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Non-binary Hybrid LDPC Codes

Lucile Sassatelli and David Declercq
ETIS - CNRS UMR 8051 - ENSEA - University of Cergy-Pontoisearce

Abstract

In this paper, a new class of LDPC codes, named hybrid LDP@s;ad introduced. Hybrid LDPC
codes are characterized by an irregular connectivity grafild heterogeneous orders of the symbols
in the codeword. We show in particular that the class of l/luiDPC codes can be asymptotically
characterized and optimized using density evolution (D&nework, and we also present a technique to
maximize the minimum distance of the code. Numerical assessof hybrid LDPC code performances
is provided, by comparing them to protograph-based anditaddfe type LDPC codes. We show that
hybrid LDPC codes allow to achieve an interesting tradebetiveen good error-floor performance and

good waterfall region with non-binary coding techniques.

. INTRODUCTION

During the 1990s, remarkable progress was made towards hthen8n limit, using codes that are
defined in terms of sparse random graphs, and which are debyde simple probability-based message-
passing algorithm. Two families of sparse-graph codes acellent for error-correction: Low-Density
Parity-Check (LDPC) codes, and Turbo Codes. The class of@.D&des was first proposed in [1] in
1963, and rediscovered thirty years later [2], [3], [4],,[&fter the invention of Turbo Codes [6]. LDPC
codes are decoded through the iterative local messagexgadgorithm based on thBelief Propagation
(BP) principle [7]. These codes have been shown to exhiliekent performance, under iterative BP
decoding, over a wide range of communication channels,oaghing channel capacity with moderate
decoding complexity.

Asymptotically in the codeword length, LDPC codes exhibtheeshold phenomenon. Indeed, if the
noise level is smaller than a certain decoding thresholdcfwtiepends on the bipartite graph properties)
then it is possible to achieve an arbitrarily small bit erpsobability under iterative decoding, as the
codeword length and the number of decoding iterations teridfinity. On the contrary, for noise level
larger than the threshold, the bit error probability is alesdarger than a positive constant, for any

codeword length [4], [5]. There are two main tools for asyatipt analysis of LDPC codes, i.e. for
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evaluating the decoding threshold associated to a givenedegjstribution: density evolution [4] and
EXtrinsic Information Transfer (EXIT) charts [8]. One ofdheatures that makes LDPC codes very
attractive is the possibility to design, for several traission channels, the degree distribution of the
bipartite graph which provides a decoding threshold exélgrmlose to the channel capacity [9].

While the asymptotic analysis and design of LDPC codes istljnasiderstood, the design of finite-
length LDPC codes still remains an open question. Indeesl ldbal message-passing algorithm cor-
responds to the exact computation afposteriori probabilities of variable values only if the graph is
cycle-free, i.e., the BP decoder is exactly the Maximumeliiood (ML) decoder because it finds the
global maximum of the ML criterion. In the finite length casgcles appear in the graph [10]. In that
case, the BP decoder does not compute anymora fiasterioriprobabilities of variable values, thereby
turning into suboptimal in the sense it does not correspangnare to ML decoding. This leads to
the loss of performance of BP decoding, compared to ML dexpdind particularly in the error-floor
region. Moreover, finite length LDPC codes with a degreeiistion associated to a decoding threshold
close to capacity, though characterized by very good waltgperformance, usually exhibit bad error
floor performance. This is due to a large fraction of degreet2able nodes leading to a poor minimum
distance [11], [12].

The attempt to improve the trade-off between waterfallgrenance and error floor has recently inspired
the study of more powerful, and somewhat more complex, gpsiiiemes. This is the case of non-binary
LDPC codes, Generalized LDPC (GLDPC) codes [13], Doublyéalized LDPC (D-GLDPC) codes
[14] or Tail-biting LDPC (TLDPC) codes [15]. Non-binary LI@Pcodes have been introduced by Gallager
in [1], and their finite-length assets have been underlinedaveyet al. in [16]. The main interest of
non-binary LDPC codes actually lies in the decoder: goodmioary LDPC codes have much sparser
factor graphs (or Tanner graphs) than binary LDPC codes HM the BP decoder is closer to optimal
decoding since the small cycles can be avoided with a promgrhgconstruction, as proposed in [18].

In order to improve the trade-off between waterfall perfanoe and error floor, we introduce and
study a new class of LDPC codes that we dglbrid LDPC codesThe class of hybrid LDPC codes
is a generalization of existing classes of LDPC codes, bathryp and non-binary. For hybrid LDPC
codes, we allow the connectivity profile to be irregular ahd brders of the symbols in the codeword
to be heterogeneous. The rest of the paper is organized lagvdolin Section Il, notation is given.
The structure and decoding of the class of hybrid LDPC codegi&en in Section Ill. The asymptotic
analysis is presented in Section IV, and the distributiotingigations in Section V. Section VI presents

a finite-length optimization of hybrid LDPC codes, and Satti/Il some numerical results. The proofs
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are gathered in the Appendix.

Il. NOTATION

Vectors are denoted by boldface notations, exg.Random variables are denoted by upper-case

letters, e.g.X and their instantiations in lower-case, e.g., There are two possible representations
for the messages: plain-density probability vectors or-Degsity-Ratio (LDR) vectors. We denote the
elements of the finite grou@(q) (or the finite fieldGF(q)), of orderg, by («ao, ..., aq—1), Wwhereag = 0.
The probability that the random variahlé takes the value is denoted byP(X = z). A g-dimensional
probability vector is a vectok = (zo,...,z,—1) Of real numbers such tha = P(X = «;) for all i,
and > a; = 1.

Definition 1: Given a probability vectok, the components of the corresponding LDR veckoiare

defined as

The natural logarithm is used. We use the notatwen= LDR(x). Note that for allx, wy = 0. We
define the LDR-vector representation »fas theq — 1 dimensional vectoww = (w,...,w,—1). The
observation of the channel under LDR form is a Logarithmikelihood Ratio (LLR). For convenience,
in the derivation of the message properties and the comelpg proofs, the valuey, = 0 is not defined
as belonging tow. Given an LDR-vectow, the components of the corresponding probability vestor
can be obtained by

e~ Wi

Bim 0. g1, 1)
1+ >0 16

We use the notatiox = LDR~!(w). A random probability-vector is defined to begadimensional
random variableX = (Xj, ..., X,—1). A random LDR-vector is dq — 1)-dimensional random variable
W = (Wy,...,W,—1). We give the definition of thet-g operation, as introduced in [19]. Given a

probability vectorx and an elemens € G(q), x™9 is defined by

xT9 = (g, T14gs--- ,x(q_1)+g)
where addition is performed ové¥(q).
* is defined as the set
x* = {x,xT ... ,x+(q_1)} .

Moreover,n(x) is defined as the number of elemepts G(q) satisfyingx*9 = x.

The LDR vectors corresponding to and x9 are denoted byw and w9, respectively. Owing to
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Definition 1 of the components of a LDR vector, ti{é component ofw™9 is wjg which is defined by

w9 = wyp; —wy, Vi=0...q—1. 2

2

For the sequel, we simplify the notation as follows: for amgup G(q), for all a € {0,...,q — 1}, the

elementa, is now denoted by:.

[Il. THE CLASS OF HYBRIDLDPC CODES
A. General hybrid parity-check equations
Classically, non-binary LDPC codes are described thankisedocal constraints given by parity-check
equations involving some of the codeword symbhglslf a code is linear over a finite fiel&'F'(q), the
parity-check equation corresponding to #e row of the parity-check matri, is

Zhijcj =0 in GF(q) . 3)

J
The field GF'(2P) can be represented using the vector sp(aé@p in a natural way. Multiplications in
GF(2P) can be represented as matrix multiplications, after cimgpaisuitable representation. The set of
matrices representing field elements then forms a field @frtible matrices. Thus, interpreting variables
as elements o(%)p and using matrix multiplication to form linear constrairtan be used to model
LDPC overGF(2P). In all this work, p does not need to be prime.

We aim at generalizing the definition of the parity-checkagoun by allowing more general operations
than multiplications byh;; € GF(q), and moreover, by considering parity-checks where codgwor
symbols can belong to different order finite sets:c G(q;). G(q;) is a finite set of order; = 27
with a group structure. Indeed, we will only consider grombshe typeG(q;) = ((%)pj ,+) with
p; = logy(g;). Such a group corresponds to an ensemblg;efized vectors whose elements Iiei%.

