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Abstract—The objective in neuromusculoskeletal simulation con-
sists in finding a set of muscles excitations in order to produce the
desired motion and is an exciting challenge for medical operators.
In this paper, muscle excitations are computed by using a second
order sliding mode controller which is optimal with respect of a
functional cost based on the tracking error and the torque square.
The proposed strategy was tested using a two-dimensional human
anthropomorphic arm composed of two joints and six muscles.

I. I NTRODUCTION

Computer simulation has become a very useful tool to investi-
gate how the neuromusculoskeletal system interacts to produce
coordinated motions and provides possibilities which are not
generally possible by experimental ways. As a matter of fact,
medical staff could use this simulator in order to evaluate
the effect of their actions on a real patient or to analyze the
behaviour of a patient who is deficient in his motion. Thus,
individual muscular signals like neural excitations or forces
can be perturbed in their incidence on the motion [6]. In this
case, neuromusculoskeletal simulation is used to understand
muscle coordination of human legs [19], to analyze normal and
pathological gait [10] and to estimate muscle forces [2]. The
role of closed loop control techniques in neuromusculoskeletal
model simulation is crucial, as the following survey will
display.
One of the formerly works in neuromusculoskeletal simula-
tion [3] (forward dynamics simulation) consists in finding a
set of muscles excitations which, when applied to forward
dynamics equations, produces desired motions. In [1] the
muscle excitations are taken as the optimization variables
for minimizing the metabolic energy expended per traveled
distance unit. This approach unfortunately is computationaly
expensive: for example, muscle excitations computations for a
3D human walking model require more than 10000 hours of
computation with a supercomputer [1]. Another proposition,
called inverse dynamics [4], estimates muscle forces from joint
torques, which are computed as a function of joint positions,
velocities and accelerations. As muscles number is greater
than joints number, different set of muscular forces could give
the same joint torques. Several criteria have been proposed
in order to solve the redundancy problem: among them, the
minimum sum of muscle efforts [12], the minimum sum of
muscle stresses [4] and the minimization of muscle work.
Although inverse dynamics approach is a computationally

efficient technique, its main drawback is its lack of robust-
ness [14].
The second generation of neuromusculoskeletal simulation
approaches is using closed-loop control strategies in order
to compute muscular excitations. The controller input is the
difference between desired and simulated motions, the output
being muscle excitations vector. As stated in [13], the benefit
of this tracking formulation is to constraint the model to
produce more realistic results; however, the question on how
neural central system is solving the redundancy problem still
remains as an open problem. Three main strategies have
been proposed, each one solving this redundancy problem
by a different manner. In [16], computed muscle control is
an extension of the computed torque control idea [8]: the
minimization criteria is the square of euclidean norm of
steady state muscular activations vector. Neuromusculoskeletal
tracking [13] solves the redundancy problem using feedback
linearization and linear quadratic control.
Recently, sliding mode control has been also applied to
neuromusculoskeletal simulation. In [9], a strategy basedon
inverse dynamic and first order sliding mode control is used
to track desired motion. The problem with first order sliding
mode is that, before the system reachs the sliding surface, the
insensitivity to variations of system parameters and external
disturbances can not be ensured [17] and the convergence to
origin is only asymptotic. The three aforementioned strategies
solve in an effective way the tracking motion problem but use
very artificial optimization criteria from physiological point-
of-view. When desired motions are derived from experimental
data, another shortcoming arises because in these works the
desired movement is specified using positions, velocities and
accelerations: however, it is well-known that second ordertime
derivatives estimation of data signals is highly sensitiveto
noise.
The purpose of this paper is to present an application of
second order sliding-mode techniques to neuromusculoskeletal
simulation. As the used controller [11] is based on a high-order
sliding mode approach [7], the robustness is ensured duringthe
entire response as the sliding manifold is designed such that
the system is evolving on this manifold early from initial time.
Furthermore, the convergence time is finite and well-known in
advance, and the reference trajectories are specified usingonly
joint positions and velocities (and not accelerations, which is
a positive point with respect to previous approaches), and the



minimization criteria for solving the redundancy problem has
a strong physiological support.
The paper is organized as follows: The human arm model
equations are given in Section II, as desired motions design.
Section III describes the control strategy. Section IV presents
the simulation results. The final section V contains conclusion
and perspectives.

