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Optimal control of a neuromusculoskeletal model: a second order sliding mode solution

The objective in neuromusculoskeletal simulation consists in finding a set of muscles excitations in order to produce the desired motion and is an exciting challenge for medical operators. In this paper, muscle excitations are computed by using a second order sliding mode controller which is optimal with respect of a functional cost based on the tracking error and the torque square. The proposed strategy was tested using a two-dimensional human anthropomorphic arm composed of two joints and six muscles.

I. INTRODUCTION

Computer simulation has become a very useful tool to investigate how the neuromusculoskeletal system interacts to produce coordinated motions and provides possibilities which are not generally possible by experimental ways. As a matter of fact, medical staff could use this simulator in order to evaluate the effect of their actions on a real patient or to analyze the behaviour of a patient who is deficient in his motion. Thus, individual muscular signals like neural excitations or forces can be perturbed in their incidence on the motion [START_REF] Komura | Simulating pathological gait using the enhanced linear inverted pendulum model[END_REF]. In this case, neuromusculoskeletal simulation is used to understand muscle coordination of human legs [START_REF]Understanding muscle coordination of the human leg with dynamical simulations[END_REF], to analyze normal and pathological gait [START_REF] Piazza | Muscle-driven forward dynamic simulations for the study of normal and pathological gait[END_REF] and to estimate muscle forces [START_REF] Buchanan | Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command[END_REF]. The role of closed loop control techniques in neuromusculoskeletal model simulation is crucial, as the following survey will display. One of the formerly works in neuromusculoskeletal simulation [START_REF] Chow | Studies of human locomotion via optimal programming[END_REF] (forward dynamics simulation) consists in finding a set of muscles excitations which, when applied to forward dynamics equations, produces desired motions. In [START_REF] Anderson | Dynamic optimization of human walking[END_REF] the muscle excitations are taken as the optimization variables for minimizing the metabolic energy expended per traveled distance unit. This approach unfortunately is computationaly expensive: for example, muscle excitations computations for a 3D human walking model require more than 10000 hours of computation with a supercomputer [START_REF] Anderson | Dynamic optimization of human walking[END_REF]. Another proposition, called inverse dynamics [START_REF] Crowninshield | A physiologically based criterion of muscle force prediction in locomotion[END_REF], estimates muscle forces from joint torques, which are computed as a function of joint positions, velocities and accelerations. As muscles number is greater than joints number, different set of muscular forces could give the same joint torques. Several criteria have been proposed in order to solve the redundancy problem: among them, the minimum sum of muscle efforts [START_REF] Seireg | Biomechanical Analysis of the Musculoskeletal Structure for Medicine and Sports[END_REF], the minimum sum of muscle stresses [START_REF] Crowninshield | A physiologically based criterion of muscle force prediction in locomotion[END_REF] and the minimization of muscle work. Although inverse dynamics approach is a computationally efficient technique, its main drawback is its lack of robustness [START_REF] Silva | Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data[END_REF]. The second generation of neuromusculoskeletal simulation approaches is using closed-loop control strategies in order to compute muscular excitations. The controller input is the difference between desired and simulated motions, the output being muscle excitations vector. As stated in [START_REF] Seth | A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement[END_REF], the benefit of this tracking formulation is to constraint the model to produce more realistic results; however, the question on how neural central system is solving the redundancy problem still remains as an open problem. Three main strategies have been proposed, each one solving this redundancy problem by a different manner. In [START_REF] Thelen | Generating dynamic simulations of movement using computed muscle control[END_REF], computed muscle control is an extension of the computed torque control idea [START_REF] Lewis | Control of Robot Manipulators[END_REF]: the minimization criteria is the square of euclidean norm of steady state muscular activations vector. Neuromusculoskeletal tracking [START_REF] Seth | A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement[END_REF] solves the redundancy problem using feedback linearization and linear quadratic control. Recently, sliding mode control has been also applied to neuromusculoskeletal simulation. In [START_REF] Lister | Simulation of human gait and associated muscle activation strategies using sliding-mode control techniques[END_REF], a strategy based on inverse dynamic and first order sliding mode control is used to track desired motion. The problem with first order sliding mode is that, before the system reachs the sliding surface, the insensitivity to variations of system parameters and external disturbances can not be ensured [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty conditions[END_REF] and the convergence to origin is only asymptotic. The three aforementioned strategies solve in an effective way the tracking motion problem but use very artificial optimization criteria from physiological pointof-view. When desired motions are derived from experimental data, another shortcoming arises because in these works the desired movement is specified using positions, velocities and accelerations: however, it is well-known that second order time derivatives estimation of data signals is highly sensitive to noise. The purpose of this paper is to present an application of second order sliding-mode techniques to neuromusculoskeletal simulation. As the used controller [START_REF] Plestan | A new algorithm for high order sliding mode control[END_REF] is based on a high-order sliding mode approach [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], the robustness is ensured during the entire response as the sliding manifold is designed such that the system is evolving on this manifold early from initial time. Furthermore, the convergence time is finite and well-known in advance, and the reference trajectories are specified using only joint positions and velocities (and not accelerations, which is a positive point with respect to previous approaches), and the minimization criteria for solving the redundancy problem has a strong physiological support. The paper is organized as follows: The human arm model equations are given in Section II, as desired motions design. Section III describes the control strategy. Section IV presents the simulation results. The final section V contains conclusion and perspectives.

