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Abstract— Computation of contact forces is essential for the
simulation of mechanical systems with unilateral constraints,
like bipedal robots. Most methods are based on the rigid
body assumption. They can be categorized into constraint-based
and penalty-based approaches. In the former, contact forces
are computed by solving an optimization problem based on
linear or nonlinear complementarity conditions. Unfortunately,
these methods cannot be directly applied to articulated systems
described in generalized coordinates. In the second approach,
spring-damper models are used to minimize interpenetration
between the surfaces in contact. The main criticism to penalty
approaches are parameter tunning, static friction handling, and
the difficulties to treat multiple simultaneous unilateral con-
tacts. In this work we present a new compliant approach based
on input-output feedback linearization. The main advantages
of the proposed approach are, the spring-damper parameters
are independent of the parameters of the system (i.e masses,
inertias), no a priori-defined velocity thresholds are required
to distinguish between dynamic and static friction, multiple
simultaneous unilateral contacts are naturally handled. The
proposition has been succesfully applied to the simulation of
a 3D bipedal walking robot.

I. INTRODUCTION

Bipedal robots are mechanical systems with contacts inter-

mittence, unilateral constraints and impacts. These systems

are traditionally described as hybrid dynamical systems and

by consequence biped walking simulators commonly uses

an event-driven approach: impacts are regarded as the events

producing transitions between biped phases. In the case of

bipedal robots with point-feet there are only four possible

phases: right single support, left single support, double

support and fly. In robots with no trivial feet the number

of states and events dramatically increases. For example, in

a rectangular footed biped, each foot may be contacting in

one of 10 ways (at one of four vertices, one of four edges,

with its face, or not in contact at all) and the foot can impact

the ground in 9 different ways. Thus, the resulting system is

a finite state machine with 100 states and 81 possibles events.

In [6], as contacts with static friction are handled separately

from those with dynamic friction, their software platform for

humanoid robot simulation considers 361 possible contact

states. The contact enumeration problem is discussed in [15].

Given the exploding complexity of the event-driven ap-

proach as the number of contact points increases, techniques

stemmed from computer graphics animations are currently

applied to humanoid robot simulators. These techniques

can be categorized into constraint-based and penalty-based

approaches. In the former, contact forces are computed by

solving an optimization problem based on linear or nonlinear

complementarity conditions. The most natural way to formu-

late these conditions is in terms of accelerations and forces.

However it leads to problems without solution in the classical

sense. Even with the use of impulsive forces, the existence of

solutions can not be guaranteed [14]. Instead of acceleration

and forces, complementarity conditions can be formulated in

terms of velocities and time integrals of the forces, provided

the transformation of the differential equations of the system

into finite differences. Many variants of this approach, called

time-stepping, have been proposed. Anitescu [1] and Stew-

art [12] use a linear complementarity formulation requiring

the approximation of the friction cone by a polyhedron.

The advantage of Anitescu and Stewart methods is the

existence and uniqueness of solutions can be guaranteed [13].

Unfortunately, these methods are formulated using maximal

coordinates and by consequence cannot be directly applied

to articulated systems described in generalized coordinates.

When maximal coordinates are used, joints must be treated

as bilateral constraints. The major disadvantage of this is

interpenetration due to numerical drift. Interpenetration must

be corrected using post stabilization methods like [4]. The

proposition of Liu and Wang [9] uses maximal coordinates

also, but it does not require some friction cone approxima-

tion. However, bilateral constraints are not considered, so

its applicability to robotic systems is very limited. All time-

stepping approaches have the advantage that collisions and

contact forces are computed in a unified way. On the other

hand, they have many limitations from the computational

point of view as stated in [5], and they do not have been

extended to articulated bodies described with generalized

coordinates. In [3] a simulator for the robot HRP2 using

a combination of time-stepping and the acceleration-force

formulation proposed in [11] is presented.

