, as shown by their correlation
coefficient. In this regime, we can no more reject the Ganssipula hypothesis.

The impact of major crisis on the copula can be also cleadptified. Such a case is exhibited
by the couple Malaysian Ringgit/Thai Baht. Indeed, during period from January 1989 to Jan-
uary 1994, these two currencies have only undergone medenat weakly correlategh(= 0.29)
fluctuations, so that our null hypothesis cannot be rejeatdtie 95% significance level. On the
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contrary, during the period from January 1994 to Octobe818% Gaussian copula hypothesis is
strongly rejected. This rejection is obviously due to thespent and dependent & 0.44) shocks
incured by the Asian financial and monetary markets duriegsttven months of the Asian Crisis
from July 1997 to January 1998 (Baig and Goldfajn 1998, Ka#yrand Schimukler 1999).

These two cases show that the Gaussian copula hypothesksecaonsidered reasonable for
currencies in absence of regulatory mechanisms and ofgs&od persistent crises. They also
allows us to understand why the results of the test over tlileesample are so much weaker than
the results obtained for the two sub-intervals: the timeseare strongly non-stationary.

4.2 Commodities: metals

We consider a set of 6 metals traded on the London Metal Exghaluminum, copper, lead, nickel,
tin and zinc. Each sample contains 2270 data points and £dvertime interval from January 4,
1989 to December 30, 1997. The results are synthesizedleSand in figure 11.

Table 5 gives, for each of the 15 pairs of commodities, thégidity p(d) to obtain from the
Gaussian hypothesis a deviation between the distribufitimea:? and they2-distribution with two
degrees of freedom larger than the observed one for the cdibypair according to the distances
d1-d4 defined by (33)-(36).

The figure 11 organizes the information shown in table 5 byasgnting, for each distance, the
number of commodity pairs that give a test-vajueithin a bin interval of width0.05. A clustering
close to the origin signals a significant rejection of the §&#n copula hypothesis.

According to the three distancds, d; andd,, at least two third and up 3% of the set of 15
pairs of commodities are inconsistent with the Gaussiamledpypothesis. Surprisingly, according
to the distancels, at the95% significance level, two third of the set of 15 pairs of comntiedi
remain compatible with the Gaussian copula hypothesiss i§tlihe reverse to the previous situation
found for currencies. These test values lead to globalbctahe Gaussian copula hypothesis.

Moreover, the largest value obtained for the distaiigés p = 65% for the pair copper-tin,
which is significantly smaller than th&9% or 90% reached for some currencies over a similar time
interval. Thus, even in the few cases where the Gaussiardaapsumption is not rejected, the test
values obtained are not really sufficient to distinguisiwieein the Gaussian copula and a Student’s
copula withv = 5 ~ 6 degrees of freedom. In such a case, with correlation cogfisiranging
between0.31 and0.46, the tail dependence neglected by keeping the Gaussiartacispno less
than10% and can reach’5%. One extreme event out of seven or ten might occur simultasigo
on both marginals, which would be missed by the Gaussianlaopu

To summarize, the Gaussian copula does not seem a reasasahblaption for metals, and it
has not appeared necessary to test these data over snmaéieénterval.

4.3 Stocks

We now study the daily returns distributions for 22 stocksoagithe largest companies quoted
on the New York Stock Exchanyfe Appl. Materials (AMAT), AT&T (T), Citigroup (C), Coca
Cola (KO), EMC, Exxon-Mobil (XOM), Ford (F), General Elect{GE), General Motors (GM),
Hewlett Packard (HPW), IBM, Intel (INTC), MCI WorldCom (WQ®), Medtronic (MDT), Merck

The data come from the Center for Research in Security P(@RSP) database.
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(MRK), Microsoft (MSFT), Pfizer (PFE), Procter&Gamble (RGBC Communication (SBC), Sun
Microsystem (SUNW), Texas Instruments (TXN), Wal Mart (WMT

Each sample contains 2500 data points and covers the tierahfrom February 8, 1991 to
December 29, 2000 and have been divided into two sub-sampl@60 data points, so that the first
one covers the time interval from February 8, 1991 to Jan8ry1996 and the second one from
January 19, 1996 to December 20, 2000. The results of fifimehomly chosen pairs of assets are
presented in tables 6 to 8 while the results obtain for thizeeset are represented in figures 12 to
14.