II. A NTHROPOMORPHIC ARM MODEL

The driven system is depicted in Figure 1. The arm model is
composed of 6 muscles and 2 joints and it is assumed the arm
is evolving in a vertical plane.

Gravity
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Fig. 1. Schematic representation of the human arm. The arm is moved by
6 muscles: 4 monoarticular ones (m1, m2, m3 m4) and 2 biarticular ones
(m5,m6).

A. Skeletal dynamics

Using the second Lagrange method, skeletal dynamics equa-
tions are obtained

D (q2) q̈ + C (q, q̇) q̇ + G(q) + τf (q̇) = Γ (1)

with q =
[
q1 q2

]T
the generalized coordinates vec-

tor1, D(q2)(2 × 2) the symmetric positive inertia matrix,
C(q, q̇)(2×2) the Coriolis and centrifugal effects matrix and
G(q)(2 × 1) the gravity effects vector.Γ =

[
Γ1 Γ2

]T
is

the torques vector applied at the links joints andτf (q̇) =
[
τf1

τf2

]T
is the friction effects vector (j = {1, 2}) such

that τfj
= Bj q̇j +Fsj

sign (q̇j). Bj andFsj
are Coulomb and

viscous friction coefficients for the considered links joint. Arm
parameters are given in [15].

B. Torque-force relation

As no muscle is considered on the second link (Figure 1),
relation between torques and forces is given by a constant

1NotationT denote matrix transposition.

matrix
[
Γ1

Γ2

]

=

[
r11 . . . r16

r21 . . . r26

]

︸ ︷︷ ︸

R

·






F1

...
F6




 (2)

with Fi the force developped by musclei. Coefficients ofR
matrix are given in [15].

C. Muscular forces

In the sequel, each muscle is supposed to be an instantaneously
force generator, which means that the muscular force is a
nonlinear algebraic function of the muscular activationa(t).
Furthermore, each tendon is supposed to be rigid, which means
that its length is constant. Then, each muscle of the arm is
characterized through the active muscular force which it is
able to engender, this force being given from (i = {1, · · · , 6})

Fai
= aifli (li) fvi

(

l̇i, vmax (ai, li)
)

Fmaxi
(3)

with li the length of musclei, Fmax the maximal value
of muscular effort. The functionsfl(.) and fv(.) and the
parameters of the muscles are described in [15].

D. Musculo-skeletal geometry

Muscles are now linked to external supports. Of course, it
means that their lengths depend on the articular positions.
The relation between muscular fiber length and joint positions
reads as

L = Lr − RT (q − Qr) (4)

L =
[
l1 . . . l6

]T
is the vector of muscular fiber lengths,

Lr =
[
lr1

. . . lr6

]T
is the vector of muscle length in

rest position, and andQr =
[
Qr1

Qr2

]T
is the vector

of rest position for every articular jointi. As the muscular
force depends also on fiber length contraction velocity, the
relation between these variables and joint velocities reads as
L̇ = −RT q̇.

E. Activation dynamics

The activations dynamics displays the relation between the
muscular excitationui and the mechanical activationai and
reads as

ȧi =







(ui − ai) [ui/τai
+ (1 − ui)/τdi

] , ui ≥ ai,

(ui − ai)/τdi
, ui < ai,

(5)
with τai

and τdi
respectively the time constants for the acti-

vation and desactivation dynamics. Excitation and activation
levels are allowed to vary continuously between 0 and 1 [18].



F. Simulation model

Simulation model is displayed in Figure 2 and is based
on previous equations. Letx (resp. U ) denote the state
(resp. control input) vector:xs =

[
xs1

. . . xs10

]T
=

[
q1 q̇1 q2 q̇2 a1 . . . a6

]T
, U =

[
u1 . . . u6

]T
.