II. ANTHROPOMORPHIC ARM MODEL

The driven system is depicted in Figure 1. The arm model is composed of 6 muscles and 2 joints and it is assumed the arm is evolving in a vertical plane. 

A. Skeletal dynamics

Using the second Lagrange method, skeletal dynamics equations are obtained

D (q 2 ) q + C (q, q) q + G(q) + τ f ( q) = Γ (1) 
with q = q 1 q 2 T the generalized coordinates vector 1 , D(q 2 )(2 × 2) the symmetric positive inertia matrix, C(q, q)(2 × 2) the Coriolis and centrifugal effects matrix and G(q)(2 × 1) the gravity effects vector. Γ = Γ 1 Γ 2 T is the torques vector applied at the links joints and τ f ( q) = τ f1 τ f2 T is the friction effects vector (j = {1, 2}) such that τ fj = B j qj + F sj sign ( qj ). B j and F sj are Coulomb and viscous friction coefficients for the considered links joint. Arm parameters are given in [START_REF] Stroeve | Impedance characteristics of a neuromusculoskeletal model of the human arm i: Posture control[END_REF].

B. Torque-force relation

As no muscle is considered on the second link (Figure 1), relation between torques and forces is given by a constant 1 Notation T denote matrix transposition.

matrix

Γ 1 Γ 2 = r 11 . . . r 16 r 21 . . . r 26 R •    F 1 . . . F 6    (2) 
with F i the force developped by muscle i. Coefficients of R matrix are given in [START_REF] Stroeve | Impedance characteristics of a neuromusculoskeletal model of the human arm i: Posture control[END_REF].

C. Muscular forces

In the sequel, each muscle is supposed to be an instantaneously force generator, which means that the muscular force is a nonlinear algebraic function of the muscular activation a(t). Furthermore, each tendon is supposed to be rigid, which means that its length is constant. Then, each muscle of the arm is characterized through the active muscular force which it is able to engender, this force being given from (i {1, • • • , 6})

F ai = a i f li (l i ) f vi li , v max (a i , l i ) F maxi (3) 
with l i the length of muscle i, F max the maximal value of muscular effort. The functions f l (.) and f v (.) and the parameters of the muscles are described in [START_REF] Stroeve | Impedance characteristics of a neuromusculoskeletal model of the human arm i: Posture control[END_REF].

D. Musculo-skeletal geometry

Muscles are now linked to external supports. Of course, it means that their lengths depend on the articular positions.