At the 95% significance level, figure 12 shows that 75% of thespaf stocks are compatible
with the Gaussian copula hypothesis. Figure 13 shows tlet e time interval from February
1991 to January 1996, this percentage becomes larger tharf@9i,, d. andd, while it equals
94% according tals. It is striking to note that, during this period, accordirgdy, do anddy,
more than a quarter of the stocks obtain a test-vallerger than 90%, so that we can assert that
they are completely inconsistent with the Student’s cofylaothesis for Student’s copulas with
less than 10 degrees of freedom. Among this set of stocksamsiigle one has a correlation
coefficient larger thard.4, so that a scenario based on the Gaussian copula hypotbesss to
neglecting a tail dependence of less thi&h as would be predicted by the Student’s copula with
10 degrees of freedom. In addition, ab@d% of the pairs of stocks lead to a test-valudarger
than50% according to the distancek, dy; anddy, so that as much a&0% of the pairs of stocks
are incompatible with a Student’s copula with a number ofréeg of freedom less than or equal
to 5. Thus, for correlation coefficients smaller théu3, the Gaussian copula hypothesis leads to
neglecting a tail dependence less tha@f. For correlation coefficients smaller th&nl which
corresponds t@3% of the total number of pairs, the Gaussian copula hypotheads to neglecting
a tail dependence less thaft.

Figure 14 shows that, over the time interval from Januan6i®December 20002% of the
pairs of stocks are compatible with the Gaussian copulathgses according td, d» andd, and
more thari79% according tals. About a quarter of the pair of stocks have a test-vallarger than
50% according to the four measures and thus are inconsistelmav8tudent’s copula with less than
five degrees of freedom.

For completeness, we present in table 9 the results of tie pesformed for five stocks be-
longing to the computer area : Hewlett Packard, IBM, Intelgcidsoft and Sun Microsystem. We
observe that, during the first half period, all the pairs otks qualify the Gaussian copula Hypoth-
esis at the 95% significance level. The results are rathfareift for the second half period since
about40% of the pairs of stocks reject the Gaussian copula hypotlaesisrding tad;, dy andds.
This is probably due to the existence of a few shocks, notasdpciated with the crash of the “new
economy” in March-April 2000.

On the whole, it appears however that there is no systengjgction of the Gaussian copula
hypothesis for stocks within the same industrial area, itbstanding the fact that one can expect
stronger correlations between such stocks than for cugeihar instance.

5 Conclusion and comparison with other studies

We have studied the null hypothesis that the dependencesbptpairs of financial assets can be
modeled by the Gaussian copula.
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Our test procedure is based on the following simple idea.udssg that the copula of two
assetsX andY is Gaussian, then the multivariate distribution(df,Y) can be mapped into a
Gaussian multivariate distribution, by a transformatiéeach marginal into a normal distribution,
which leaves the copula of andY unchanged. Testing the Gaussian copula hypothesis is there
fore equivalent to the more standard problem of testing adinmensional multivariate Gaussian
distribution. We have used a bootstrap method to deternmmdecalibrate the test statistics. Four
different measures of distances between distributionsempless sensitive to the departure in the
bulk or in the tail of distributions, have been proposed targiiy the probability of rejection of our
null hypothesis.

Our tests have been performed over three types of assetencigs, commodities (metals) and
stocks. In most cases, for currencies and stocks, the Gausgpula hypothesis can not be rejected
at the 95% confidence level. For currencies, according &etbf the four distances at least,

e 40% of the pairs of currencies, over a 10 years time intedia¢ o non-stationary data),
e 67% of the pairs of currencies, over the first 5 years timevate

e 73% of the pairs of currencies, over the second 5 years titaeval,
are compatible with the Gaussian copula hypothesis. Fokstave have shown that

e 75% of the pairs of stocks, over a 10 years time interval,
e 93% of the pairs of stocks, over the first 5 years time interval

e 92% of the pairs of stocks, over the second 5 years time miterv

are compatible with the Gaussian copula hypothesis. Inrashitthe Gaussian copula hypothesis
cannot be considered as reasonable for metals : betweenr&b938o of the pairs of metals reject
the null hypothesis at the 95% confidence level.