Then, the arm model reads as a nonlinear system which is
not affine in control input,

ẋs = f̄ (xs, U) (6)

As as matter of fact, the system can not be written as a
nonlinear model affine inU (which would be more convenient
for control design) because activation dynamics (5) depends
on ui and u2

i . As the objectice consists in forcing the arm
to track articular positions trajectories, the system output is
defined asy =

[
x1 x3

]T
.
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Fig. 2. Elements of human arm musclen driven simulation.U = [u1 · · ·u6]T

is the muscular excitations vector (and then the control input vector).A =
[a1 · · · a6]T is the muscular activations vector.F = [Fa1

· · ·Fa6
]T is the

active muscular forces cvector.L = [l1 · · · l6]T is the muscular fiber length
vector.Γ = [Γ1 Γ2]T is the joint torques vector.q = [q1 q2]T is the joint
positions vector.

G. Control synthesis model

Muscle dynamics are stable2 and faster than arm motions,
which yields that muscle dynamics can be neglected. Then,
the model, which will be used for control design, is built by
supposing that there is no dynamics betweenA and U (see
Figure 2),i.e. A = U . Then, the system can be written as

ẋ = f(x) + g(x)U (7)

with x =
[
x1 . . . x4

]T
=

[
q1 q̇1 q2 q̇2

]T
, U =

[
u1 . . . u6

]T
.

2Equations (5) are linear inai. Then, it is easy to find an analytic solution
for ai and to show that it is a BIBO (bounded input bounded output) stable
system.

III. C ONTROL STRATEGY

The proposed control strategy is a hierarchical one composed
by four levels (Figure 3), the output of each level being a
reference signal for the next one. It is recalled that the control
objective consists in tracking articular reference trajectoire
qri

(t) by acting through the excitation of the six muscles
(through inputU ). An other objective consists also in design-
ing robust controller with respect to parameters variations (for
example, mass which would be adding on the forarm as an
object taking in the hand).
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Fig. 3. Proposed control scheme.

A. Control scheme

The four levels of the controller scheme can be detailed as
follows:
First level. This block computes the desired torquesΓr using
computed-torque formulation (8) and robust control (9)

Γr = D̂ (q2) η + Ĉ (q, q̇) q̇ + Ĝ(q) + τ̂f (q̇) (8)

η =
[
η1 η2

]T
:= fc (qr, q̇r, q, q̇) (9)

with D̂, Ĉ, Ĝ, τ̂f the estimated values ofD, C, G and
τf (1) (knowing that these terms have uncertainties). In
Section III-B, a solution forη based on second order sliding
mode controller is proposed and compared (in simulation)
with a classical proportional-derivative control. Note that
these both controllers are computed in order to minimize a
criteria such that the torques are minimal.
Second level. Desired muscular forces Fr =
[
Fa1r

. . . Fa6r

]T
are computed as a function of desired

torques using the linear relation (from equation (2))

Γr = RFr. (10)

This system having six unknowns and two equations, there
exists an infinity of exact solutions. As a consequence, vector
Fr is chosen in order to minimize muscle efforts. Then, at
each simulation step, the following constrained optimization
problem is solved using linear programming

min
Fair

>0

6∑

i=1

(
Fair

Fmaxi

)2

(11)



with Fmaxi
being the maximum value allowed for musclei

(for numerical values, see [15]).
Third level. Desired activationsAr =

[
a1r

. . . a6r

]T
are

computed in order to obtain desired forces vectorFr. For each
muscle,ari

(i = {1 . . . 6}) is obtained as a function ofFair

using contraction dynamics (3). For a sake of clarity, equation
(3) is rewritten for each musclei by using the reference
activations (withi = {1 . . . 6})

Fair
= ari

Fl (li) Fvi

(

l̇i, vmax (ari
, li)

)

Fmaxi
(12)

In this case, one gets a system with six unknowns and six
independent nonlinear equations. Find an explicit solution for
ari

is a hard task: solutions of system (12) are numerically
calculated by using a root solver.
Fourth level. Muscle excitations input vectorU =
[
u1 . . . u6

]T
is computed as a function of the desired

activations. Given the activation dynamics equation (5), for
a constant excitationu(t) = ū, the corresponding steady-state
activationā equalsū. Thus, excitation inputs are computed by
using the trivial equation (withi = {1 . . . 6})

ui = ari
. (13)

B. Robust controller

In this section, two different controllers are presented. The first
one is based on a second order sliding mode control approach,
the second one using a proportional-derivative control and
being designed in order to offer performances comparisons
with respect to the previous one. The both controllers are
synthetized from model displayed in Section II-G whereas they
are evaluated on a simulator based on the model displayed
in Section II-F. Controller parameters are determined by
minimization of the following performance index

