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Abstract—The objective in neuromusculoskeletal simulation con- efficient technique, its main drawback is its lack of robust-
sists in findi_ng a set_of muscl_e_s excitations in order to produce the pess [14].
desired motion and is an exciting challenge for medical operators. The second generation of neuromusculoskeletal simulation
In this paper, muscle excitations are computed by using a second . . . .
order sliding mode controller which is optimal with respect of a approaches is using Clos_edfloor) control strateglles In.rorde
functional cost based on the tracking error and the torque squee. {0 compute muscular excitations. The controller input is th
The proposed strategy was tested using a two-dimensional human difference between desired and simulated motions, theubutp
anthropomorphic arm composed of two joints and six muscles. being muscle excitations vector. As stated in [13], the Eiene
of this tracking formulation is to constraint the model to
|. INTRODUCTION produce more realistic results; however, the question am ho
neural central system is solving the redundancy problein sti
Computer simulation has become a very useful tool to investemains as an open problem. Three main strategies have
gate how the neuromusculoskeletal system interacts taipeodbeen proposed, each one solving this redundancy problem
coordinated motions and provides possibilities which ae nby a different manner. In [16], computed muscle control is
generally possible by experimental ways. As a matter of faen extension of the computed torque control idea [8]: the
medical staff could use this simulator in order to evaluatainimization criteria is the square of euclidean norm of
the effect of their actions on a real patient or to analyze tls¢eady state muscular activations vector. Neuromuscelletsi
behaviour of a patient who is deficient in his motion. Thudracking [13] solves the redundancy problem using feedback
individual muscular signals like neural excitations orckes linearization and linear quadratic control.
can be perturbed in their incidence on the motion [6]. In thRecently, sliding mode control has been also applied to
case, neuromusculoskeletal simulation is used to uncherstmeuromusculoskeletal simulation. In [9], a strategy based
muscle coordination of human legs [19], to analyze normél aimverse dynamic and first order sliding mode control is used
pathological gait [10] and to estimate muscle forces [2]e THo track desired motion. The problem with first order sliding
role of closed loop control techniques in neuromusculatlél mode is that, before the system reachs the sliding surfaee, t
model simulation is crucial, as the following survey willinsensitivity to variations of system parameters and esler
display. disturbances can not be ensured [17] and the convergence to
One of the formerly works in neuromusculoskeletal simularigin is only asymptotic. The three aforementioned stjiate
tion [3] (forward dynamics simulation) consists in finding a@olve in an effective way the tracking motion problem but use
set of muscles excitations which, when applied to forwanery artificial optimization criteria from physiologicalomt-
dynamics equations, produces desired motions. In [1] tbé&view. When desired motions are derived from experimental
muscle excitations are taken as the optimization variabldata, another shortcoming arises because in these works the
for minimizing the metabolic energy expended per travelatkésired movement is specified using positions, velocitiebs a
distance unit. This approach unfortunately is computafipn accelerations: however, it is well-known that second otitee
expensive: for example, muscle excitations computationsif derivatives estimation of data signals is highly sensitive
3D human walking model require more than 10000 hours abise.
computation with a supercomputer [1]. Another propositiomhe purpose of this paper is to present an application of
called inverse dynamics [4], estimates muscle forces fntj second order sliding-mode techniques to neuromusculeisiel
torques, which are computed as a function of joint positionsimulation. As the used controller [11] is based on a higiteor
velocities and accelerations. As muscles number is greaséiding mode approach [7], the robustness is ensured dthieng
than joints number, different set of muscular forces couile g entire response as the sliding manifold is designed sudh tha
the same joint torques. Several criteria have been proposkd system is evolving on this manifold early from initiahg.
in order to solve the redundancy problem: among them, tRerthermore, the convergence time is finite and well-knawn i
minimum sum of muscle efforts [12], the minimum sum o&dvance, and the reference trajectories are specified aslpg
muscle stresses [4] and the minimization of muscle worfaint positions and velocities (and not accelerations,clvtis
Although inverse dynamics approach is a computationaléypositive point with respect to previous approaches), bad t