Notwithstanding the apparent qualification of the Gaussigpula hypothesis for most of the
currencies and the stocks we have analyzed, we must beanihtha fact that a non-Gaussian cop-
ula cannot be rejected. In particular, we have shown thatide®t's copula can always be mistaken
for a Gaussian copula if its number of degrees of freedomficintly large. Then, depending on
the correlation coefficient, the Student’s copula can pteinon-negligible tail dependence which
is completely missed by the Gaussian copula assumption.thier evords, the Gaussian copula
predicts no tail dependences and therefore does not actausttreme events that may occur si-
multaneously but nevertheless too rarely to modify the $esistics. To quantify the probability
for neglecting such events, we have investigated the msmiwwhen one is unable to distinguish
between the Gaussian and Student’s copulas for a given muhdegrees of freedom. Our study
leads to the conclusion that it may be very dangerous to esalislindly the Gaussian copula hy-
pothesis when the correlation coefficient between the gaisset is too high as the tail dependence
neglected by the Gaussian copula can be as lar§eéatn this respect, the case of the Swiss Franc
and the German Mark is striking. The test valgesbtained are very significant (abos%), so
that we cannot mistake the Gaussian copula for a Studentslaavith less than 5-7 degrees of
freedom. However, their correlation coefficient is so high={ 0.9) that a Student’s copula with,
sayr = 30 degrees of freedom, still has a large tail dependence.

This remark shows that it is highly desirable to test for othen-Gaussian copulas, such as
the Student's copula. Breymaihal. (2003) have recently shown that the dependence structure of
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the couple German Mark / Japanese Yen is (slightly?) beétecribed by a Student’s copula with
about six degrees of freedom (for daily returns) than a Ganspula, according to the Akaike
information criterion. This result is compatible with antegpises ours, since in table 2 - where
investigated period covers a time interval comparable thigh used by Breymanst al. (2003) - we
see that our test cannot reject a Student’s copula with nhare 3-4 degrees of freedom. However,
the stationarity of the data over such a long period is not asglertained, as proved by the results
in tables 3-4, where we observe an important increase oighéisance of the non-rejection of the
Gaussian copula hypothesis during the second time intenthlrespect to the first one. In both
cases, however, significance levels remain consistentthétinon-rejection of a Student’s copula
with about 6 degrees of freedom.

In the study by Mashal and Zeevi (2002), it is claimed thatdapendence between stocks is
significantly better accounted for by a Student’'s copuldhwit-12 degrees of freedom than by a
Gaussian copula. Again, our results are compatible withdlomes. However, contrarily to the case
of currencies, the real improvement brought by the desorigf the dependence between stocks in
terms of a Student’s copula is questionable. Indeed, asrlimet®in section 4.3, correlation coef-
ficients between two stocks are hardly greater thanso that the tail dependence of the Student’s
copula with 11-12 degrees of freedom is ab®uit% or less (see figures 1-2). In view of all the
different sources of uncertainty during the estimationcpss in addition to the non-stationarity of
the data, we doubt that such a description eventually leadsricrete improvement for practical
purposes.

Finally, we want to stress that the question of the assedsvhtre coefficient of tail dependence
must be studied for its own. Indeed, as we have seen, coptiaszation only yields poor estimate
of this quantity, and are mainly based on #ariori assumption of the existence or not of such a tail
dependence. Therefore, we think that it is necessary tdajfetests that are specific to the detection
of a possible tail dependence between two time series. Sesuts concerning stocks have been
obtained by Malevergne and Sornette (2002a, b) and indibatexistence of a tail dependence
ranging between about five and fifteen percent during the figréd considered in the present
study (see Malevergne and Sornette (2002a)). Such estirafitbe coefficient of tail dependence
are barely compatible with estimates performed under thde®it's copula hypothesis and more
generally under the elliptical copula assumption. Thus esnservative conclusion and in view of
the different studies concerning this problem, we think tha Gaussian copula provides the most
parsimonious description of the dependence between setokns, apart from crisis periods. In
such periods, the Student’s copula does not bring a reattgrbgractical model since it turns out
that it still underestimate the dependence of tail events.