Let V be the codeword size. A hybrid LDPC code is defined on the gréwphich is the Cartesian

product of the groups to which the codeword symbols belong:
G =G(q) x - xGlqn) -

Let ¢; denote the group order of th#” codeword symbol (either information or redundancy as the
considered codes are systematic as described later iro8dltE). Such a group order is equivalently
called the group order of thg" variable node, or of th¢** column ofH. Let ¢; denote the group order
of the i** redundancy codeword symbol. Such a group order is equithalealled the group order of

the i*" check node, or of thé/” row of H. The non-zero elements of the parity-check matrix are maps
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which project a value in the column group (variable node gyoonto a value in the row group (check

node group, see Figure 1). This is achieved thanks to fumetimmed;; such that
hij : G(g;)  —  Gla)
¢j = hij(c))
Hence, a hybrid parity-check equation is given by

> hijle;) =0 in G(g;) . (4)
J
We notice that, in equation (3) as well as in equation (4),atlditive group structure defines the local

constraints of the code. Moreover, as mentioned in [5] areplyestudied in [20], the additive group
structure has a Fourier transform, whose importance fod#wmding is pointed out in Section IlI-F.

To sum up, the graph of a hybrid LDPC code is made of the follgnéomponents. Variable nodes
belong to different order groups, the messages going owaridivie nodes are therefore of different sizes.
On each edge, there is a general application from the groupeotariable node to the group of the
check node. The messages going into a given check node aedotigeof the same size, and a hybrid
check node is a usual non-binary parity check node.

Let us notice that this type of LDPC codes built on productugshas already been proposed in the
literature [21][22], but no optimization of the code stu@ has been proposed and its application was
restricted to the mapping of the codeword symbols to differaodulation orders.

Since the mapping functior’s;; can be of any type, the class of hybrid LDPC codes is very géner

and includes classical non-binary and binary codes.

Fig. 1. Factor graph of parity-check of a hybrid LDPC code.
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B. Different sub-classes of hybrid LDPC codes

Among the huge set of hybrid LDPC codes, we can distinguisimasy classes as different types of
non-zero elements of the parity-check mafilx As above mentioned, such a non-zero element is a map
h;j, which projects they; symbols ofG(g;) onto a subset of; symbols ofG/(g;). Let us consider the
case where these maps are linear, i.e., represented by ia,métin dimensionsp; x p;. In that way,h;;
actually connects the binary map vector of a symbof+if;) to the binary map vector of a symbol in
G(4i).

Remark At this stage, it is quite straightforward to establish amection between hybrid LDPC
codes and Doubly-Generalized LDPC (D-GLDPC) codes, thghbyustudied in [14][23]. Indeed, the
linear maph;; can be seen as part of the generalized check node and geedradiriable node. The
code corresponding to thg" generalized variable node would have a number of information bits
K =pj and lengthNV = Y. p;, where the sum is done over the groups of all the check nodesected
to v. The code of the? generalized check nodewould have a number of redundancy bit§ = p;
and lengthN = Zj pj, Where the sum is done over the groups of all the variable s\adanected to
c. However, it is important to note that, if the idea is the samgbrid LDPC codes are not exactly
D-GLDPC codes owing to the decoder. Indeed, with D-GLDPCespdne considers that the generalized
codes are at variable and check node sides, whereas witidhyDPC, we consider that the generalized
codes for each node are split on the edges going into the Aadéetailed in Section V on optimization,
this difference allows us to affect different connectiorgig®s on the nodes depending on their group
order, i.e., depending oA for variable nodes and of/ for check nodes. In other words, we will be
able to optimize the length of the codes, given the dimension

We distinguish different sub-classes of hybrid LDPC codésse non-zero elements are linear maps:

(¢) Maps which are not of rank;. This encompasses the case where the group order of a coumn i
higher than the group order of the row. From a D-GLDPC pertdgechis allows to have generalized
variable nodes whose codes hakie> N, that is to say the number of incoming bits is projected
to a smaller one. This could be thought of as puncturing, asda consequence, we get back the
result that the rate of the graph can be lower than the co@e Talis case is out of the scope of
this paper.

(i) Maps which are of rank;. They are referred to as full-rank transforms, and corredgo matrices
of sizep; x p; with necessarily; < p;. Such a map is depicted in Figure 2. We consider only these

types of hybrid LDPC codes in this work.
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C. Hybrid LDPC codes with linear maps

Let us consider alli, j) such that there is an edge between jHevariable node and thé" check
node. The corresponding column is @(g;) and the corresponding row is i(g;). In this work, we
consider only hybrid LDPC codes whose non-zero elementsragar full-rank transforms of rank equal
to logsy(g;), thus withg; < ¢;. Linear maps always associate the null element of one groupet null

element of the other. When looking at the factor graph of aridybDPC code (see Figure 1), we

G(qj) = {ao, a1, a2, a3}
G(qi) = {ag, o, ah, o, af, af, ag, az}
A
¢y 7 N @)
ag e ————» @ g
agq e —» O ay
a; e— o o)
o3 * \ *
° 0‘:1
’
e o
’
* o
° a’7
A1

Fig. 2. Message transform through linear map.

note that an edge of the graph carries two kinds of probghibCtor messages: messages of size
and messages of sizg. Let A be an element of the set of linear maps fr@g;) to G(g;) which
are full-rank. The transform of the probability vector isndéed extensionfrom G(g;) to G(g;) when
passing through from variable node to check node, and the transform ft@fy;) to G(g;) is denoted
truncation from check node to variable node. Let IA)( denote the image ofA (A is injective since

dim(Im(A))=rank(A)=p,). The notations are the ones of Figure 2.
A Glg) — Gla)
ap — ap= Alayg)

Definition 2: The extensiory of the probability vectox by A is denoted byy = x*4 and defined
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by, foralll=0,...,q; — 1,
0 if o) ¢ Im(A);
=
zj,  with k such thate) = A(ay), if o) € Im(A).

Although A is not bijective, we definel~! by
AL Im(4) — G(gj)
o) o with k such thate] = A(ay,)

Definition 3: The truncationx of the probability vectory by A~! is denoted byx = y*4™" and
defined by, for allk =0,...,q; — 1,

x1, =y With [ such thato] = A(ay,) .

It is worth noting that a vector resulting from truncation afprobability vector is not anymore a
probability vector because a normalization would be nedddae so. When the decoding is performed
using probability vectors instead of LDR vectors, we asstina¢ only one normalization is performed
at the end of the variable node update.

In the sequel, we use a shortcut by calling extension a linegy A, and by truncatiomA~!. Indeed,
extension or truncation are generated by a linear agnd do not apply to group elements, but to
probability vectors. Additionally, we denote by;; the set of extensions fror&(q;) to G(¢;), and by
T;,; the set of truncations fron/(¢;) to G(g;).

D. Parametrization of hybrid LDPC code ensembles

Classical LDPC codes are parametrized by two polynoniials), p(z)), whose each coefficieny;
(resp.p;) describes the fractions of edges connected to a varialide 06 degree (resp. to a check
node of degreg) [4]. Kasai et al. [24] introduced a detailed representatid LDPC codes, described
by two-dimensional coefficientH (s, j), which are the fraction of edges connected to a variable node
of degreei and also to a check node of degrgeAnother detailed and more general representation of
LDPC codes is the multi-edge type [25].

In our case, an edge of the Tanner graph has four paramgtess j, ¢;). We extend the notation
adopted by Kasai et al. in [24], and we denote Iy, j, k,1) the fraction of edges connected to a

variable node of degreein G(qi) and to a check node of degrgen G(q;).
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Hence,Il(i, j, k, 1) is a joint probability which can be decomposed in severalsmimanks to Bayes

rule. For example, we have :
(i, j, k1) = (i, 5)IL(k, 1]i, §)

wherell(i, j) corresponds exactly to the definition adopted by Kasai, Il [|i, j) describes the way
the different group orders are allocated to degreariable nodes and degrgecheck nodes.

An ensemble of hybrid LDPC codes is parametrizedibynd made of all the possible parity-check
matrices whose parameters are those of the ensemble. Ha himap of the parity-check matrices are
chosen uniformly at random.

In the sequel, for more readable notations, we will wiitg, j, k) to denote the marginal distribution
overl. The same with any other combinationsiof, k, [, we will always use the same lettersj, &, to
identify the parameters and the considered marginals.

Remark Compared to D-GLDPC, the parametrization of hybrid LDPGe® allow to optimize the
length of the generalized codes, both at variable and chedks) given their dimensioris or M which
are the group order characteristics. However, this reptatien is not as general as the one of multi-
edge type LDPC codes [25] because it cannot distinguish ekchede connected to only one degree-1
variable node, thereby preventing the use of degree-1hlariaodes in such described hybrid LDPC
code ensembles.