The relation between muscular fiber length and joint positions reads as

L = L r -R T (q -Q r ) (4) 
L = l 1 . . . l 6 T is the vector of muscular fiber lengths, L r = l r1 . . . l r6 T is the vector of muscle length in rest position, and and Q r = Q r1 Q r2 T is the vector of rest position for every articular joint i. As the muscular force depends also on fiber length contraction velocity, the relation between these variables and joint velocities reads as L = -R T q.

E. Activation dynamics

The activations dynamics displays the relation between the muscular excitation u i and the mechanical activation a i and reads as

ȧi =    (u i -a i ) [u i /τ ai + (1 -u i )/τ di ] , u i ≥ a i , (u i -a i )/τ di , u i < a i , (5) 
with τ ai and τ di respectively the time constants for the activation and desactivation dynamics. Excitation and activation levels are allowed to vary continuously between 0 and 1 [START_REF] Zajac | Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[END_REF].

F. Simulation model

Simulation model is displayed in Figure 2 and is based on previous equations. Let x (resp. U ) denote the state (resp. control input) vector:

x s = x s1 . . . x s10 T = q 1 q1 q 2 q2 a 1 . . . a 6 T , U = u 1 . . . u 6 T .
Then, the arm model reads as a nonlinear system which is not affine in control input,

ẋs = f (x s , U ) (6) 
As as matter of fact, the system can not be written as a nonlinear model affine in U (which would be more convenient for control design) because activation dynamics (5) depends on u i and u2 i . As the objectice consists in forcing the arm to track articular positions trajectories, the system output is defined as y = x 1 x 3 T . 

Dynamics

U = [u 1 • • • u 6 ] T
is the muscular excitations vector (and then the control input vector

). A = [a 1 • • • a 6 ] T is the muscular activations vector. F = [Fa 1 • • • Fa 6 ] T is the active muscular forces cvector. L = [l 1 • • • l 6 ] T is the muscular fiber length vector. Γ = [Γ 1 Γ 2 ]
T is the joint torques vector. q = [q 1 q 2 ] T is the joint positions vector.

G. Control synthesis model

Muscle dynamics are stable 2 and faster than arm motions, which yields that muscle dynamics can be neglected. Then, the model, which will be used for control design, is built by supposing that there is no dynamics between A and U (see Figure 2), i.e. A = U . Then, the system can be written as

ẋ = f (x) + g(x)U (7) 
with x = x 1 . . . x 4 T = q 1 q1 q 2 q2 T , U = u 1 . . . u 6 T .

III. CONTROL STRATEGY

The proposed control strategy is a hierarchical one composed by four levels (Figure 3), the output of each level being a reference signal for the next one. It is recalled that the control objective consists in tracking articular reference trajectoire q ri (t) by acting through the excitation of the six muscles (through input U ). An other objective consists also in designing robust controller with respect to parameters variations (for example, mass which would be adding on the forarm as an object taking in the hand).

Excitations Activations Forces Desired Desired Torques Desired A r F r U Γ r q, q q r , qr
Eq.( 10) Eq.( 8) Eq.( 12)

Eq.( 13) Fig. 3. Proposed control scheme.

A. Control scheme

The four levels of the controller scheme can be detailed as follows:

First level. This block computes the desired torques Γ r using computed-torque formulation [START_REF] Lewis | Control of Robot Manipulators[END_REF] and robust control (9)

Γ r = D (q 2 ) η + Ĉ (q, q) q + Ĝ(q) + τf ( q) (8)

η = η 1 η 2 T := f c (q r , qr , q, q) (9) 
with D, Ĉ, Ĝ, τf the estimated values of D, C, G and τ f (1) (knowing that these terms have uncertainties). In Section III-B, a solution for η based on second order sliding mode controller is proposed and compared (in simulation) with a classical proportional-derivative control. Note that these both controllers are computed in order to minimize a criteria such that the torques are minimal. Second level. Desired muscular forces F r = F a1 r . . . F a6 r T are computed as a function of desired torques using the linear relation (from equation ( 2))