In the penalty based approach spring-damper models are

used to minimize interpenetration between the surfaces in

contact [16]. Penalty methods are used in most biped simu-

lators. Some recent examples are Saika-3 [8], JOHNNIE [2]

and OpenHRP [7]. In these biped simulators spring-damper

models are used to compute normal and tangential contact

forces. In [8], a classical spring-damper model is used, the

problem is that sticking normal forces appear just before



contact separation. In [2], a Heaviside function is used to

prevent this problem. In [7] the computation of normal

contact forces is based on the nonlinear spring-damper model

proposed in [10]. This model assures continuous normal

contact forces. The problem is that sticking forces arise when

an external force separates the objects at high velocity. That

is the case in biped walking simulations when the stance

foot takes off after the impact. The three above mentioned

methods do not require velocity thresholds to distinguish

between static and dynamic friction. The main criticisms

to these penalty-based approaches are parameter tunning,

and the difficulties to treat multiple simultaneous unilateral

contacts.

In this paper a new penalty-based approach based on input-

output feedback linearization is proposed. The main advan-

tages of the proposed approach are: the parameters of the

contact model are independent of those of the system (i.e

masses, inertias), no a priori-defined velocity threshold are

required to distinguish between dynamic and static friction

and multiple simultaneous unilateral contacts are naturally

handled. This paper is organized as follows. Section II

describes the proposed methodology for the contact force

computation using two simple examples. In section III the

methodology is applied to a bipedal robot with rectangular

feet. In Section V, the numerical problem of contact stability

is introduced. In Section IV simulation results are presented.

The last section of this paper is devoted to conclusions and

perspectives.

II. THE PROPOSED APPROACH

In order to illustrate the general idea of the proposed me-

thodology, two simple examples are considered. The first

one is devoted to the normal force computation, and the

second one to friction forces. The incidence of the contact

model parameters on the resulting reaction forces will be

also illustrated.

A. Bouncing ball

Consider a bouncing ball of mass m as illustrated in Figure 1.

The differential equation for the position is:

mp̈z = −mg + fn (1)

The normal contact force fn is zero when the position pz is

positive, and fn is greater than zero when pz = 0. If we want

to simulate the system (1) then raises the question how to

compute the reaction force between the ball and the ground?.

If a rigid impact with restitution coefficient zero is supposed,

then the resulting fn has two components as illustrated in

Figure 2. A Dirac’s delta function of weight −mṗz

(

t−i
)

;

and constant value mg for t > ti. The impulse, which

occurs at the impact instant t = ti, is required to discon-

tinuously change the velocity from a negative value to zero.

The constant component of fn guarantees p̈z (t > ti) = 0.

The function fn of the Figure 2 assures zero velocity and

acceleration after the impact. This example clearly shows the

fn = 0 fn > 0

pz = 0

g

pz > 0

Fig. 1. Bouncing ball

separation between impact and resting contact forces.

In the penalty methods used in the simulators for the bipedal

fn

t
t = ti

mg

−m · ṗz

(

t−
i

)

· δ (t − ti)

Fig. 2. Theoretical reaction force for the bouncing ball example when a
rigid impact with zero restitution coefficient is supposed.

robots Saika-3 [8], Johnnie [2] and OpenHRP [7], impact

and resting contact forces are computed in a unified way.

When a typical penalty-based method like [8], is applied to

the bouncing ball system, fn is computed using a spring-

damper model:

fn =







0 pz > 0

−kppz − kv ṗz pz ≤ 0
(2)

As noted in [10], the main inconvenient of expressions

like (2), is that before contact separation forces tending to

stick the ball to the ground always appear . The expressions

used in the biped simulators described in [7] and [2], avoid

this problem using nonlinear functions.

In the approach proposed in this paper, when pz ≤ 0, we

consider that the acceleration of the ball is imposed by the

contact model. This acceleration is opposed to interpenetra-

tion

p̈d
z = −kppz − kv min (0, ṗz) (3)

Hereafter p̈d
z will be called the desired acceleration. If kp > 0

and kv > 0, the term min (0, ṗz) assures a desired positive

acceleration for all pz < 0. Once we have p̈d
z , the following

step consists to compute the required fn to obtain p̈z = p̈d
z .

For the model (1) such force is fn = mg + mp̈d
z . fn in the

general case is given by

fn =







0 pz > 0

mg + mp̈d
z pz ≤ 0

(4)

The procedure for the computation of fn when pz ≤ 0 is

summarized in Figure 3: first, the desired acceleration is

computed using the equation (3) and then the corresponding

contact force is computed using (4). In the general case a



saturation function is applied to assure fn ≥ 0. In this simple

case p̈d
z ≥ 0 implies fn ≥ 0. As the equation (3) can be

rewritten as

p̈d
z = kp

(

pd
z − pz

)

+ kv max
(

0, ṗd
z − ṗz

)

fn is the required force to obtain a desired position pd
z = 0

and a desired velocity ṗd
z = 0. A fundamental difference

between (2) and (4) is steady state interpenetration depth.