To our knowledge, no direct investigation of the tail depamze between currencies have yet
been performed. Thus, we cannot raise the same conclusimn stocks, and assert that the Stu-
dent’s copula still underestimate the tail dependence. ésngequence, for such assets, the pru-
dence leads to recommend the choice of the Student’s coptiiaegpect to the Gaussian copula
for risk management purposes.
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Figure 1: Upper tail dependence coefficien{p) for the Student’s copula with degrees of free-
dom as a function of the correlation coefficigntfor different values of.
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Figure 2: Maximum value of the correlation coefficignas a function oi, below which the tail
dependence\,,(p) of a Student’ copula is smaller than a given small value, lt@ken equal to
Mo(p) = 1%,2.5%, 5% and10%. The choice\,(p) = 5% for instance corresponds toevent in

20 for which the pair of variables are asymptotically coupléd.the 1 — X, (p) probability level,
values of\ < \,(p) are undistinguishable frof), which means that the Student’s copula can be
approximated by a Gaussian copula.
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Figure 3: Cumulative distribution functio®(p) obtained as the fraction of Student’s pairs with
v = 4 degrees of freedom that exhibit a value of at lp$br the probability that Gaussian vectors
can have a similar or larger distance. See the text for aldétdescription of howD(p) is defined
and constructed. Each panel corresponds to one of the fstandesl;, i € {1, 2, 3,4},defined in
the text by equations (33-36). In each panel, we constrecttimulative distribution functio®(p)

for 5 different values of the correlation coefficiemt= 0.1,0.3,0.5,0.7 and0.9 of the Student’s
copula.
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p| 01 03 05 07 09 p| 01 03 05 07 09

d, | 0.07 0.08 0.07 0.04 0.0 d | 028 026 032 030 0.2
v=23 dy | 0.03 0.03 0.07 0.04 006 v=4 d | 018 0.17 0.21 0.21 0.2
d; | 0.22 0.17 0.08 0.03 0.0 0.36 0.33 0.26 0.15 0.0
d, | 0.03 0.03 0.08 0.03 0.0 d, | 0.18 0.17 0.23 0.21 0.2
p| 01 03 05 07 09 p| 01 03 05 07 09

oY
o
W

W 5 O

d | 046 047 046 052 05 d | 078 081 081 081 0.8
v=2> d | 0.36 034 039 044 048 v=T7 d, | 0.71 0.78 0.76 0.77 0.8
d; | 0.52 0.54 047 030 0.1 0.80 081 082 0.73 0.5
d, | 0.37 0.36 043 045 04 d, | 0.75 081 0.79 0.80 0.8
p| 01 03 05 07 09 pl 01 03 05 07 09

O &5 WO
Qo
w

Wi T O)

d | 085 086 087 0.88 0.8 d | 092 093 096 095 0.9
v=_, d, | 085 084 086 0.87 0.88 v=10 d | 093 092 095 096 0.9
d; | 091 091 091 081 0.7 d; | 0.96 096 096 095 0.8
d, | 0.86 085 090 0.89 0.9 d, | 094 094 096 097 0.9
p| 01 03 05 07 09 p| 01 03 05 07 09

O O 0O

OoT 00 &~

d | 097 099 097 0.99 0.9 d | 099 099 099 099 0.9
20 dy | 099 099 097 099 099 v=50 d | 099 099 099 099 0.9
d; | 099 099 0.98 0.99 0.9 d; | 099 099 099 0.99 0.9
d, | 099 099 098 0.99 0.9 d, | 099 099 099 099 0.9