Γ r = RF r . (10) 
This system having six unknowns and two equations, there exists an infinity of exact solutions. As a consequence, vector F r is chosen in order to minimize muscle efforts. Then, at each simulation step, the following constrained optimization problem is solved using linear programming

min Fa i r >0 6 i=1 F ai r F maxi 2 (11) 
with F maxi being the maximum value allowed for muscle i (for numerical values, see [START_REF] Stroeve | Impedance characteristics of a neuromusculoskeletal model of the human arm i: Posture control[END_REF]). Third level. Desired activations A r = a 1r . . . a 6r T are computed in order to obtain desired forces vector F r . For each muscle, a ri (i = {1 . . . 6}) is obtained as a function of F ai r using contraction dynamics (3). For a sake of clarity, equation ( 3) is rewritten for each muscle i by using the reference activations (with i = {1 . . . 6})

F ai r = a ri F l (l i ) F vi li , v max (a ri , l i ) F maxi (12) 
In this case, one gets a system with six unknowns and six independent nonlinear equations. Find an explicit solution for a ri is a hard task: solutions of system ( 12) are numerically calculated by using a root solver. Fourth level. Muscle excitations input vector U = u 1 . . . u 6 T is computed as a function of the desired activations. Given the activation dynamics equation ( 5), for a constant excitation u(t) = ū, the corresponding steady-state activation ā equals ū. Thus, excitation inputs are computed by using the trivial equation (with i = {1 . . . 6})

u i = a ri . (13) 

B. Robust controller

In this section, two different controllers are presented. The first one is based on a second order sliding mode control approach, the second one using a proportional-derivative control and being designed in order to offer performances comparisons with respect to the previous one. The both controllers are synthetized from model displayed in Section II-G whereas they are evaluated on a simulator based on the model displayed in Section II-F. Controller parameters are determined by minimization of the following performance index

J = t f 0 (q -q r ) T (q -q r ) e t + Γ T QΓ dt (14) 
with

Γ T QΓ = Γ 1 Γ ss1 2 + Γ 2 Γ ss2 2 
The exponential term e t gives a strong weight to tracking errors in latter time interval. The weight matrix Q was chosen to penalize large control signals. Q allows to compare each joint torque with respect to its steady-state value. Γ ss = Γ ss1 Γ ss2 T = G (q f ) is obtained by evaluating skeletal dynamics at t = t f (q (t f ) = q f , q (t f ) = 0, q (t f ) = 0).

C. Sliding mode control

The feedback control ( 9) is defined by the second-order integral sliding control law proposed by [START_REF] Plestan | A new algorithm for high order sliding mode control[END_REF]. Let s i (i = {1, 2}) denote the so-called sliding variable defined as s i = q i -q ri (t).

The objective of a second order sliding mode controller consists in forcing the system to track trajectories such that, in finite time and in spite of uncertainties, one has s i = ṡi = 0 for t > t c .

1) Some recalls: Define s = [s 1 s 2 ] T . From ( 1) and ( 8) one gets, s = q -qr (t) = D -1 (q 2 ) D (q 2 ) η + Ĉ (q, q) q + Ĝ(q)+ τf ( q) -C (q, q) q -G(q) -τ f ( q)] -qri (t)

:= χ(•) + β(•)η (15)
H1. The solutions of [START_REF] Stroeve | Impedance characteristics of a neuromusculoskeletal model of the human arm i: Posture control[END_REF] are understood in the Filippov sense [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF], and system trajectories are supposed to be infinitely extendible in time for any bounded Lebesgue measurable input. H2. β is a dominant diagonal matrix for x ∈ X ⊂ IR 4 , X being a bounded open subset of IR 4 within which the boundedness of the system dynamics is ensured.

Last assumption implies that system (15) is "sufficiently" decoupled which allows to consider that input η i is acting on sliding variable s i and then to design by a separate way each component of input vector. Then, for a sake of clarity, one supposes only the case of monovariable system. Consider now single input equation

si = χ i (•) + β i (•)η i (16) 
H3. Functions χ i (•) and β i (•) are bounded uncertain functions, and, without loss of generality, let also the sign of the control gain β i be constant and strictly positive. Thus, there exist

K m ∈ IR + * , K M ∈ IR + * , C 0 ∈ IR + such that 0 < K m < β i < K M |χ i | ≤ C 0 . (17) 
for x ∈ X.