minimization criteria for solving the redundancy proble@sh matrix

a strong physiological support. Py

The paper is organized as follows: The human arm model [Pl} _ {7‘11 7‘16} )

equations are given in Section Il, as desired motions design Iy 21 ... T2 )
Section Il describes the control strategy. Section 1V pres T 6

the simulation results. The final section V contains coriolus

and perspectives. with F; the force developped by muscle Coefficients ofR

matrix are given in [15].
II. ANTHROPOMORPHIC ARM MODEL

The driven system is depicted in Figure 1. The arm model% Muscular forces

composed of 6 muscles and 2 joints and it is assumed the a}rngh | h lei diob instant
is evolving in a vertical plane. n the sequel, each muscle is supposed to be an instantéyeous

force generator, which means that the muscular force is a
2\ nonlinear algebraic function of the muscular activaticm).
(J . . .
Furthermore, each tendon is supposed to be rigid, which snean
that its length is constant. Then, each muscle of the arm is
characterized through the active muscular force which it is
able to engender, this force being given froim=({1,--- ,6})

Fa,,-, = aiflj, (ZZ) fvi (lh Umax (ai7 lv)) Fmaxi (3)

Gravity with I; the length of musclei, F,... the maximal value
of muscular effort. The functiong;(.) and f,(.) and the
parameters of the muscles are described in [15].

D. Musculo-skeletal geometry

Muscles are now linked to external supports. Of course, it
Fig. 1. Schematic representation of the human arm. The arm isdriove means that their lengths depend on the articular positions.
6 muscles: 4 monoarticular ones:{, ma2, ms m4) and 2 biarticular ones The relation between muscular fiber Iength and joint pCIEEiIiO

(ms me). reads as
L=1L,—R"(¢- Q) (4)
A. Skeletal dynamics T. .
L=1[l1 ... lg] is the vector of muscular fiber lengths,
Using the second Lagrange method, skeletal dynamics equa- = [ln lTe]T is the vector of muscle length in
tions are obtained rest position, and and), = [Q,, QTQ]T is the vector

. SN N of rest position for every articular joint. As the muscular
D()G+Cla,q)a+Gla)+m(q) =T @ force depends also on fiber length contraction velocity, the
with g = [a¢ qQ]T the generalized coordinates vectelation between these variables and joint velocities sessl
tor!, D(g2)(2 x 2) the symmetric positive inertia matrix, L = —R”q.
C(q,q)(2 x 2) the Coriolis and centrifugal effects matrix and
G(q)(2 x 1) the gravity effects vectol = [I', T,]” is
the torques vector applied at the links joints andq) =

T . .. .
(71, 71.]" s the friction effects vectorj(= {1,2}) such The activations dynamics displays the relation between the

that7y, = Bjq; + Fy, sign (¢;). B; and F; are Coulomb and 1 scylar excitations; and the mechanical activation and
viscous friction coefficients for the considered links joldrm  o44s as

parameters are given in [15].

E. Activation dynamics

(ui — a;) [ui/Ta; + (1 —wi)/7a,] s wi > a,
B. Torque-force relation a; =
(u; —a;)/7a;,ui < ai,
As no muscle is considered on the second link (Figure 1), (5)

relation between torques and forces is given by a const¥ith 7., and 7y, respectively the time constants for the acti-
vation and desactivation dynamics. Excitation and adtivat

INotationT denote matrix transposition. levels are allowed to vary continuously between 0 and 1 [18].



F. Smulation model IIl. CONTROL STRATEGY

'Bhe proposed control strategy is a hierarchical one contpbose

Simulation model is displayed in Figure 2 and is baseby four levels (Figure 3), the output of each level being a

on previous equations. Let (resp. U) denote the state

(resp. control input) vectorr, — [x - ]T _ refgrepce signgl for.the nex.t one. I.t is recalled that thet[od)n
" ) s st a0 7 objective consists in tracking articular reference trijee
[0 @ @2 G2 oa .. oag] U = [ur ... ug] ¢ (1) by acting through the excitation of the six muscles
Then, the arm model reads as a nonlinear system whichigrough inputt7). An other objective consists also in design-
not affine in control input, ing robust controller with respect to parameters variati¢ior
) _ example, mass which would be adding on the forarm as an
s = f(25,U) (6)  object taking in the hand).