N
I

O N O O

Table 1: The valuepgysy (v, p) shown in this table give the minimum values that the signiféca
should take in order to be able to reject the hypothesis ti&ttident’s copula withv degrees and
correlationp is undistinguishable from a Gaussian copula at the 95% cemél level.pgsq, is the
abscissa corresponding to the ordinBi@q5+,) = 0.95 shown in figures 3 and 4.is the probability
that pairs of Gaussian random variables with the correlatmefficientp have a distance (between
the distribution ofz? and the theoretica}? distribution) equal to or larger than the corresponding
distance obtained for the Student’s vector time series. Allsprcorresponds to a clear distinction
between Student’s and Gaussian vectors, as it is improlfzditi€aussian vectors exhibit a distance
larger than found for the Student’s vectors. Different ealof the number of degrees of freedom
ranging fromv = 3 to v = 50 and of the correlation coefficiept= 0.1 to 0.9 are shown. Let us
take for instance the example with= 4 andp = 0.3. The table indicates that should be less
than abou®.3 (resp.0.2) according to the distancels andds (resp. d; andd,) for being able to
distinguish this Student’s copula from the Gaussian coatthe 95% confidence level. This means
that less tharR0 — 30% of Gaussian vectors should have a distance for ttelarger than the one
found for the Student’s. See text for further explanations.
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Figure 5: Graph of the minimum significance leygky, necessary to distinguish the Gaussian
copula hypothesidiy from the hypothesis of a student copula wittdegrees of freedom, as a
function of 1/v, for a given distance; and various correlation coefficients= 0.1,0.3,0.5,0.7
ando.9.
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p d; do ds dy
CHF DEM 0.92 1.01% 0.67% 0.00% 0.72%
CHF JPY 0.53 34.40% 27.10% 2.32% 28.30%
CHF MYR 0.23 72.70% 87.10% 57.70% 92.60%
CHF THA 0.21 3.08% 9.47% 3.31% 9.52%
CHF UKP 0.69 0.28% 0.18% 0.06% 0.13%
DEM JPY 0.54 2.26% 13.30% 10.00% 15.10%
DEM MYR 0.26 4250% 67.70% 62.20% 73.50%
DEM THA 0.24 6.53% 13.50% 3.26% 13.20%
DEM UKP 0.72 0.17% 0.04% 0.00% 0.04%
JPY MYR 0.31 2.45% 6.34% 22.60% 6.86%
JPY THA 0.34 0.00% 0.00% 3.24% 0.00%
JPY UKP 041 2.85% 3.72% 5.22% 3.09%
MYR THA 0.40 0.00% 0.00% 2.22% 0.00%
MYR UKP 0.21 69.40% 79.40% 62.30% 83.10%
THA UKP 0.15 52.20% 62.30% 3.21% 70.50%

Table 2: Each row gives the statistics of our test for eachhef5 pairs of currencies over a
10 years time interval from January 25, 1989 to December 928.1 The columnp gives the
empirical correlation coefficient for each pair determiasdn section 3.1 and defined in (31). The
columnsdy, do, ds andd, gives the probability to obtain, from the Gaussian hypathesdeviation
between the distribution of the? and they2-distribution with two degrees of freedom larger than
the observed one for the currency pair according to therdistal; -d, defined by (33)-(36).
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p d; do ds dy
CHF DEM 0.92 1.73% 1.33% 0.00% 1.31%
CHF JPY 0.55 13.40% 14.90% 38.30% 14.10%
CHF MYR 0.32 84.70% 70.00% 35.60% 74.00%
CHF THA 0.17 44.00% 71.00% 3.53% 71.10%
CHF UKP 0.79 0.31% 0.10% 0.00% 0.05%
DEM JPY 0.56 2.46% 9.43% 16.30% 9.26%
DEM MYR 0.35 93.20% 79.50% 35.10% 79.50%
DEM THA 0.21 43.60% 87.70% 3.47% 87.40%
DEM UKP 0.82 0.00% 0.00% 0.00% 0.00%
JPY MYR 0.34 49.00% 54.90% 36.60% 59.40%
JPY THA 0.27 38.90% 30.60% 3.37% 35.90%
JPY UKP 0.53 0.09% 1.66% 6.72% 1.67%
MYR THA 0.29 10.80% 8.71% 3.42% 9.30%
MYR UKP 0.33 11.20% 28.60% 35.40% 34.50%
THA UKP 0.21 43.40% 86.20% 3.13% 86.70%

Table 3: Same as table 2 for currencies over a 5 years tinrgahteom January 25, 1989 to January
11, 1994.
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p d; do ds dy
CHF DEM 0.92 31.50% 31.10% 0.05% 34.10%
CHF JPY 0.52 58.40% 64.40% 1.98% 67.40%
CHF MYR 0.16 71.10% 91.50% 88.30% 92.20%
CHF THA 0.25 1.10% 3.87% 10.50% 3.34%
CHF UKP 0.53 9.75% 10.30% 23.30% 9.29%
DEM JPY 0.53 36.30% 54.00% 1.77% 65.40%
DEM MYR 0.18 35.50% 50.00% 58.40% 56.70%
DEM THA 0.28 1.28% 2.18% 10.80% 1.51%
DEM UKP 056 11.50% 11.00% 30.20% 10.60%
JPY MYR 0.29 7.63% 21.40% 6.67% 22.30%
JPY THA 0.38 0.00% 0.02% 3.09% 0.02%
JPY UKP 0.28 46.20% 23.00% 12.30% 20.70%
MYR THA 0.44 0.05% 0.12% 5.34% 0.12%
MYR UKP 0.11 59.40% 74.40% 69.50% 78.20%
THA UKP 0.12 1.26% 7.66% 11.90% 6.51%