In the former case, this value is equal to −g.m/kp and for

the second expression is zero. However, in the Section V the

case of a nonzero desired interpenetration is discussed.

Given ṗz (ti) < 0 and pz (ti) = 0, the velocity and the

position of the ball at the impact instant t = ti, the dy-

namical behaviour in contact is determined by the following

differential equation:

p̈z = −kppz − kv min (0, ṗz) , t ≥ ti

Parameter selection for the contact model concerns only the

equation above and does not depend on the mass of the ball.

In more complex systems the proposed procedure allows

a parameters selection independently of the mathematical

model of the systems and the number of points in contact

with the ground. In Figures 4 and 5 simulation results are

presented for different values of kv and kp. When kp/kv

varies from 0 to ∞, the restitution coefficient varies from

0 to 1. If kp = 0 and kv > 0 the interpenetration cannot

vanish (Figure 4- Dashed line). In this case the penetration

depth decreases as kv increases. If kp = 0 and kv → ∞
the obtained fn tends to that described in Figure 2. When

kp > 0 interpenetration converges toward zero. When kp > 0
and kv = 0, the maximal penetration depth decreases as

kp increases. At impact instant fn = mg − mkv ṗz , so the

maximal value of the normal contact force depends only on

kv .

Desired

acceleration

Normal

force

Bouncing

ball

pd
z = 0

ṗd
z = 0

pz , ṗzfnp̈d
z

Fig. 3. Bouncing ball. Computation of the normal force when pz ≤ 0.

B. Brick on a frictional ramp

Consider a brick sliding down a ramp as illustrated in

Figure 6. The differential equation for the position is:

mp̈x = mg sinα − fr (5)

Where fr is the frictional force. If the initial velocity is

strictly positive (ṗx(0) > 0), and the frictional force is

greater than the gravitational one (µ cos α > sinα), then

the velocity of the brick goes to zero and the brick will be

stopped. In such case, if Coulomb’s friction model is applied,

fr is a discontinuous function of the velocity:

fr =







µmg cos α sign (ṗx) |ṗx| > 0

mg sin α ṗx = 0
(6)
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Fig. 4. Bouncing ball vertical position. Height (mm) versus time (sec):
kp = 0, kv = 5000 (dashed line), kp = 1, kv = 5000 (solid line),
kp = 5, kv = 5000 (dotted line).
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Fig. 5. Bouncing ball normal reaction force. Force (N ) versus time
(sec): kp = 0, kv = 5000 (dashed line), kp = 1, kv = 5000 (solid line),
kp = 5, kv = 5000 (dotted line).
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Fig. 6. Brick on a frictional ramp.



Now we will apply a procedure similar to that of the last

example. The desired tangential acceleration is chosen as:

p̈d
x = −kv ṗx (7)

The required friction force fr to obtain p̈x = p̈d
x from (5)

is given by fr = mg sin α − mp̈d
x. However, the magnitude

of the frictional force is limited by the normal force and

the friction coefficient. Thus, a saturation function must be

applied in order to assure an fr such that |fr| ≤ µfn.

The normal force exerted by the ramp on the brick is

fn = mg cos α

fr = sign (f ′

r) · min (|f ′

r|, µmg cos α) (8)

with

f ′

r = mg sinα + mkv ṗx

The equation (8) can be rewritten in a more classical form:

fr =







µmg cos α · sign (ṗx) |ṗx| > vs

mg sin α + mkvṗx |ṗx| ≤ vs

(9)

With vs = (g/kv)(µ cos α − sinα). When |ṗx| ≤ vs the

model (5) becomes p̈x = −kv ṗx. In such case, the velocity

and the force respectively converge to zero and to mg sin α.