J =

∫ tf

0

[

(q − qr)
T

(q − qr) et + ΓT QΓ
]

dt (14)

with

ΓT QΓ =

(
Γ1

Γss1

)2

+

(
Γ2

Γss2

)2

The exponential termet gives a strong weight to tracking
errors in latter time interval. The weight matrixQ was chosen
to penalize large control signals.Q allows to compare each
joint torque with respect to its steady-state value.Γss =
[
Γss1

Γss2

]T
= G (qf ) is obtained by evaluating skeletal

dynamics att = tf (q (tf ) = qf , q̇ (tf ) = 0, q̈ (tf ) = 0).

C. Sliding mode control

The feedback control (9) is defined by the second-order inte-
gral sliding control law proposed by [11]. Letsi (i = {1, 2})
denote the so-called sliding variable defined assi = qi−qri

(t).
The objective of a second order sliding mode controller
consists in forcing the system to track trajectories such that, in
finite time and in spite of uncertainties, one hassi = ṡi = 0
for t > tc.

1) Some recalls: Defines = [s1 s2]
T . From (1) and (8) one

gets,

s̈ = q̈ − q̈r(t)

= D−1 (q2)
[

D̂ (q2) η + Ĉ (q, q̇) q̇ + Ĝ(q)+

τ̂f (q̇) − C (q, q̇) q̇ − G(q) − τf (q̇)] − q̈ri
(t)

:= χ(·) + β(·)η

(15)

H1. The solutions of (15) are understood in the Filippov
sense [5], and system trajectories are supposed to be infinitely
extendible in time for any bounded Lebesgue measurable
input.
H2. β is a dominant diagonal matrix forx ∈ X ⊂ IR4,
X being a bounded open subset ofIR4 within which the
boundedness of the system dynamics is ensured.

Last assumption implies that system (15) is “sufficiently”
decoupled which allows to consider that inputηi is acting
on sliding variablesi and then to design by a separate way
each component of input vector. Then, for a sake of clarity,
one supposes only the case of monovariable system. Consider
now single input equation

s̈i = χi(·) + βi(·)ηi (16)

H3. Functionsχi(·) andβi(·) are bounded uncertain functions,
and, without loss of generality, let also the sign of the control
gain βi be constant and strictly positive. Thus, there exist
Km ∈ IR+∗, KM ∈ IR+∗, C0 ∈ IR+ such that

0 < Km < βi < KM |χi| ≤ C0. (17)

for x ∈ X.
The synthesis of a high order sliding mode controller for
(16) is made through the following idea: switching variable
is defined such that the system evolves,early from t = 0,
on a switching manifold. Furthermore the sliding variable and
its time derivatives reach the origin in finite time in spite of
uncertainties thanks to discontinuous control input. The design
of the controller consists in two steps

• Design of the switching variable for system (16),
• Design of a discontinuous control inputηi maintaining

the system trajectories on the switching manifold which
ensures the establishment of a second order sliding mode,
in spite of uncertainties.

Switching variable. Let Si denote the switching variable
defined as

Si = ṡi − Ḟi(t) + λ0i
[si −Fi(t)] , (18)

with λ0i
> 0. The function Fi(t), called pre-computed

trajectory, is at least aC2-one defined such thatSi(t = 0) = 0

and s
(k)
i (t = tc) − F

(k)
i (tc) = 0 (k = {0, 1}). Then, from

initial and final conditions, the problem consists in findingthe
functionFi(t) such that

si(t = 0) = Fi(0), si(t = tc) = Fi(tc) = 0,

ṡi(t = 0) = Ḟi(0), ṡi(t = tc) = Ḟi(tc) = 0
(19)



A solution forFi(t) reads as

Fi(t) = a3,it
3 + a2,it

2 + a1,it + a0,i (20)

H4. There exists a finite positive constantΘi ∈ IR+ such that,
for 0 ≤ t ≤ tc,

s̈i − F̈i(t) + λ0i

[

ṡi − Ḟi(t)
]

< Θ (21)

EquationSi = 0 describes the desired dynamics which satisfy
the finite time stabilization of vector[ṡi si]

T to zero. Then,
theswitching manifold on which system (16) is forced to slide
on via a discontinuous controlηi, is defined as

Si = {x | Si = 0} (22)

Given equation (19), one getsSi(t = 0) = 0: at the initial
time, the system still evolves on the switching manifold.