We also define node wise fractiorid{i, k) andII(j,) are the fractions of variable nodes of degree
i in G(qx) and check nodes of degrgein G(q;), respectively. The connections between edgewise and

nodewise fractions are the following:

(i, k) = ST
9 Z]‘,LH(Z’ 7kvl) ’
~ . . J
H(j? l) - Zi,kn(ivjvkvl) ’
D e B

()
The design code rate, i.e., the code rate when the paritykamatrix is full-rank, is expressed by:
>k (i kol
(5, ZE) togy(a)

>, (05 .k :
S (2 =50 togy(ay)
We define theraph rateas the rate of the binary LDPC code whose Tanner graph haspteesl1(i, j).

R=1

It is interesting to express the graph rdtg in terms ofIl, to compare it to the code rate of the hybrid
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For the linear maps we consider, variable nodes are alwagsomps of order lower than or equal to
the group orders of the check nodes to which they are corsheldience the graph rate will be always

higher than the code rate.

E. Encoding of hybrid LDPC codes

To encode hybrid LDPC codes whose non-zero elements arenaémtioned full-rank linear maps,
we consider upper-triangular parity-check matrices wtdoh full-rank, i.e., without all-zero rows. The
redundancy symbols are computed recursively, starting fitte redundancy symbol depending only on
information symbols. The images by the linear maps of thetmlminvolved in the parity-check equation
but the redundancy symbol being computed, are summed upsUdrenation is performed in the group
of the redundancy symbol, i.e., the group of the correspandiw. The redundancy symbol is set to the
inverse of this sum by the linear map connected to it. Thisdmmap is bijective frontz(¢;) to G(q;),
if G(q;) is the group the redundancy symbol belongs to. Hence, irdtbom symbols satisfy that any

assignment of values to them is valid, and the redundancysimare computed from them.

F. Decoding algorithm for hybrid LDPC codes

To describe the BP decoding, I}é@ denote the message going into variable nodeom checke at
the ¢ iteration, andrgtc) the probability-vector message going out of variable node check node
at thet*" iteration. The connection degreeswofndc are denoted byl, andd,, respectively. LetA,.
denote the linear map on the edge connecting variable nddecheck node:. The a*"* component of
15}3 is denoted bylgf,)(a). The same holds for’gtc)(a). Let x be the sent codeword amdl the number
of codeword symbols. We recall that we simplify the notatamfollows: for any grougz(q), for all
a €{0,...,q — 1}, the elementy, is now denoted by:. Also, sinceA is a linear map, the matrix of
the map is also denoted by. Hence, for all linear mapsl from G(q:) to G(q2), A(a;) = o with
a; € G(q1) ando; € G(g2), is translated intodi = j with i € {0,...,¢1 — 1} andj € {0,...,¢g2 — 1}.

« Initialization: Letz; € G(¢;) be thei®” sent symbol and); be the corresponding channel output,
for i = 0...N — 1. For each check node connected to the!" variable nodev, and for any
a€f{0,...,qn — 1}

rid(a) = r(a) = P(Y, = gl Xy = a) ;

ve
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@) =1.
« Check node update: Consider a check noded a variable node. Let {vy,...,v4 1} be the set
of all variable nodes connected &p exceptv. Let G be the Cartesian product group of the groups
of the variable nodes ifuvq,...,v4._1}. For alla € G(q,)

d.—1
1)(a) = > IT 7e(n) (6)

(b1yeeisba.—1)EG:  n=1
@t Ay cbi=Aea

where thedp operator highlights that the addition is performed o@;.), the group of the row
corresponding te, as defined in Section IlI-C.
« Variable node update: Consider a check ned®nd a variable node. Let {c;,...,cq,_1} be the

set of all check nodes connectedutpexceptc. For alla € G(g,)
d,—1
rie (@) = pueri? (a) TT 19, (a) (7)
n=1

where i, is a normalization factor such that %' ri(a) = 1.
« Stopping criterion: Consider a variable nodelLet {c,...,cq4,} be the set of all check nodes

connected ta. Equation (8) corresponds to the decision rule on symbdlsega at iteration:

d,
& = arg maxr{?)(a) H lgi)v (a) . (8)
n=1

Variable and check node updates are performed iterativetiy the decoder has converged to a
codeword, or until the maximum number of iterations is reath
It is possible to have an efficient Belief propagation decdde hybrid LDPC codes. As mentioned
in [5][20], the additive group structure has a Fourier tfanms, so that efficient computation of the
convolution can be done in the Fourier domain. One decodiagtion of BP algorithm for hybrid
LDPC codes, in the probability domain with a flooding schedig composed of:
« Step 1Variable node updatein G(g;) : pointwise product of incoming messages followed by a
normalization
« Step 2Message extensiort(¢;) — G(q;) (see Definition 2)
« Step 3Parity-Check update in G(g¢;) in the Fourier domain
— FFT of sizeg;
— Pointwise product of FFT vectors

— IFFT of sizeg;
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« Step 4Message truncationfrom G(q;) — G(gq;) (see Definition 3)

We do not perform a detailed complexity analysis, but we jl@the following discussion. Let us
consider equations (7) and (6). In terms of number of opamatper iteration, the complexity of hybrid
LDPC decoding is upper-bounded by the complexity of deapdimon-binary LDPC code in the highest
order field. Although the decoding complexity of hybrid LDR@des is clearly higher than that of
binary LDPC codes, it is worth noting that hybrid LDPC codes eompliant with reduced complexity
non-binary decoders which have been presented recentlyeititerature [26], [27]. In particular, [26]
introduces simplified decoding @#F'(¢q) LDPC codes and shows that they can compete with binary

LDPC codes even in terms of decoding complexity.

IV. ASYMPTOTIC ANALYSIS OF HYBRID LDPC CODE ENSEMBLES

This section describes the density evolution analysis fdorid LDPC codes. Density evolution is a
method for analyzing iterative decoding of code ensemblésfirst prove that, on a discrete memoryless
symmetric-output channel, the analysis can be led assuthatgthe all-zero codeword is transmitted,
because the error probability of the hybrid LDPC decodingéependent of the transmitted codeword.

We express the density evolution for hybrid LDPC codes, amdtion the existence of fixed points,
which can be used to determine whether or not the decodinggofesm hybrid LDPC code ensemble is
successful for a given SNR, in the infinite codeword lengtbecd hus, convergence thresholds of hybrid
LDPC codes are similarly defined as for binary LDPC codes #wever, as foiGF(q) LDPC codes,
the implementation of density evolution of hybrid LDPC cede too computationally intensive, and an
approximation is needed.

Thus, we derive a stability condition, as well as the EXITdtions of hybrid LDPC decoder under

Gaussian approximation, with the goal of finding good patansdor having good convergence threshold.

A. Channel symmetry

Only memoryless symmetric channels are considered in thi&.vExtension to arbitrary memoryless
channels can be done by a coset approach, as detailed indil@H(¢) LDPC codes. In this section,
we introduce classical results leading to asymptotic aiglyout we prove them in the specific case of
hybrid LDPC codes and of the definition of channel symmetrycassider.

Definition 4: [28] A channel is symmetric when the density of the obseovain probability form
fulfills:

P(Y =ylz=i)=P(Y =y |z =0)
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Lemma 1:Let Pe(t) (x) denote the conditional error probability after tHé BP decoding iteration of
a hybrid LDPC code, assuming that codewardvas sent. If the channel is symmetric, thBﬁ) (x) is
independent ok.
The proof of this lemma is provided in Appendix. This propedilows to assume that the all-zero
codeword has been transmitted, for the remaining of the pgytin analysis of hybrid LDPC code

ensemble performance.

B. Message symmetry

The channel symmetry can entail a certain property of messagreading over the graph during
the decoding iterations. This property is the symmetry @ thessages. The definitions of symmetric
probability vectors and LDR vectors are given hereafter.

Definition 5: [19] A random probability-vectoiY is symmetric if for any probability vectoy, the

following expression holds:

PY =ylY €y*) = yo - n(y) 9)

wherey* andn(y) are as defined in Section II.
Definition 6: [19] Let W be a random LDR-vector. The random variabte = LDR™'(W) is
symmetric whenWw satisfies
P(W =w) =" P(W =wt) (10)

for all LDR vectorsw.
The proof of the equivalence between these two definitionmasided in [19].
Let us connect the channel symmetry property to the messagmstry property.
Lemma 2:Let Y be the observation in probability form, and W& = LDR(Y). If the channel is

symmetric, then, under the all-zero codeword assumpti@densityP, of W is symmetric:
P(W = wlz = 0) = Py(w) = e Py(w™")

The proof of this lemma is provided in Appendix.
Lemma 3:If the bipartite graph of a hybrid LDPC code is cycle-freerthunder the all-zero codeword
assumption, all the messages on the graph at any iterati&® afecoding, are symmetric.