Table 4. Same as table 2 for currencies over a 5 years timevahtom January 12, 1994 to
December 31, 1998.
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Figure 7: For each distanek-d, defined in equations (33)-(36), this figure shows the number o
currency pairs that give a given(shown on the abscissa) within a bin interval of width5 for
different currencies over a 10 years time interval from dayn25, 1989 to December 31, 1998is

the probability that pairs of Gaussian random variables #ieé same correlation coefficiemhave

a distance (between the distribution :3f and the theoreticathi? distribution) equal to or larger
than the corresponding distance obtained for each curngaicy A clustering close to the origin
signals a significant rejection of the Gaussian copula hgsis.
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Figure 8: Same as figure 7 for currencies over a 5 years tireevaltfrom January 25, 1989 to
January 11, 1994.
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Figure 9: Same as figure 7 for currencies over a 5 years tineevaltfrom January 12, 1994 to
December 1998.
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p d; do ds d,
aluminum copper 0.46 6.46% 4.48% 1.45% 4.00%
aluminum lead 0.35 11.40% 5.01% 17.00%  4.59%
aluminum nickel 0.36 0.33% 0.51% 3.41% 0.62%
aluminum tin 0.34 13.40% 13.80% 1.25% 15.90%
aluminum  zinc 036 023% 0.22% 6.21% 0.23%
copper lead 035 4.71% 1.74% 17.90% 1.34%
copper nickel 0.38 4.91% 4.60% 14.80% 3.80%

copper tin 0.32 19.40% 13.50% 65.30% 14.70%
copper zinc 040 3.24% 2.05% 17.50% 1.94%
lead nickel 0.32 6.71% 3.78% 27.40% 3.62%
lead tin 0.33 7.86% 4.04% 491% 3.31%
lead zinc 042 0.02% 0.01% 4.59% 0.03%
nickel tin 035 091% 0.92% 8.70% 0.76%
nickel zinc 0.33 0.08% 0.34% 8.91% 0.35%
tin zinc 031 053% 2.02% 10.30% 1.75%

Table 5: Same as table 2 for metals over a 9 years time intioral January 4, 1989 to December
30, 1997.
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Figure 10: The upper panel represents the graph of the &mgii(¢) defined in (38) used in the
definition of the distancels for the couple Swiss Franc/German Mark as a function of titne
over the time intervals from January 25, 1989 to January 224 and from January 12, 1994 to
December 31, 1998. The two lower panels represent the sghtteof the return of the German
Mark versus the return of the Swiss Franc during the two previime periods. The circled dot, in

each figure, shows the pair of returns responsible for tigefideviation of'; during the considered
time interval.
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Figure 11: Same as figure 7 for metals over a 9 years time ailtitom January 4, 1989 to December
30, 1997.
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p d; do ds d,
amat pfe 0.15 7.41% 11.20% 0.84% 11.40%
c sunw 0.28 25.60% 48.70% 10.90% 53.90%
f ge 0.33 25.20% 27.40% 11.50% 29.00%
gm ibm 0.21 14.90% 3850% 16.20% 41.80%
hwp sbc 0.12 42.30% 16.90% 25.20% 17.20%
intc  mrk 0.17 24.80% 10.90% 64.60% 10.40%
ko sunw 0.14 14.10% 10.10% 21.20% 9.35%
mdt t 0.16 12.10% 28.10% 8.41% 29.80%
mrk  xom 0.19 15.40% 15.00% 11.20% 14.50%
msft sunw 044 3.40% 1.85% 0.26% 1.74%
pfe  wmt 027 424% 4.12% 15.40% 3.74%
t wcom 0.27 5.67% 8.02% 5.44% 9.07%
txn wcom 0.28 47.90% 37.70% 15.20% 37.50%
wmt  xom 0.20 0.32% 0.00% 6.02% 0.00%