As as matter of fact, the system can not be written as a Desired Desired
nonlinear model affine i/ (which would be more convenient Torques Forces
for control design) because activation dynamics (5) depend ¢, g,
on u; and u?. As the objectice consists in forcing the arm

to track articular positions trajectories, the system ot

defined ayy = [z1 23"

Desired
Activations Excitations

Activation
Dynamics
— Muscular Skeletal
& Forces Jacobian  Dynamics
U ,_?j A
O———
L q,q Fig. 3. Proposed control scheme.
— 1L, L
s A. Control scheme
o
u The four levels of the controller scheme can be detailed as
Musculo—Skeletal follows:
Geometry First level. This block computes the desired torqugsusing

computed-torque formulation (8) and robust control (9)

Fig. 2. Elements of human arm musclen driven simulaiér= [uq - - - ug]” A A N A " g
is the muscular excitations vector (and then the control timeator). A = [ =D (qZ) n+C (q’ q) q+ G(q) +7f (q) (8)

[a1---ae]T is the muscular activations vectdr. = [Fy, - - Fag]7 is the T . )

active muscular forces cvectdt. = [Iy - - - Ig]” is the muscular fiber length n= [771 772] = fe(@r,4r, 0, 9) 9)
vector.T' = [I'; T'2]7 is the joint torques vectoy = [q1 ¢2]7 is the joint A A A )

positions vector. with D, C, G, 7r the estimated values dD, C, G and

7¢ (1) (knowing that these terms have uncertainties). In
Section 1lI-B, a solution fom based on second order sliding
mode controller is proposed and compared (in simulation)
G. Control synthesis model with a classical proportional-derivative control. Noteatth
these both controllers are computed in order to minimize a
Muscle dynamics are stabfeand faster than arm motions,criteria such that the torques are minimal.
which yields that muscle dynamics can be neglected. Thegcond level. Desired muscular forces F. =
the model, which will be used for control design, is built by[FalT FaGT]T are computed as a function of desired
supposing that there is no dynamics betweerand U (see torques using the linear relation (from equation (2))
Figure 2),i.e. A =U. Then, the system can be written as

I = RE,. (10)
i = f(z)+g(x)U (7) This system having six unknowns and two equations, there
exists an infinity of exact solutions. As a consequence,ovect
. T . . 1T . . L
with 2 = [21 ... a4 = [@ @ ¢ ¢] , U = F,is chosen in order to minimize muscle efforts. Then, at
[Ul uﬁf_ each simulation step, the following constrained optinorat
problem is solved using linear programming
2Equations (5) are linear in;. Then, it is easy to find an analytic solution 6 F,. 2
for a; and to show that it is a BIBO (bounded input bounded outpuatlst min Z ( — > (11)
system. Foy >0 = Fax;



with F..., being the maximum value allowed for musale 1) Somerecalls: Defines = [s; so]”. From (1) and (8) one

(for numerical values, see [15]). gets,

Third level. Desired activations, = [a1, ... aﬁr]T are S= G- (t)

computed in order to obtain desired forces vedtprFor each " . R )

muscle,a,, (¢ = {1...6}) is obtained as a function dfy, =D ! (qo) [D (g2)n+Clq,q) ¢+ G(g)+ (15)
using contraction dynamics (3). For a sake of clarity, eiguat . N . ..

(3) g rewritten foryeach m(ugclé by using the r;‘ergr?ge 7 (9) = Cla,9) 4 = Gla) =7 (@)] = Gr ()
activations (withi = {1...6}) =x() +60)n