Proof of Lemma 3 is given in Appendix.
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C. Density evolution

Analogously to the binary or non-binary cases, density wiah for hybrid LDPC codes tracks the
distributions of messages produced by the BP algorithnragesl over all possible neighborhood graphs
on which they are based. The random space is comprised obmarmtiannel transitions, the random
selection of the code from a hybrid LDPC ensemble paraneetriz/ I1, and the random selection of an
edge from the graph. The random space does not include thamitied codeword, which is assumed to
be set to the all-zero codeword (following Lemma 1). We dermtR () the initial message across an
edge connected to a variable @qy), by R(%)" the message going out of a variable node of degree
i in G(gi) at iterationt. The message going out of a check node of degreeG(¢;) at iterationt is

denoted byL(@:)"”, We denote by; andx; any two probability vectors of sizg andq;, respectively.

Let us denote byP, the set of all probability vectors of sizg Let r,, (r®,10) ... 16-1) denote the
message map of a variable node of degrée G(qx), as defined in equation (7): the input arguments
arei probability vectors of sizey. Let1,(r("),...,rU~1) denote the message map of a check node of
degreej in G(q;): the input arguments arg— 1 probability vectors of size;.

PLODY = x)) =
j—1 .
> [IXnGkin Y PAPEREDT =™ ), (11)
rM r(j*.l)epql: n=1 i,k AGEX’CX:
I, (@M, xU=D)=x, (,[.(n)x‘r1 y=r(™

PRODY — ) =

PRMY = pO) H Zn(j,m,k) Z P(A) Z PO —=y) . (12)

r(0)71(1) vvvvv 1(11—1)€qu: n=1 3, A€Ey, reby,;:

rg, (0@ 10 16-D)—x, AT o m

Richardson and Urbanke [5] provedcancentration theorenthat states that, as the block length
tends to infinity, the bit error rate at iteratian of any graph of a given code ensemble, converges to
the probability of error on a cycle-free graph in the sameeeride. The convergence is in probability,
exponentially inN. As explained in [19] for classical non-binary LDPC codéus theorem carries over
hybrid LDPC density-evolution unchanged by replacing biith symbol- error rate.

Moreover, one can prove that the error-probability is a mmmeasing function of the decoding itera-
tions, in a similar way to the proof of Theorem 7 in [4]. Thismimcreasing property ensures that the
sequence corresponding to density evolution, by iteratiatyveen equations (11) and (12), converges
to a fixed point. Implementing the density evolution allowesdheck whether or not this fixed point

corresponds to the zero error probability, which meanstti@aidecoding in the infinite codeword length
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case has been successful. Furthermore, Richardson andKdrpeoved in [5] the monotonicity of error
probability in terms of the channel parameter for physycdégraded channels. Thus hybrid LDPC codes,
like binary or non-binary LDPC codes, exhibit a thresholepdmenon.

Like for GF(q) LDPC codes, implementing the density evolution for hybribRC codes is too
computationally intensive. Thus, in the sequel, we presentseful property of hybrid LDPC code
ensembles, which allows to derive both a stability conditmd an EXIT chart analysis for the purpose

of approximating the exact density evolution for hybrid LORode ensembles.

D. Invariance induced by linear maps (LM-invariance)

Bennatan and Burshtein in [19] used permutation-invagatacderive a stability condition for non-
binary LDPC codes, and to approximate the densities of gmaplssages using a one-dimensional
parameter. The difference between non-binary and hybri@C2odes lies in the non-zero elements of
the parity-check matrix. Indeed, the non-zero elementsad@orrespond anymore to cyclic permutations,
but to extensions or truncations (see Definitions 2 and 3j.d@al in this section is to prove that linear-
map invariance (shortened by LM-invariance) of messagésdisced by choosing uniformly the linear
maps as non-zero elements.

Until the end of the current section, we work with probabpildomain random vectors, but all the
definitions and proofs also apply to LDR random vectors. lstecall thatF; ; is the set of extensions
from G(q;) to G(¢;), andT; ; is the set of truncations fror(g;) to G(g;).

Definition 7: A random vectorY of size ¢; is said to be LM-invariant when for alk < [ and
(A=Y, B~Y) € Ty, x Tiy, the random vectory *4 ™" and Y*Z ™" are identically distributed, i.e., when
P(Y*A ™ =y)=P(Y*B " =y) forall y € R,

Lemma 4:If a random vectorY of size ¢; is LM-invariant, then all its components are identically
distributed.

Proof of Lemma 4 is given in Appendix.

Definition 8: Let X be a random vector of siz@., we define the random-extension of sigeof X,
denotedX, as the random vectdX*4, where A is uniformly chosen in&y, ; and independently oK.

Lemma 5:Consider a random vect® of sizeg;. If there existg, and a random vectaX of size g,
such thatY = X, thenY is LM-invariant.

Proof of Lemma 5 is given in Appendix.
Thanks to Lemma 7, the messages on the graph of a hybrid LDEE, ao the code ensemble with

uniformly chosen extensions, are LM-invariant, exceptriessages going out of variable nodes.
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E. The Stability condition for hybrid LDPC codes

The stability condition, introduced in [4], is a necessary aufficient condition for the error probability
to converge to zero, provided it has already dropped belanesealue. This condition must be satisfied
by the Signal to Noise Ratio (SNR) corresponding to the tiwkek of the code ensemble. Therefore,
ensuring this condition, when implementing an approxioratdf the exact density evolution, helps to
have a more accurate approximation of the exact threshold.

In this paragraph, we generalize the stability conditionhyrid LDPC codes. Lep(y|z) be the

transition probabilities of the memoryless output syminathannel and:*) be defined by

qr—1
= 3 [Vl
=1

qr — 1 “
Let x be a positive real-valued vector of size the number of diffiergroup orders. Let us define the
function by:

qw — 1%/
q—1

g(k, ¢ 10, x) = BTG = 2[k) Y TG, i, k) (G — 1) Y TI(K|5,1)
4.l k!
For more readable notations, we also define the vector ofipation G(x) by:
G(X) = {g(k> C(k) ) H7 X)}k

which means that thg!" component ofG(x) is G,(x) = g(p,c®,II,x). Let P = P,(R") be the
probability that the messagﬁﬁk) be erroneous, i.e., corresponds to an incorrect decisiba.average
probability that any rightbound message be erroneoi is >~ H(k:)Pe('“)t. Let us denote the convolution
by ®. Thenx®" corresponds to the convolution of vecboltl;y itself n times.

Theorem 1:Consider a given hybrid LDPC code ensemble parametrized(byj, , [). If there exists
a vectorx with all positive components, such that, for &ll
nler;Og(k,c(k),H, G®"(x)) = 0, then there existy ande such that, ifPl» < ¢, then P! converges to
zero ast tends to infinity.
Proof of Theorem 1 is given in Appendix. This condition isfiént for stability.

Let us note that, for a non-binayF'(¢) LDPC codes, the stability condition for hybrid LDPC codes
reduces to the stability condition f@r'(¢) LDPC codes, given by [19]. Indeed,

lim g(k,c¢® I, G®"(x)) = 0

n—oo

is equivalent in this case to

qr—1
PONO)— > [ Vol <1,
i=1

dk
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When the transmission channel is BIAWGN, we have

[ Volpl0idy = cop—5 m).

Let A be defined by
— qkf (—5m)
= =1 - exrp 952 n;

with n;, the number of ones in the binary mapafe G(q). Under this form, we can prove that tends
to zero asy goes to infinity on BIAWGN channel. This means that any fixethpof density evolution
is stable as; tends to infinity for non-binary LDPC codes. This shows, intipgalar, that non-binary
cycle-codes, i.e., with constant symbol degtke= 2, are stable at any SNR provided thais large

enough.

F. EXIT charts for hybrid LDPC codes

The purpose is to approximate the decoding threshold of eadiiyDPC code ensemble with parameters
II, in such a way that it can be used in an optimization procedunere the threshold will be used as
the cost function. To do so, the message densities are prdjen one-scalar parameter. The considered
channel is the Binary Input Additive White Gaussian NoiseAGN) channel with BPSK modulation.