The synthesis of a high order sliding mode controller for ( 16) is made through the following idea: switching variable is defined such that the system evolves, early from t = 0, on a switching manifold. Furthermore the sliding variable and its time derivatives reach the origin in finite time in spite of uncertainties thanks to discontinuous control input. The design of the controller consists in two steps

• Design of the switching variable for system (16),

• Design of a discontinuous control input η i maintaining the system trajectories on the switching manifold which ensures the establishment of a second order sliding mode, in spite of uncertainties.

Switching variable.

Let S i denote the switching variable defined as

S i = ṡi -Ḟi (t) + λ 0i [s i -F i (t)] , (18) 
with λ 0i > 0. The function F i (t), called pre-computed trajectory, is at least a C 2 -one defined such that S i (t = 0) = 0 and s

(k) i (t = t c ) -F (k) i (t c ) = 0 (k = {0, 1}).
Then, from initial and final conditions, the problem consists in finding the function F i (t) such that

s i (t = 0) = F i (0), s i (t = t c ) = F i (t c ) = 0, ṡi (t = 0) = Ḟi (0), ṡi (t = t c ) = Ḟi (t c ) = 0 (19) 
A solution for F i (t) reads as

F i (t) = a 3,i t 3 + a 2,i t 2 + a 1,i t + a 0,i (20) 
H4. There exists a finite positive constant

Θ i ∈ IR + such that, for 0 ≤ t ≤ t c , si -Fi (t) + λ 0i ṡi -Ḟi (t) < Θ (21) 
Equation S i = 0 describes the desired dynamics which satisfy the finite time stabilization of vector [ ṡi s i ] T to zero. Then, the switching manifold on which system ( 16) is forced to slide on via a discontinuous control η i , is defined as

S i = {x | S i = 0} (22) 
Given equation [START_REF]Understanding muscle coordination of the human leg with dynamical simulations[END_REF], one gets S i (t = 0) = 0: at the initial time, the system still evolves on the switching manifold.

Controller design.

The attention is now focused on the design of the discontinuous control law u which forces the system trajectories of ( 16) to slide on S i , to reach in finite time the origin and to maintain the system at the origin.

Theorem 1: [START_REF] Plestan | A new algorithm for high order sliding mode control[END_REF] Consider the nonlinear system ( 16) with a relative degree 2 with respect to s i (x, t). Suppose that it is minimum phase and that hypotheses H 1 , H 2 , and H 3 are fulfilled. Let 2 be the sliding mode order and 0 < t c < ∞ the desired convergence time. Define S i ∈ IR by

S i = ṡi -Ḟi (t) + λ 0i [s i -F i (t)] 0 ≤ t < t c ṡi + λ 0i s i t ≥ t c (23 
) with pre-computed trajectory derived from [START_REF]Understanding muscle coordination of the human leg with dynamical simulations[END_REF] such that assumption H4 is fulfilled. The control input η i defined by

η i = -k i sign(S i ) (24) 
with

k i ≥ C 0 + Θ + ǫ K m , (25) 
C 0 , K m defined by [START_REF] Utkin | Integral sliding mode in systems operating under uncertainty conditions[END_REF], Θ defined by (21), ǫ > 0, leads to the establishment of a second order sliding mode with respect to s i . The convergence time is t c .

Sketch of proof.

Condition (25) allows to satisfy the ηattractivity condition ṠS ≤ -ǫ|S|. For more details, see [START_REF] Plestan | A new algorithm for high order sliding mode control[END_REF].