. H1. The solutions of (15) are understood in the Filippov
Fo,, = ar By (L) B, (li’ Umax (a’“i’li)) Fimax, (12)  sense [5], and system trajectories are supposed to be éhfinit
In this case, one gets a system with six unknowns and §13gtend|ble in time for any bounded Lebesgue measurable

independent nonlinear equations. Find an explicit safufar 'NPUt: . _ _ ;
a,, is a hard task: solutions of system (12) are numerically2. / is a dominant diagonal matrix for € X c R",

calculated by using a root solver. X being a bounded open subset Bf* within which the
Fourth level. Muscle excitations input vectorU = boundedness of the system dynamics is ensured.
[u1 ... wug] is computed as a function of the desiredast assumption implies that system (15) is “sufficiently”

activations. Given the activation dynamics equation (8), fdecoupled which allows to consider that inpyt is acting

a constant excitation(t) = u, the corresponding steady-staten sliding variables; and then to design by a separate way

activationa equalsu. Thus, excitation inputs are computed byach component of input vector. Then, for a sake of clarity,

using the trivial equation (withh = {1...6}) one supposes only the case of monovariable system. Consider
— (13) now single input equation

Sio= xi()+Bi()m (16)

H3. Functionsy;(-) and;(-) are bounded uncertain functions,
In this section, two different controllers are presentdtk Tirst and, without loss of generality, let also the sign of the ouint
one is based on a second order sliding mode control approagin 3; be constant and strictly positive. Thus, there exist
the second one using a proportional-derivative control ard,, ¢ R™*, K, € Rt*, Cy € IRT such that
being designed in order to offer performances comparisons
with respect to the previous one. The both controllers are
synthetized from model displayed in Section II-G whereas theygr ,» ¢ X.

are evaluated on a simulator based on the model displayeghe synthesis of a high order sliding mode controller for
in Section II-F. Controller parameters are determined Ryg) is made through the following idea: switching variable
minimization of the following performance index is defined such that the system evolvesrly from ¢ = 0,
ty on a switching manifold. Furthermore the sliding variabhe a
J :/ {(q ) (g—aq)e' + FTQF} dt (14) its time derivatives reach the origin in finite time in spite o
_ 0 uncertainties thanks to discontinuous control input. Tésigh
with of the controller consists in two steps

r7Qr = I 2+ ra )’ . L .
L., I « Design of the switching variable for system (16),
« Design of a discontinuous control inpyt maintaining
the system trajectories on the switching manifold which
ensures the establishment of a second order sliding mode,
in spite of uncertainties.

B. Robust controller

0< K <Bi <Ky |xil £Co. (17)

The exponential terme! gives a strong weight to tracking
errors in latter time interval. The weight matrix was chosen
to penalize large control signalg) allows to compare each
joint torque with respect to its steady-state vallie, =
[r831 FSSQ]T = G (qy) is obtained by evaluating skeletalSwitching variable. Let S; denote the switching variable
dynamics at = t; (¢ (t7) = g7, 4 (t5) =0, G (t) = 0). defined as

C. Siding mode control Si = &= Fi(t)+ o, [si — Fi(@)], (18)

) i . with Ay, > 0. The function F;(¢), called pre-computed
The feedback control (9) is defined by the second-order 'mt?éjectory is at least a2-one defined such tha (t = 0) = 0

gral sliding control law proposed by [11]. Lef (i = {1,2}) (k) (k)

. ; ' ands;”’(t = t.) — F;"’(t.) = 0 (k = {0,1}). Then, from
denote t.he ;o—called sliding variable de.ﬁr?edias 6i—~ar, (1). initial and final conditions, the problem consists in findihg
The objective of a second order sliding mode Contm"%nction Fi(t) such that
consists in forcing the system to track trajectories sueh ih !
finite time and in spite of uncertainties, one has= s; = 0 si(t =0) = F;(0),

P :
for t > t,. $i(t =0) = Fi(0),

i(t = tc) = ]:i(tc) = 0;
f(t=1t.) =Fi(te) =0 (19)

s
s



A So|ution forﬁ(t) reads as 10 Positi‘ons - Sho‘ulder 100 Posi‘tions- El‘bow
Fit) = a37it3 + ag}itz + a1t +ao; (20) °r o
-10+ , 80 I
H4. There exists a finite positive consta®t € IR+ such that,
-20+ , 70 L
for 0 <t <t
. . -30} 1 60 |
4 — Fi(t) + Xo, {5 - fi(t)} < o 1) ol |l
» .“
Equations; = 0 describes the desired dynamics which satisfy ’5°’\‘ 1 ';\
the finite time stabilization of vectd; s;|” to zero. Then, -60f \\ 1% \\
the switching manifold on which system (16) is forced to slide of N\ 1 20
on via a discontinuous contraj;, is defined as PRI I wl N
Si = {m | Si = 0} (22) % 5 10 s %o 5 10 15