With binary LDPC codes, Chung et al. [29] observed that theab#e-to-check messages are well
approximated by Gaussian random variables, in particut@mathe variable node degree is high enough.
The approximation is much less accurate for messages gaihgfocheck nodes. Furthermore, the
symmetry of the messages in binary LDPC decoding implies i meanm and variances? of
the random variable are related by = 2m. Thus, a symmetric Gaussian random variable may be
described by a single parameter. This property was alsonaxbéy ten Brink et al. [8] and is essential
to their development of EXIT charts for Turbo Codes. In [1#e authors analysed D-GLDPC on the
BEC, which allowed to track only one parameter, the extcimsiormation, instead of complete message
densities. In the context of non-binary LDPC codes, Li et[28] obtained a description of — 1-
dimensional Gaussian distributed messageg byl parameters. Bennatan et al. in [19] used symmetry
and permutation-invariance to reduce the number of paemdtom ¢ — 1 to one. This enabled the
generalization of EXIT charts t6'F'(¢) LDPC codes.

First, let us discuss the accuracy of the Gaussian appreéiximaf the channel output in symbolwise
LLR form for hybrid LDPC code ensembles. The channel outpués noisy observations of bits, from
which we obtain bitwise LLR, all identically distributed A8(2, %) [29]. Lets be the vector gathering

027 g2
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the LLRsby, ..., b, of bits of which a symbol inG(q;) is made:s = (by, ..., b, )T. Each component

of an input LLR random vectol of size (g, — 1) is then a linear combination of these bitwise LLRs:
1=DB,, s (13)

where B, is the matrix of sizey;, x log,(gx) in which thei® row is the binary map of thé" element
of G(qx). The distribution of initial messages is hence a mixture é-dimensional Gaussian curves,
but are not Gaussian distributed vectors. Indeed, it is &asge that the covariance matrix of vector
is not invertible.

Secondly, let us introduce a slight extension of Theorem A}

Theorem 2:Let W be an LDR random vector, Gaussian distributed with maarand covariance
matrix 3. Assume that the probability density functigitw of W exists and thak is nonsingular. Then

W is both symmetric and LM-invariant if and only if there exits> 0 such that:

a2 /2 o? o?/2
o2/2 o?

m = s 2:
o2/2 a2/2 o2

The proof of Theorem 2 is the same as the proof of Theorem &) fecause the permutation-invariance
property [19] is used only through the fact that the compdsen a vector satisfying this property are
identically distributed. This fact is ensured by a LM-insant vector thanks to Lemma 4.

Thirdly, Lemma 4 ensures that, if a vector is LM-invariarttem its components are identically
distributed. Hence, if we assume that a message is Gaussigibuded, symmetric and LM-invariant,
its density depends on only one-scalar parameter. Let usdiseuss the relevance of approximating
the message densities of a hybrid LDPC code ensemble by i@aussdom vectors. Lat*) (x) be the
density of a LDR message going out of a variable nodé:{g;) after being extended by an extension
chosen uniformly at random i, ;.. Any component of such vector has density) (z). Messages going
out of variable nodes are extended when passing througintre lextension function nodes. As described
in Section IlI-C, the extension turns, e.ggasized probability vector into g-sized vector, withys > ¢;.
This means thag, — ¢1 of the resulting extended LDR message components are @finéicause these
components of the corresponding probability vector are.zZdence, the density of each component, of
an extended message, is a mixture including a Dixgg. Since this LDR vector is the random extension
of the variable node output message, it is LM-invariant.nfrloemma 4, each component is identically

distributed.
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Property 1: The probability density function of any component of an LDRRssage after extension at
iterationt, is expressed as
d9(z) = pr9(z) + (1 - f)Ax

where the weights is independent of.

Proof: At any decoding iteration;*) () cannot have a\,, component because there exists no set of
linear maps connected to the neighboring check nodes sfich that there exists forbidden elements in
G(qx) to which the symbol value associatedut@annot be equal. This is due to the fact that each check
node (or the associated redundancy symbol) is in a groupdgfr drigher or equal to the group orders of
its neighboring variable nodes. Henggjs independent of the decoding iterations (it depends only o

the groups of the codeword symbols).
]

It is therefore easy to show that any normalized moment, déogreater than 1, of the vector density
(expectation of the product of a different number of its comgnts) is equal to the same moment of the
vector densityr(®) (x). Thus, if we assume that the vector densit{) (x), i.e., at variable node output,
is dependent on only one scalar parameter, so is the wholsitgesf the extended vector message.
In other words, the density of vector message of a hybrid L@B@Ge cannot be approximated by a
Gaussian density, owing to th®,, component in the density, but is dependent on only one pdegrife
we assume that the densit{f) (x) is Gaussian. The same property holds for messages befowetion,
if we assume that messages going into variable nodes aresi@aulistributed. Since the messages going
into variable nodes are symmetric and LM-invariant, theimsdone during the variable node update, is
symmetric and LM-invariant by Lemma 18 in [19] and Lemma %(g#e@pendix). Hence, the one-scalar
parameter approximation for hybrid LDPC codes is not lessieate than foilGF(q) LDPC codes [19].

The parameter, defining the message densities, we choossckois the mutual information between
a message and the codeword sent.

Definition 9: [19] The mutual information between a symmetric LDR-vect@ssagéV of sizeq—1
and the codeword sent, under the all-zero codeword assumii defined by:

I(C;W) =1 - Elog, (1 + qie—wwc = o)
i=1

The equivalent definition for the probability vect®r = LDR~'(W) of sizeq is

-1 x
I(C;X) =1—Elog, (%IC = o) . (14)
0

September 15, 2009 DRAFT



20

In the following, the shortcut “mutual information of a LDRetor” is used instead of “mutual information
between a LDR vector and the codeword sent”.

Since the connection between mutual information and the@sgion of a symmetric Gaussian dis-
tributed variable is easily obtained by interpolating diation points, we consider expectations of Gaus-
sian distributed vectors with same mutual information aes itiessage vectors. That is we consider a
projection of the message densities on Gaussian densigissd on Property 1 which ensures that densities
of messages going out of or into check nodes are dependeriteoraime parameters as densities of
messages going into or out of variable nodes. There are twaelm@f messages handled by the hybrid

decoder, and hence we define two functions to express theairinfarmation:

e Messages going out of variable nodes are not LM-invariard,their mutual information is expressed
thanks to a function called, (02, m, q;) in terms of the BIAWGN channel variana€?, a mean
vectorm and ¢, the group order of the variable node. The meanis the mean of a Gaussian
distributed vector.

e For a hybrid LDPC code ensemble with uniformly chosen lineeps, messages going into and
out of check nodes are LM-invariant. &(¢;) denotes the group of the check node, the mutual
information of messages is expressed by a functigh:, ¢;). m is the mean of a Gaussian random
variable (any component of a Gaussian distributed vecttr same mutual information as the graph
message).

Let us now detail the evolution of mutual information of magss through BP decoding.

e The mutual information of a variable node output is exprésgenks to theJ,(-,-,-) function
applied to sum of means, since variable node update is thenation of LDRs. Herey;, is the
mutual information of truncation operator output, ang is the all-one vector of sizg,. The mutual

information x,,,; of the output of a variable node if(q;) with connection degreg is given by:
Tout = Jo(0%, (i = 1) (@, ar) Lgu—1: k) -

e The mutual information of extended message frGfg;) to G(¢;) does not depend on which linear
extension is used, but only on the group orders. &;gtand z,,; denote the mutual information of

extension input and output, respectively. It follows frorefiition 9

(1 — @out) logs(qr) = (1 — win) logy(qr) -

e To express the mutual information of truncated message im) to G(qx), we use the LM-

invariance property of input and output of the truncatioremgpor. Letx;, and x,,; denote the
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mutual information of truncation input and output, respesy.

LTout = Jc(Jc_l(ﬂUz'n7QI)7Qk)

e Letv denote a probability vector, anv) the corresponding Fourier Transform (FT) vector. kgt
be the mutual information of a probability vecter andz (., denote the function given in equation
(14) applied to the vectof (v).