The procedure for the computation of fr is summarized in

Figure 7: first, the desired acceleration is computed using

the equation (7) and then the corresponding contact force is

computed using (9); second a saturation function is applied

to this force in order to assure |fr| ≤ µfn. As it can be seen

from the Figure 7, fr is the required force to obtain a desired

velocity ṗd
x = 0, given the constraint |fr| ≤ µfn.

forceacceleration

Desired
a ramp

Brick onFriction

ṗd
x = 0

p̈d
x fr ṗx

Fig. 7. Brick on frictional ramp. Computation of the friction force.

III. COMPUTATION OF CONTACT FORCES IN A BIPEDAL

ROBOT USING INPUT-OUTPUT FEEDBACK LINEARIZATION

The bipedal robot used in this paper is depicted in Figure 8. It

consists of five rigid links and two rectangular feet connected

by fourteen motorized joints to form a serial structure. Eight

possible contact points are considered, one for each vertice

of the foot. Impacts on edges are treated as a simultaneous

collision with the ground of two vertices. Flat foot impacts

are treated as a simultaneous collision with the ground of

four vertices. The mathematical model of the biped is given

by:

A (q) qa + H (qp, qv) = Γe + D (qp) F, (10)

With

qa =





0V̇0

0ω̇0

q̈



 , qv =





0V0

0ω0

q̇





Inertial
frame

3 DoF3 DoF

3 DoF

1 DoF1 DoF

Zero
frame

3 DoF v2

v4

v3

v1 v5

v6

v7

v8

Fig. 8. General diagram of the bipedal robot and notation for the vertices.

qp =





X0

α
q



 , Γe =





0
0
Γ





where X0 and α are respectively the position and orientation

of the right foot in the inertial frame. q ∈ IR14 are joint

positions. 0V0 ∈ IR3 and 0ω0 ∈ IR3 are respectively the

linear and angular velocity of the zero-frame. 0V̇0 ∈ IR3 and
0ω̇0 ∈ IR3 are respectively the linear and angular acceleration

of the zero-frame. These velocities and accelerations are

defined as:

0V0 ≡ 0RI ·
IV0

0ω0 ≡ 0RI ·
IV0

(11)

0V̇0 ≡ 0RI ·
dIV0

dt
0ω̇0 ≡ 0RI ·

dIω0

dt

where IV0 ∈ IR3 and Iω0 ∈ IR3 are respectively the linear

and angular velocity of the zero-frame with respect to the

inertial frame. The rotation matrix 0RI ∈ IR3×3 expresses

the orientation of the inertial frame with respect to the

zero-frame. As the right foot moves, the matrix 0RI is not

constant. It can be shown that (11) implies:

d0V̇0

dt
= 0V̇0 −

0ω0 ×
0V0

d0ω̇0

dt
= 0ω̇0,

as consequence the time derivative of qv is not qa. Concer-

ning the equation (10), A ∈ IR20×20 is the inertia matrix,

H ∈ IR20 is the vector including Coriolis, centrifugal and

gravitational terms, Γ ∈ IR14 is the control input, D ∈
IR20×24, is the transposed of the Jacobian matrix relating the

Cartesian velocities of the vertices of the foot with the joint

velocities. The vector F = [fT
1

. . . fT
8

]T ∈ IR24 contains

all contact force vectors. Each contact force fi is a three

dimensional vector containing the tangential forces fit
∈ IR2

and the normal force fn ∈ IR

fi =

[

fit

fin

]

, fit
=

[

fix

fiy

]

.



Contact forces are subject to the following constraints:

fin
≥ 0, |fit

| ≤ µfin
i = 1 . . . 8 (12)

Every contact point has an associated scalar constraint

φi (q, α) ≥ 0. Being φi (q, α) the distance between the

vertice i of the foot and the ground. When φi (q, α) >
0, the vertice is not in contact with the ground and the

corresponding fi is zero. Conversely, when φi (q, α) = 0,

the magnitude of the corresponding fi is not zero. Given

nc(tk), the set of contact points satisfying the condition

φi(q, α) = 0 at the instant time t = tk, the term D (q, α) F
of the equation (10) at such instant can be written in terms

of the nonzero contact forces

D (q, α) F =
∑

i∈nc

Di (q, α) fi (13)

Di ∈ IR20×3 is composed by the three columns of D
corresponding to the forces fin