Controller design. The attention is now focused on the
design of the discontinuous control lawu which forces the
system trajectories of (16) to slide onSi, to reach in finite
time the origin and to maintain the system at the origin.

Theorem 1: [11] Consider the nonlinear system (16) with a
relative degree2 with respect tosi(x, t). Suppose that it is
minimum phase and that hypothesesH1, H2, and H3 are
fulfilled. Let 2 be the sliding mode order and0 < tc < ∞ the
desired convergence time. DefineSi ∈ IR by

Si =

{

ṡi − Ḟi(t) + λ0i
[si −Fi(t)] 0 ≤ t < tc

ṡi + λ0i
si t ≥ tc

(23)
with pre-computed trajectory derived from (19) such that
assumption H4 is fulfilled. The control inputηi defined by

ηi = −ki sign(Si) (24)

with
ki ≥

C0 + Θ + ǫ

Km

, (25)

C0, Km defined by (17),Θ defined by (21),ǫ > 0, leads to
the establishment of a second order sliding mode with respect
to si. The convergence time istc.

Sketch of proof. Condition (25) allows to satisfy theη-
attractivity conditionṠS ≤ −ǫ|S|. For more details, see [11].

2) Application: Fi(t) = a3,it
3 + a2,it

2 + a1,it + a0,i is
computed such thatFi(0) = ei(0), Fi(tc) = 0, Ḟi(0) = ėi(0),
Ḟi(tc) = 0. Parameterstc, λ01

and λ02
are determined

by minimization of the performance index (14) after setting
k1 = 20 and k2 = 30. The obtained values areλ0i

= 17.81,
tc = 4.8, a3,i = 0.0142, a2,i = −0.10230, a1,i = 0,
a0,i = 0.7854 (i = 1, 2).

D. Proportional-derivative control

In order to evaluate performances (and its interest versus
a “classical” controller) of previous second order sliding
mode controller, the feeedback control law (9) reads as a
proportional-derivative control equation (withsi(t) = qi(t) −
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Fig. 4. Second order sliding mode control.Joint positions (deg) versus
time (sec): trajectory reference (solid line), nominal case (dashed line) and
uncertain case (+50% mass error) (dotted line).

qri
(t), i = {1, 2}) ηi = kpsi + kdṡi. Parameterskp and kd

are determined by minimization of the performance index (14)
which giveskp = 18.2070, kd = 0.1774.

IV. SIMULATIONS

In this section simulation results are displayed. In order to
evaluate control performance and robustness versus parameters
variations, two sets of simulation have been made: the first one
is made by supposing that all parameters are fully well-known
(called “nominal case”), whereas the second one supposes
an error in the upper-arm mass of 50% (called “uncertain
case”). For the second order sliding mode control, positions,
torques and excitations for both nominal and uncertain cases
are respectively displayed in Figures 4, and 5, whereas, for
PD control, results are compared in Figures 6 and 7. These
simulations clearly show that second order sliding mode
controller is more robust to mass variations than PD one:
furthermore, the finite time feature of second order sliding
mode control clearly appears.

V. CONCLUSION AND PERSPECTIVES

A new neuromusculoskeletal simulation technique based on
second-order sliding mode control has been proposed. It
allows to evaluate, under optimal criteria as minimum sum of
muscle efforts, muscle activations in order to move an human-
equivalent arm under a prescribed planar motion. From the
control point-of-view, simulations have shown that the closed-
loop system is robust versus mass variations. Furthermore,
in spite of difference between control synthesis model and
simulation model (muscle activation dynamics are neglected
for control design), tracking error converges towards zeroin
an arbitrary fixed timetc. This latter time is limited only by
physical constraints [18] as muscle activationui(t) must be
such that(0 ≤ ui(t) ≤ 1). Futher works consist in applying a
such strategy on a biped model in order to simulate human gait
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and to obtain medical staffs simulators usable for pathology
diagnostic or operation consequences.
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