Lemma 6: The connection between, andz ) is
wf(v) =1- Ty -

The proof is provided in Appendix. Through a check node5ify;) with connection degreg, the
mutual information transform from the FT perspective isieglent to the one given by the reciprocal

channel approximation [30]:
Tout = 1= Je((j = 1) I (1 = mim, 1), 1) -

The reciprocal channel approximation used for hybrid LDR@es is not looser than when it is
used with non-binary LDPC codes, since the message denaitieconsidered as, or projected on,
Gaussian densities in both cases. However, by computerimegm@, the approximation is looser
than for binary LDPC codes in the first decoding iterationemwkhe check node degree is very low
(j =3 or4).
We obtain the whole extrinsic transfer function of one itema of the hybrid LDPC decoder (equation
(17)). The mutual information of a message going out of a kivee of degreg in G(¢) at thett?
iteration and before truncation is denoted nbéé’l)(t). The same after truncation to becomgesized is
denotedrg’f,zm. Analogously, the mutual information of a message goingodat variable node of degree
i in G(q) at thet'” iteration and before extension is denotediﬁgk)(t). The same after extension to

becomey;-sized is denoted """,

ve,l

(3,k)® logs(qk) (i,k)®
z = 1—-——=(1—-ay 15
vel logz(cn)( ) (19
2@ = 1| (G- anku, ) ) a (16)
wiﬁ)’,ﬂ?” = J (Jc_ 1(95(@3;”“),@),%)
2R 62— 1) ZH (4,13, k)x M ), 17)
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We also define the a posteriori (or cumulative) mutual infation for each kind of variable node at the
tth iteration by
i k) (® . _ C - j,1)(®)
g =g | o I QTG R ) a | (18)
j7l
For any(i, k), %" is the quantity that must tend to 1 whetends to infinity, for successful decoding.
In the remainder, we refer to this mutual information eviolmtequation by using the notatidf(.) such

that:
(xRN = PRy, TG, 4k, 1), 02)

V. DISTRIBUTIONS OPTIMIZATION
A. Context of the optimization

Let us denote the code rafe, and the target code rat®,,,.;. The optimization procedure consists

in finding I1(4, 7, k, 1) which fulfills the following constraints at the lowest SNR:

Code rate constraint: R = Rigrget
Sum constraint: > T, gk 1) =
ijkl
Sorting constraint: I1(¢,j,k,1) =0, V(i,7,k,1) such thatg, > ¢ (29)
Successful decoding condition: lim g =1 (i, k) (20)

with {aEP Y G = PG Y 0 10, 5k, 1), 0%)

B. Optimization with multi-dimensional EXIT charts

The successful decoding conditiokm y@ERY = 1 for all (i,k), is verified by multi-dimensional
EXIT charts. This technique, for hybrid LDPC codes, is a rfiodtion of the technique introduced in
[31], and can be presented as follows:

1) Initialization: t=0. Setxg;l)(o) =0 for all (5,1).
Computex(l ) for all (i, k) with equation (17).

w N

Computey ¥ for all (i, k) with equation (18).

W

)
)
) ComputezP" for all (,1) with equation (16).
)
)

5) If y@&R)" =1 up to the desired precision for gli, k) then stop; otherwise =t + 1 and go to step

2.
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Optimizing the detailed representatiditii, j, k, (), without any restriction on the parameters, requires to
use multi-dimensional EXIT charts with a hill-climbing apization method, like differential evolution.
However, owing to the huge parameter space and multi-diimeakinterpolations leading to a too high
computational complexity, we restrict the parameter spacget a linear programming optimization

problem.

C. Optimization with mono-dimensional EXIT charts

In this part, we consider the optimization of hybrid LDPC eedlamilies with all check nodes in
the same groug~(¢;) and with connection degrees independent of the variablesiod which they
are connected. We present how general equations (17) ttomsriono-dimensional EXIT charts, and
how this allows the use of linear programming for optimiaati Let xﬁﬁ denote the averaged mutual
information of extended messages. It is expressed in tefitie anutual |nformat|onc(l MY of messages

going out of variable nodes of degreéen G(qx), by simplification of equation (15):

t) i,k)®
) =1— 10g2 Zsz‘ logs () (1 — By

From equation (15), we can see that, for a(nyf, 0):

and then the successful decoding condition (20) reduces to
tlim xg) =1.

1)

By simplifying equation (17)95 (+1 can be expressed by a recursion in term&ﬂg‘)}f as:

e n

T = e (ng (l—Jc ((J—l)J (1—2351)7%) (Jl)7qz),qk) :
(H+1) _ . log(qx) o
T = ;H(uk) <1 - Tog(at) <1 —Jy <o’ , ZH (Jle, k)x T L k) la,—1, Qi _ 1)

Thus, the condition for successful decoding of hybrid LDR@es in that specific case is

ve>0, i) >0 (22)

In that case, the optimization procedure aims at findingitigion I1(i, k|j,) for givenII(j,1). We

(t+1)

see in equation (21) that, depends linearly onl(i, k), turning the optimization problem into a

linear programming problem.
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VI. FINITE LENGTH OPTIMIZATION

This section presents an extension of optimization metlioaishas been described in [32] for finite-
length non-binary LDPC codes with constant variable degkee- 2. We address the problem of the
selection and the matching of the parity-check makiixon-zero elements. In this section, we assume
that the connectivity profile and group order profile of thamr have been optimized, with constant
variable degreel, = 2. With the knowledge of the graph connectivity, we run a PE@a#athm [33] in
order to build a graph with a high girth.

The method is based on the binary image representatioH @&nd of its components. First, the
optimization of the rows of is addressed to ensure good waterfall properties. Thenakipg into
account the algebraic properties of closed topologies & Tanner graph, such as cycles or their
combinations, an iterative method is used to increase themmuim distance of the binary image of

the code by avoiding low-weight codewords.

A. Row optimization

Based on the matrix representation of each non-zero elemwengive hereafter the equivalent vector
representation of the parity-check equations associattidtiae rows ofH.

Let x = [x9...2n—1] be a codeword, and lgt; be the number of bits representing the binary map
of symbolz; € G(2P7), j = 0,... N — 1. For thei'" parity-check equation off in the groupG(2?:),
we have the following vector equation:

S Hiyx;j=0 (23)
j:Hi;#0

where H;; is the p; x p; binary matrix representation of the non-zero element x; is the vector

representation (binary map) of the symhgl The all-zero component vector is denotedy

Considering theé-th parity-check equation as a single component code, weeldfi = [H;;, ... H;;,, ... Hyj, _

as its equivalent binary parity-check matrix, wifh,, : m = 0...d. — 1} the indexes of the non-zero
elements of the-th parity-check equation. The size B is p; x (pij, + ... + pij,,_, ), With p; andp;;,
the extension orders of the groups of the check node andé-theconnected variable node, respectively.

Let X = [xj, .. . Xj ¢ be the binary representation of the symbols of the codewartolved in the

ae-1)
ith parity-check equation. When using the binary represamathei-th parity-check equation (23), can
be written equivalently a¥I;X;' = 0°.

We defined,,;, (i) as the minimum distance of the binary code associated HithAs described in

[32], a d.-tuple of d. linear maps is chosen in order to maximize the minimum dcstaf),;, (i) of
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the code corresponding to th# row of H, i = 0,..., M — 1. For hybrid LDPC codes, we adopt the
same strategy, and choose g a binary linear component code with the highest minimumadise

achievable with the dimensions ®f; [34].

B. Avoiding low weight codewords

We now address the problem of designing codes with good mimirdistance. It has been shown in
[32] that the error floor of non-binary LDPC codes based oratgparsed, = 2) graph is not uniquely
due to pseudo-codewords, but also to low-weight codewdt#gse we consider hybrid LDPC codes
with constant variable degrek = 2. We adopt for hybrid LDPC codes the same strategy that has bee
introduced in [32], which aims at avoiding the low-weightdewords which are contained in the smallest
cycles.

In order to do so, we first extract and store the cycles of then@agraph with length belonging to
{g,...,9+ gap}, whereg is the girth andgap is a small integer such that the number of cycles with
size g + gap is manageable. As in the previous section, we consider tharpiimages of cycles as
component codes. L&, be the binary image of the-th stored cycle. Since we conside, d.) codes,
if some columns oH,, are linearly dependent, so will be the columnghfThis means that a codeword
of a cycle is also a codeword of the whole code. The proposedaph is hence to avoid low-weight
codewords by properly choosing the linear maps implied énaycles, so that no codeword of low weight
is contained in the cycles. This is achieved by ensuring tiatbinary matrices corresponding to the
cycles have full column rank. Hybrid LDPC codes are therefoell-suited to this kind of finite-length
optimization procedure owing to the rectangular structiréhe injective linear maps we consider as

non-zero elements of the parity-check matrix.