, fix
and fiy

. For example,

if at a given instant the vertices v1 and v4 (see Figure 8) are

contact with the ground, then nc = {1, 4}. In such case D1

is composed of the columns of the matrix D corresponding

to the forces f1n
, f1x

, f1y
, and D4 of those corresponding

to f4n
, f4x

, f4y
. The equation (13) can be rewritten in a

compact form as:

D (q, α) F = Dc (q, α) Fc (14)

Dc is composed by the matrix Di, i ∈ nc, and Fc by the

vectors fi, i ∈ nc. Now consider P = [pT
1

. . . pT
8
]T ∈ IR24,

the vector containing the Cartesian position of the vertices of

the foot in the inertial frame. With pi(q) = [pix
, piy

, piz
]T ∈

IR3. The relationship between Ṗ and qv is given by the

Jacobian matrix J = DT :

Ṗ = DT qv

Taking the derivative of the kinematic equation above, the

Cartesian accelerations P̈ can be exprimed as a linear func-

tion of F ,

P̈ = DT qa + B

=
[

DT A−1D
]

· F +
[

DT A−1 (Γe − H) + B
] (15)

with

B ≡ −DT





0ω0 ×
0V0

0
0



 + ḊT qv

If instead of the eight Cartesian positions, we consider only

the Cartesian positions of the vertices in contact with the

ground (Pc(q) = [ pT
i ]T , i ∈ nc), the equation (15) becomes:

P̈c =
[

DT
c A−1Dc

]

· Fc +
[

DT
c A−1 (Γe − H) + Bc

]

(16)

with

Bc ≡ −DT
c





0ω0 ×
0V0

0
0



 + ḊT
c qv

The main point of our approach is to consider that P̈c

is imposed by the contact model and then solve for Fc

from (16). The accelerations given by the contact model will

f ′

t ft

µfn cos θ

−µfn cos θ

ftx

µfn cos θ

−µfn sin θ

fty

f ′

tx

f ′

ty

Fig. 9. Nonlinearities used to get tangential contact forces inside of the
friction cone.

be denoted by P̈ d. The component p̈d
i of the vector P̈ d is the

required acceleration to asymptotically stops the motion of

the contact point i (ṗi → 0) and removes its interpenetration

(piz
→ 0)

p̈d
i = −kp





0
0

piz



 − kv





ṗix

ṗiy

min (0, ṗiz
)



 , i ∈ nc (17)

Once the desired accelerations are defined, the following step

is to compute the required F ′

c to obtain P̈ = P̈ d

[

DT
c A−1Dc

]

· F ′

c = P̈ d −
[

DT
c A−1 (Γe − H) + Bc

]

(18)

The system of linear equations (18) may have an infinity

of solutions. For example, in a bipedal robot, when the

four vertices of the foot are in contact with the ground

during a single support phase, the contact forces cannot

be uniquely determined. In such cases, the solution with

minimum Euclidean norm is computed using the Moore-

Penrose pseudo-inverse. Once F ′

c is computed, the following

step consists to build the vector F ′ composed of F ′

c and

zeros. After that, saturations are applied to F ′ in order to

obtain contact force vector F satisfying (12). The following

saturation function assures a nonnegative normal contact

force:

fin
= max

(

0, f ′

in

)

(19)

As the maximal value of |fit
| is µfin

, the maximal values

for |fix
| and |fiy

| are respectively µfin
cos θ and µfin

sin θ.

With θ = atan
(

f ′

iy
, f ′

ix

)

. Thus, the components of the

tangential force vector are computed using the procedure

depicted in Figure (9). This procedure can be exprimed

mathematically as:

fix
= sign

(

f ′

ix

)

· min
(

|f ′

ix
|, µfin

cos θ
)

fiy
= sign

(

f ′

iy

)

· min
(

|f ′

iy
|, µfin

sin θ
) (20)

As it can be seen from this equation, the transition between

dynamic and static friction does not produce discontinuous

tangential forces and it does not require a priori defined ve-

locity thresholds. If F ′

c satisfies the physical constraints (12),

then P̈c = P̈ d
c . In such case, contact forces and accelerations

are decoupled. In this approach, inspired from input-output

feedback linearization, parameter selection for the contact
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R
o

b
o

t

D
y

n
am

ic
s

L
in

ea
ri

sa
ti

o
n

an
d

D
ec

o
u

p
li

n
g

S
at

u
ra

ti
o

n

Fig. 10. Contact force computation for the bipedal robot described by (10).

model is independent on the number of points in contact

with the ground and the parameters of the robot (i.e mass,

inertias). The contact force computation for the system (10)

is described in Figure 10.