Time [sec] Time [sec]

Given equation (19), one gets;(t = 0) = 0: at the initial

time, the system still evolves on the switching manifold. i o ) -
Fig. 4. Second order sliding mode control.Joint positions deg) versus

. . . time (sec): trajectory reference (solid line), nominal case (dashiee)land
Controller design. The attention is now focused on theuncertain case (+50% mass error) (dotted line).
design of the discontinuous control law which forces the
system trajectories of (16) to slide &}, to reach in finite
time the origin and to maintain the system at the origin. ¢, (t), i = {1,2}) 7; = kps; + kq5;. Parameters;, and kq

Theorem 1: [11] Consider the nonlinear system (16) with are determined by minimization of the performance indey (14

relative degree with respect tos;(z, t). Suppose that it is VCN 9Vesk, = 18.2070, ka = 0.1774.
minimum phase and that hypothesé&s, H,, and Hj are

fulfilled. Let 2 be the sliding mode order arid< ¢, < oo the IV. SIMULATIONS

desired convergence time. Defise € IR by

b $i + Ao, S t >t
(23)

In this section simulation results are displayed. In order t
evaluate control performance and robustness versus piiame
variations, two sets of simulation have been made: the first o
is made by supposing that all parameters are fully well-kmow

with pre-computed trajectory derived from (19) such thd€alled “nominal case”), whereas the second one supposes

assumption H4 is fulfilled. The control input defined by

nm = —k; sign(S;) (24)
with
Co+0O+e¢
; - 25
oz AR (25)

Co, K,, defined by (17),© defined by (21)¢ > 0, leads to

the establishment of a second order sliding mode with reésp

to s;. The convergence time is. -
Sketch of proof. Condition (25) allows to satisfy the-

attractivity condition$S < —e|S|. For more details, see [11].

2) Appllcatlon fl(t) = a37¢t3 + a2’it2 + a'l,it + ap; is
computed such tha; (0) = ¢;(0), Fi(t.) = 0, Fi(0) = ¢;(0),
Fi(t.) = 0. Parametersi., Ao, and Aq,

by minimization of the performance index (14) after settin

k1 = 20 and k, = 30. The obtained values ark,, = 17.81,
tc = 48, asq; = 00142, azq; = 7010230, ay; = 0,
ap; = 0.7854 (i = 1,2).

D. Proportional-derivative control

an error in the upper-arm mass of 50% (called “uncertain
case”). For the second order sliding mode control, position
torques and excitations for both nominal and uncertainsccase
are respectively displayed in Figures 4, and 5, whereas, for
PD control, results are compared in Figures 6 and 7. These
simulations clearly show that second order sliding mode
controller is more robust to mass variations than PD one:
figthermore, the finite time feature of second order sliding
mode control clearly appears.

V. CONCLUSION AND PERSPECTIVES

A new neuromusculoskeletal simulation technique based on
second-order sliding mode control has been proposed. It

are determined allows to evaluate, under optimal criteria as minimum sum of

uscle efforts, muscle activations in order to move an human
g]quivalent arm under a prescribed planar motion. From the
control point-of-view, simulations have shown that theseld-
loop system is robust versus mass variations. Furthermore,
in spite of difference between control synthesis model and
simulation model (muscle activation dynamics are negtecte
for control design), tracking error converges towards zaro

In order to evaluate performances (and its interest versas arbitrary fixed time.. This latter time is limited only by

a “classical” controller) of previous second order slidinghysical constraints [18] as muscle activatioy(t) must be
mode controller, the feeedback control law (9) reads assach that(0 < u,(¢) < 1). Futher works consist in applying a
proportional-derivative control equation (with(¢t) = ¢;(t) — such strategy on a biped model in order to simulate human gait
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