VIlI. NUMERICAL RESULTS
A. Rate one-half codes

In the sequel, code rates are expressed in bits per chaneeMes first give in Table | two code
distributions and the corresponding thresholds for cotle sae-half. Thresholds, denoted é%y are
approximated by Monte-Carlo simulations in the followingmner. To mimic decoding of an infinite-
length code, we consider a finite-length hybrid LDPC codeesponding to the given distribution. The
length we used i20000 coded bits. We send the all-zero codeword, and at each degddration, the
noise added to the codeword is changed, as well as the lineps of the code, chosen uniformly at

random. If the code is not structured, we also change thel@ateer of the graph at each iteration. The
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TABLE |

NODEWISE DISTRIBUTIONS OF THE HYBRIDLDPC CODES USED FOR THE FINITE LENGTH SIMULATIONS

| Hybrid LDPC code 1| Hybrid LDPC code 2

(i = 2, qx = 32) 0.3950
(i = 2, qx = 64) 0.4933 0.2050
(i = 2, gr. = 256) 0.4195 0.4000
(i = 6,qx = 64) 0.0772
(i = 6, gx = 256) 0.0100
I(j = 5,q = 256) 0.5450 1
II(j = 6,q = 256) 0.4550

‘ (%) (dB) H 0.675 0.550

distribution is preserved because connection degrees r@ughg are not changed. An approximation of
the threshold is the lowest SNR value for which the numberraire of the decoder reaches zero after
500 iterations. We then check that several approximatiawe fsmall variance w.r.t. the average, and
define the threshold as the average of the obtained apprtaima

Thresholds are given only for the codes we are interestedrisrhall codeword length applications.
The channel is the BIAWGN channel with BPSK modulation. Thérid LDPC code 1 is obtained
by setting the different group orders, and then optimizing tonnection profile of variable nodes for
each group. We set the check node parameters (group ordeoandction profile), independently of the
variable nodes parameters. Starting froifi, 7, k, [), the assumptions we consider on the parametrization,

are translated into the following decomposition:
10, g, k, 1) = 110, k, DII()
= 100G, R)TI(, k)TI(5)
= TLi[R)II(R)ILR)TI(S)
wherell(:|k) Vi is the connection profile of variable nodesdt{g;), which is optimized for allt. We
fix II(k), II(1|k) andII(j). Check nodes have degree 5 or 6, independently of other pteesnand are
in G(256) as well as all redundancy variable nodes, while the infolonatariable nodes are i6'(64).

(Hencell(l|k) = II(1)). The connection profiles for these two groups are then aptidhwith maximum

variable node degree equal to 10.
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Remark From a D-GLDPC codes perspective, variable nodes in theesigorder group correspond to
poor generalized component codes. It can be observed #haptimization procedure affects these nodes
with as many high connection degrees as possible, givendhstraints (i.e., when the code dimension
K, equal to the log of the group order, is high, the lengthis increased).

The hybrid LDPC code 2 is obtained by fixing the connectiorfifr@and optimizing the group orders
of variable nodes. We set the check node parameters (gralgr and connection profile), indepen-
dently of the variable nodes parameters. Starting fid(m j, &, 1), the assumptions we consider on the

parametrization, are translated into the following decosijon:
(i, j, k1) = Ti(i,k,)II(5)
= TI(kli, DIT(i, DII(H)
= II(k|i, )II(3)II(1)II(5)

We aim at optimizing as many group order profildék|i, ), Vk, as the number of different variable
node connection degreés We fix I1(:), II(!) andII(j). The graph connections are set regular with
constant variable degreg, = 2 and constant check degrde = 5. All check nodes are fixed to be in
G(256). Thereforell(k|i, 1) = II(k|i). Hybrid LDPC code 1 and 2 ensembles are hence unstructured
code ensembles.

From Table I, we can say that hybrid LDPC codes do not outparfton-binary LDPC codes in terms
of decoding thresholds. Moreover, both kinds of codes carm Heetter thresholds than those in Table
| by allowing higher connection degrees. However, our pgep to point out the good finite length
performance of hybrid LDPC codes, that can be evaluated éyetlor-floor behavior, as explained in
Section I. Since the error-floor is due to cycles in the gradpst error-floor performance are usually
reached with low connection degrees, i.e, with sparserhgrf®b]. That is why we have focused on low
connection degrees. For such low degrees, hybrid LDPC ctole®t approach the capacity as close as
multi-edge type LDPC codes do, but their thresholds are éenréimge of protograph-based LDPC code
thresholds [35][31]. This is due to the adopted detailedasgntatiod] which cannot handle degree one
variable nodes. However, it would be an interesting perspeto switch from the detailed representation
to a multi-edge type representation for hybrid LDPC coddss Will certainly enable to get capacity-
approaching distributions with low connection degreedebd, it has been shown in [15] that introducing
degree-1 variable nodes in non-binary LDPC codes makesedbedihg threshold getting closer to the
theoretical limit.

In the sequel, for all simulated hybrid LDPC codes exceptridybDPC code 1 in Figure 3, the linear
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—6— Hybrid LDPC 2 N=2048
—&— Multi-edge type LDPC N=2560

—<— Protograph based LDPC code N=2048
—=4&— Hybrid LDPC 1 N=2048

Frame Error Rate
=
o
T

1 15 2 25
Eb/No

Fig. 3. FER versu% (in dB): code rate one-halfVy;; = 2048 coded bits except for the multi-edge type LDPC code for
which Ny;: = 2560 coded bits.N;+., = 500 decoding iterations are performed.

maps are chosen according to the technique presented irS¥tt Detailed simulation results (numbers
of frames in error and simulated) are presented in Apperidgure 3 represents frame error rate (FER)
curves for different codes with code rate one-half. Thegrarnce curves of hybrid LDPC codes 1 and
2 are compared with a protograph-based LDPC code from [3%], aamulti-edge type (MET) LDPC
code from [25]. This code has been specifically designedoierdrror-floor. All codes havéV,;; = 2048
coded bits, except the MET LDPC code which hég; = 2560 coded bits.

The graphs of hybrid LDPC codes have been built with the ren®&G algorithm described in [36].
To create systematic hybrid LDPC codes with the method of, [B& modification of the technique in
[36] is the same as what is described in [33] (Section V) t@ate@pper-triangular encoding matrices for
LDPC codes. It is worth noting that the input of the graph d¢amdion method is only the connection
profile of the code without the group order profile.

We see that the hybrid LDPC code 1 has performance very clmgbet protograph-based LDPC
code in the simulated range of SNR. The hybrid LDPC code 2 ligistly better waterfall and slightly
higher error-floor than the MET LDPC code which is ab&00 bits longer. Hybrid LDPC codes are
therefore capable of exhibiting performance equivalen¥iteT LDPC codes, which are, to the best of

our knowledge, among the most interesting structured cdtiés worth noting that, unlike MET and
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protograph-based LDPC codes, the presented hybrid LDP€scak non-structured codes.
Furthermore, for sake of clarity in the figures, we did nottpilwegular GF(256) LDPC codes
performance. However, we can mention that such codes caupérform regulaf2,4) GF(256) and
hybrid LDPC codes, even not optimized for finite-length ®etVI), in terms of error-floor. Thus, even
though they can provide better waterfall performance tlgular(2,4) GF(256) or hybrid LDPC codes
which have lower connection degrees can, irregddf(256) LDPC codes do not allow to lower the
error-floor as much as with connection-regular codes. HeregularGF'(256) LDPC codes do not allow
to get the same amplitude in the choice of the tradeoff batweaterfall and error-floor performance,

as hybrid LDPC codes do.

B. Rate one-sixth codes

For communication systems operating in the low SNR regimg.,(&ode-spread communication
systems and power-limited sensor networks), low-rate rgpdichemes play a critical role. Although
LDPC codes can exhibit capacity-approaching performancevdrious code rates when the ensemble
profiles are optimized [4], in the low-rate region, it is diffit to obtain good low-rate LDPC codes. The
analytical reason for that is given in [37] (Section Il.D)ower rate LDPC codes require larger SNR
increase from the decoding threshold to obtain similar d¢@ms regarding decoding tunnels in EXIT
charts than their higher rate counterparts”. We intendltstilate the interest of hybrid LDPC codes for

low-rate applications requiring short block length (frofd02to 1000 information bits).