IV. NUMERICAL TESTS

The procedure described in this paper for contact force

computation has been applied to the simulation of a walking

gait consisting of five steps. The selected parameters for the

Equation (17) were kp = 500 and kv = 250. In Figure 11 the

distances between the vertices of the foot and the ground are

traced as a function of the time. In Figure 12, these distances

are traced when the right foot is in contact with the ground

after its first impact. Figure 13 shows the corresponding

normal contact forces.

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

Vertices v1, v5 (Front right)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

Vertices v2, v6 (Front left)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

Vertices v3, v7 (Back left)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

Vertices v4, v8 (Back right)

Fig. 11. Vertical position of the feet. Height (m) versus time (sec) for
a walking gait consisting of four steps. Right foot (solid line), Left foot
(dotted line)

V. CONTACT STABILITY

In this section the numerical stability of the contact between

the foot and the ground will be introduced. It has important

consequences on normal forces computation. In the absence

of external forces, the contact between an object and the

1.2 1.4 1.6
−0.2

−0.1

0

0.1

0.2

m
m

Vertice v1 (Front right)

1.2 1.4 1.6
−0.2

−0.1

0

0.1

0.2

m
m

Vertice v2 (Front left)

1.2 1.4 1.6
−0.2

−0.1

0

0.1

0.2

m
m

Vertice v3 (Back left)

1.2 1.4 1.6
−0.2

−0.1

0

0.1

0.2

m
m

Vertice v4 (Back right)

Fig. 12. Vertical position of the feet around zero height. Height (mm)
versus time (sec) for the vertices of the right foot after its first impact.
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Fig. 13. Normal contact forces. Normal contact forces (N ) versus time
(sec). These forces correspond to the simulations results presented in the
Figure 12.

ground is said in equilibrium if after a given instant Tc, the

normal force exerted by the ground is equal to the weight

of the object. In such case, the application of a penalty-

based approach leads to pz = ṗz = p̈z = 0, ∀t > Tc. If

an external force is added to the normal force exerted by

the body on the ground, the equilibrium is broken and inter-

penetration immediately appears. However, after a transient

time, position, velocity and acceleration return to zero and

the normal force converges toward a new steady state value.

If the external force mentioned above disappears, the contact

is broken and a positive distance appears. As consequence,

the normal contact force becomes zero. As no opposition to

the gravity force exists, the object will be again in contact

with the ground after a short instant generating a impact.

These impacts are not physical ones, they occur only in

simulation. For this reason, thereafter they will be called false



impacts. This phenomena occurs in bipedal robot simulation.

During the single support phases, the foot in contact with the

ground is subject to a time varying forces generated by the

motion of the other bodies. As we can see from Figure 13,

false impacts produce discontinuities (vertical lines) in the

computed normal forces. Contact stability can be improved

if steady state interpenetration is allowed. Instead of converge

towards piz
= 0, the Equation (17) can be modified for

obtaining convergence towards piz
= ǫ.

p̈d
i = kp





0
0

ǫ − piz



 − kv





ṗix

ṗiy

min (0, ṗiz
)



 , i ∈ nc

The normal contact forces corresponding to ǫ = 1× 10−6m
and the same values of kp and kv (kp = 500, kv = 250) are

showed in Figure 14.
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Fig. 14. Normal contact forces. Normal contact forces (N ) versus time
(sec) when steady-state interpenetration is allowed. These results must be
compared of those presented in Figure 13.

VI. CONCLUSION

In this paper we have presented a new penalty approach

based on input-output feedback linearization. This idea com-

ing from control theory, allows to treat multiple simultaneous

contacts independently. Another advantage is parameters of

the contact model are independent of the parameters of the

system. The computation of contact forces is composed of

two steps. First, the required forces to avoid interpenetration

and stop the motion of the contact points are computed.

Second, nonlinearities are applied to these forces in order to

satisfy physical constraints. The proposition was successfully

applied to the simulation of a 3D bipedal walking robot.

A simple solution was proposed to improve the numerical

stability of the contacts between the foot and the ground.
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