Table 6: Same as table 2 for stocks over a 10 years time ihfeova February 8, 1991 to December
29, 2000.
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p d; do ds d,
amat pfe 0.10 58.30% 58.10% 11.80% 63.80%
c sunw 0.23 46.60% 59.40% 43.40% 61.60%
f ge 0.31 87.30% 78.70% 15.40% 84.80%
gm ibm 0.21 60.00% 65.30% 10.30% 52.70%
hwp sbc 0.11 87.30% 80.60% 28.40% 85.90%
intc  mrk 0.13 85.90% 82.10% 5.48% 86.50%
ko sunw 0.20 35.30% 59.80% 45.10% 67.90%
mdt t 0.14 90.90% 89.80% 16.80% 91.50%
mrk  xom 0.12 53.60% 62.10% 12.00% 61.80%
msft sunw 0.40 26.80% 13.80% 16.00% 13.90%
pfe wmt 0.23 29.40% 46.60% 14.10% 52.30%
t wcom 0.19 79.20% 93.60% 4.95% 94.90%
txn wcom 0.23 91.00% 98.30% 10.00% 99.30%
wmt  xom 0.22 71.60% 67.10% 7.35% 68.90%

Table 7. Same as table 2 for stocks over a 5 years time intéoral February 8, 1991 to January
18, 1996.
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p d; do ds d,
amat pfe 0.19 29.60% 33.90% 3.10% 39.50%
c sunw 0.31 71.20% 65.80% 94.70% 70.80%
f ge 0.34 38.00% 23.60% 32.20% 21.80%
gm ibm 0.21 3.05% 17.90% 23.70% 21.90%
hwp sbc 0.11 34.70% 61.30% 71.70% 64.00%
intc  mrk 0.20 13.10% 20.60% 55.70% 20.50%
ko sunw 0.10 68.90% 34.40% 85.90% 35.20%
mdt t 0.19 42.80% 61.10% 50.10% 57.90%
mrk  xom 0.23 35.70% 66.40% 11.30% 73.80%
msft sunw  0.46 5.79% 7.60% 0.08% 8.07%
pfe wmt 0.30 23.10% 21.20% 55.90% 19.80%
t wcom 0.33 12.00% 13.70% 17.30% 14.00%
txn wcom 0.31 56.30% 40.60% 46.40% 41.70%
wmt  xom 0.19 16.10% 5.38% 3.78%  4.94%

Table 8: Same as table 2 for stocks over a 5 years time intgoralJanuary 19, 1996 to December
29, 2000.

44



70 T T T T T T T T T

Q o o o
W =

50 h

40 §

30 N

0 L L | L | Ll L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 12: Same as figure 7 for stocks over a 10 years timevaitélom February 8, 1991 to
December 29, 2000.
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Figure 13: Same as figure 7 for stocks over a 5 years time adteom February 8, 1991 to January
18, 1996.
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Figure 14: Same as figure 7 for stocks over a 5 years time aitévm January 19, 1996 to De-
cember 30, 2000.
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p d; do ds d,
hwp ibm 0.34 33.60% 22.60% 33.30% 23.50%
hwp intc 0.46 30.10% 47.30% 51.20% 52.10%
hwp msft 0.41 76.30% 47.20% 32.30% 45.30%
hwp sunw 0.40 29.60% 29.80% 76.60% 35.40%
Time interval from ibm intc 0.30 48.10% 35.40% 4.18% 33.40%
February 8,1991to ibm msft 0.24 39.30% 66.10% 58.80% 70.70%
January 18, 1996 ibm sunw 0.29 96.50% 97.10% 34.60% 98.60%
intc msft 0.47 25.90% 14.50% 450% 15.30%
intc sunw 0.40 48.10% 38.60% 4.47% 39.50%
msft sunw 0.40 26.80% 13.80% 16.60% 13.90%

p dy do d3 d,
hwp ibm 0.46 2.02% 3.21% 0.96% 3.96%
hwp intc 0.44 2.88% 4.89% 0.06% 5.80%
hwp msft 0.37 5.23% 9.88% 33.60% 11.80%
hwp sunw 0.45 56.60% 56.50% 10.80% 62.30%
Time interval from ibm intc 0.43 5.34% 3.31% 1.68% 2.44%
January 19,1996to ibm msft 0.39 1.00% 0.95% 2.28% 0.88%
December 29, 2000 ibm sunw 0.46 23.50% 15.60% 33.80% 14.90%
intc msft 0.57 31.80% 16.10% 11.50% 17.10%
intc sunw 0.50 6.68% 3.55% 0.01% 4.37%
msft sunw 0.46 5.79% 7.60% 0.08% 8.07%

Table 9: Same as table 2 for stocks belonging to the infomzatttor, over two time intervals of 5
years.
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