2) Application: 

F i (t) = a 3,i t 3 + a 2,i t 2 + a 1,i t + a 0,i is computed such that F i (0) = e i (0), F i (t c ) = 0, Ḟi (0) = ėi (0), Ḟi (t c

D. Proportional-derivative control

In order to evaluate performances (and its interest versus a "classical" controller) of previous second order sliding mode controller, the feeedback control law (9) reads as a proportional-derivative control equation (with s i (t) = q i (t) - 

IV. SIMULATIONS

In this section simulation results are displayed. In order to evaluate control performance and robustness versus parameters variations, two sets of simulation have been made: the first one is made by supposing that all parameters are fully well-known (called "nominal case"), whereas the second one supposes an error in the upper-arm mass of 50% (called "uncertain case"). For the second order sliding mode control, positions, torques and excitations for both nominal and uncertain cases are respectively displayed in Figures 4, and5, whereas, for PD control, results are compared in Figures 6 and7. These simulations clearly show that second order sliding mode controller is more robust to mass variations than PD one: furthermore, the finite time feature of second order sliding mode control clearly appears.

V. CONCLUSION AND PERSPECTIVES

A new neuromusculoskeletal simulation technique based on second-order sliding mode control has been proposed. It allows to evaluate, under optimal criteria as minimum sum of muscle efforts, muscle activations in order to move an humanequivalent arm under a prescribed planar motion. From the control point-of-view, simulations have shown that the closedloop system is robust versus mass variations. Furthermore, in spite of difference between control synthesis model and simulation model (muscle activation dynamics are neglected for control design), tracking error converges towards zero in an arbitrary fixed time t c . This latter time is limited only by physical constraints [START_REF] Zajac | Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[END_REF] as muscle activation u i (t) must be such that (0 ≤ u i (t) ≤ 1). Futher works consist in applying a such strategy on a biped model in order to simulate human gait and to obtain medical staffs simulators usable for pathology diagnostic or operation consequences.

Gravity

  

4 Fig. 1 .

 41 Fig. 1. Schematic representation of the human arm. The arm is moved by 6 muscles: 4 monoarticular ones (m 1 , m 2 , m 3 m 4 ) and 2 biarticular ones (m 5 ,m 6 ).

Fig. 2 .

 2 Fig. 2. Elements of human arm musclen driven simulation.U = [u 1 • • • u 6 ]T is the muscular excitations vector (and then the control input vector). A = [a 1 • • • a 6 ] T is the muscular activations vector. F = [Fa 1 • • • Fa 6 ] T is the active muscular forces cvector. L = [l 1 • • • l 6 ]T is the muscular fiber length vector. Γ = [Γ 1 Γ 2 ] T is the joint torques vector. q = [q 1 q 2 ] T is the joint positions vector.
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 0 Parameters t c , λ 01 and λ 02 are determined by minimization of the performance index (14) after setting k 1 = 20 and k 2 = 30. The obtained values are λ 0i = 17.81, t c = 4.8, a 3,i = 0.0142, a 2,i = -0.10230, a 1,i = 0, a 0,i = 0.7854 (i = 1, 2).

Fig. 4 .

 4 Fig. 4. Second order sliding mode control. Joint positions (deg) versus time (sec): trajectory reference (solid line), nominal case (dashed line) and uncertain case (+50% mass error) (dotted line).

q

  ri (t), i = {1, 2}) η i = k p s i + k d ṡi . Parameters k p and k d are determined by minimization of the performance index (14) which gives k p = 18.2070, k d = 0.1774.

Fig. 5 .

 5 Fig. 5.Second order sliding mode control. Torques (N • m) versus time (sec): nominal case (dashed line) and uncertain case (+50% mass error) (dotted line).

Fig. 6 .

 6 Fig.6.PD control. Joint positions (deg) versus time (sec): trajectory reference (solid line), nominal case (dashed line) and uncertain case (+50% mass error) (dotted line).

Fig. 7 .

 7 Fig. 7. PD control. Torques (N •m) versus time (sec): nominal case (dashed line) and uncertain case (+50% mass error) (dotted line).

Equations (5) are linear in a i . Then, it is easy to find an analytic solution for a i and to show that it is a BIBO (bounded input bounded output) stable system.
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