TABLE I
NODEWISE DISTRIBUTION OF THE RATE% HYBRID LDPC cobDE

| Hybrid LDPC coder = §

(i =2,qx = 8) 0.227
(i = 2, qx = 16) 0.106
(i = 2, qx = 256) 0.667
(j = 3,q = 256) 1

(%) (dB) —0.41
Capacity (dB) —1.07

In Figure 4, Bit Error Rates (BER) of a ratg¢6 hybrid LDPC code, whose distribution is given in Table
II, are compared with Turbo Hadamard code (TH) taken fronj 8l Zigzag Hadamard (ZH) code taken
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Bit Error Rate
[
o

—a— Turbo-Hadamard R=1/5 K =200
—aA— ZigZag-Hadamard R=1/6 Km:ZOO

— A - Union bound ZigZag-Hadamard R=1/6 KM:ZOO
—»— Hybrid LDPC R=1/6 Kbi(:192

Fig. 4. Comparison of hybrid LDPC code with Turbo Hadamardec¢TH) taken from [38] and Zigzag Hadamard (ZH) code
taken from [39], forK5;: ~ 200 information bits. The number of decoding iterations\ig., = 30 for Turbo Hadamard codes,
and Nt = 200 for the hybrid LDPC code.

from [39], for K3;; ~ 200 information bits. The number of decoding iterationsNig., = 30 for Turbo
Hadamard codes, anl;;., = 200 for the hybrid LDPC code. However, the comparison is not unfa
because the number of iterations for Turbo-like codes aatftit LDPC codes does not scale identically
with performance as, e.g., pointed out in [40]. This can lerpreted by the fact that the complexity
per iteration of Turbo-like codes is higher than that of LDB@les, owing to the BCJR algorithm run
at each iteration. The hybrid LDPC code outperforms with dB3gain the ZH code. Additionally, the
hybrid code has no observed error floor up to a BER=. When comparing the computer simulation
of the hybrid LDPC code with the union bound of ZH code, we obsdhat the BER of the hybrid
LDPC code has gain of about one decad%)at: 2dB. This gives a hint to predict that the error floor
of the hybrid LDPC code is lower than the error floor of the ZHleo

In Figure 5, the FER comparison is drawn for code rgté and K3;; ~ 1000 information bits. The
quasi-cyclic LDPC code is designed to have low error-flo@][4 he hybrid LDPC code is better than
the quasi-cyclic LDPC in the waterfall region. However, #reor-floor of the quasi-cyclic LDPC code
is not provided in [42], and we were not able to evaluate theimuim distance of the hybrid LDPC
code. Indeed, unlike quasi-cyclic LDPC codes, the propdsdiid LDPC code is not structured. For

unstructured LDPC codes, the minimum distance can be deallry the method presented in [43]. In
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10° T

10°F E

10°L : E

Frame Error Rate

—4

10°¢ —— MET LDPC code 3
—©— Hybrid LDPC

—#&— quasi-cyclic GF(2) code

10k —o— THC (1,6/7), M=3 R=1/6

10° 1 1 1 1

Fig. 5. Comparison of hybrid LDPC code with punctured Turbadbimard (PTH) taken from [41] and other powerful codes,
for code ratel /6. The PTH code had(,;; = 999 information bits, and the other codes hak®;; = 1024 information bits.
Niter = 50 for the PTH code, andV;..,- = 200 for the other codes.

Figure 5, the codeword length is 6144 bits, which results to@amuch high complexity to implement

the technique of [43]. That is why we were unable to approxénhe minimum distance of the hybrid

LDPC code for this codeword length. The hybrid LDPC code igdvehan the PTH codes both in the
waterfall and in the error-floor regions. The hybrid LDPC eduas poorer waterfall region than the
MET LDPC code [44], but better error-floor. Hence, for rai too, the performance of hybrid LDPC

codes are equivalent to the one of MET LDPC codes, by allowdongach comparable trade-off between
waterfall and error-floor performance.

Remark Let us mention that hybrid LDPC codes, with injective lineaaps as non-zero elements,
are well-fitted to low code rates thanks to their structurelekd, like all other kinds of codes with
generalized constraint nodes (Turbo Hadamard code [38RQ@ Madamard codes [45], GLDPC [13],
D-GLDPC [14], or Tail-biting LDPC [15]), they are well-fitteto low code rates because the graph rate is
higher than the code rate. This can help the iterative degodihen the code rate is very low, decoding

on a higher rate graph can lead to better performance.
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VIIl. CONCLUSIONS

A new class of LDPC codes, named hybrid LDPC codes, has bémdirted. Asymptotic analysis of
this class of codes has been carried out for distributiomopation, as well as finite-length optimization.
Numerical simulations, for code rates one-half and on#isilustrate that hybrid LDPC codes can be
good competitors for the best known codes, like protoghagéed or MET LDPC codes, by allowing to

reach interesting trade-off between waterfall and eraoflperformances.

APPENDIX

Lemma 1 Let Pe(t) (x) denote the conditional error probability after th& BP decoding iteration of
a GF(q) LDPC code, assuming that codewatdwas sent. If the channel is symmetric, thiefy (x) Is

independent ok.

Proof: The proof has the same structure as the proof of Lemma 1 inTfsg notations are the same
as in [5] and Section IlI-F.
Let \Ifz(,t)(mo, my,...,my, 1) denote the message map of any variable node at itergtiaccording to
equation (7). The size of argument messages is implicityy dhe of the group of the variable node.
Let \yﬁﬁ(ml, ...,my 1) be the message map of any check node. The sizes of argumesagessare
implicitly the one of the group of each variable node coneédb the check node, according to equation
(6).

o Check node symmetry: Let’ be the Cartesian product group defined in Section llI-F. For a

sequencéby,...,bs 1) in G such that@f;]l Ay, cbi € Im(Ay:), we have (see equation (6))

t +b +ba.—1y\ _ (¢ +A-N @@L A, b
\I’g)(ml Leeoomy g )_\Ilg)(ml,...,mdc_l) ve (BiZ1 Aviebi)

« Variable node symmetry: We also have, for ang GF'(q,):

+b

\I’g)(mgb, mf‘b, . ,mdu_l) = \Ifz()t)(ml, . ,mdc_1)+b

Let Z; denote the random variable being the channel output in pitilyaform, conditionally to the
transmission of the zero symbol. Ea@) for any i = 1... N has same size as the group of the

corresponding codeword symbol. Any memoryless symmetranoel can be modeled as
Y, =Z™"

wherez; is thei'® component ofx which is a vector of size N, denoting an arbitrary codewordhef

hybrid LDPC code. The channel output in probability foli results from the transmission af
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Let v denote an arbitrary variable node and dedenote one of its neighboring check nodes. For any
observation in probability formv, let mffc) (w) denote the message sent froro c in iterationt assuming
w was received. The quantity is hence a set of channel output vectors in probability fevm for all
i =1...N. The same definition holds falng)) (w) from ¢ to v. From the variable node symmetry at
t=0we havemgfé) (y) = mff? (z)™». Assuming now that in iterationwe havemgfc) (y) = mgfc) (z) T,
Sincex is a codeword, we hav@f;l Ay,cx; =0, and hence@f;[l Ay, cri = Ayex,. From the check

node symmetry condition we conclude that

m{" (y) = m{" (2) "

Moreover, from the variable node symmetry condition, ildais that in iteratiort + 1 the message sent
from v to cis

m{;" (y) = m{; (2) "

Thus, all messages to and from variable nedeheny is received are permutations hy, of the
corresponding message wheris received. Hence, both decoders commit exactly the samebeauof

errors, which proves the lemma.
O

Lemma 2 If the channel is symmetric, then, under the all-zero coddvassumption, the densitl,

of the initial message in LDR form is symmetric:
Py(W =w) = ¥ Py(W = w)

Proof: Let x,.s, be the noisy observation of the sent symbolet L(.) be the surjective map which
relates the noisy observation to a LDR vectW: = L(x,.s). The set of observations resulting in LDR
vector w is denoted byL~!(w). Thus we have, for ali € G(q), P(W = w|z = i) = P(Zps €
LY (w)|z =1).

Furthermore, ley bey = LDR~!(w) andY beY = LDR~!(W). By definition of Y;, for all i € G(q),
Y; = P(nilr = i), therefore we also havl; = P(z.e, € L1 (W)|z = i) andy; = P2 €
L~Y(w)|x = 4). Owing to the channel symmetry, we hai®Y = y*i|z = 0) = P(Y = y|z = i).
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Let us prove that’y(W = w) satisfies equation (10):

eViPy(W =wT) = e“P(W=w'|2z=0)

= P(Tnsy € L_l(w)|:n =0)
= P(W =wlz =0)

= PO(W = W)
O

Lemma 3 If the bipartite graph is cycle-free, then, under the alteeeodeword assumption, all the

messages on the graph at any iteration, are symmetric.

Proof: When hybrid LDPC codes are decoded with BP, both data pats<laeck pass steps are the
same as classical non-binary codes decoding steps. Siese steps preserve symmetry [4] if the graph
is cycle-free, the following Lemma 7 ensures that the hybledoder preserves the symmetry property
if the input messages from the channel are symmetric.

Lemma 7:1f X andY are a symmetric LDR random vectors, then the exten¥idr of X, by any
full-rank linear extensiond, remains symmetric. The same for the truncatdn“ ' of Y by the inverse
of A.

Proof: We first prove that any,-sized extension of g;-sized symmetric random vector remains sym-

metric. We want to show that
Vb e {0,...,qo — 1}, P(X* =y) = e P(X*4 = y*?) . (24)

Caseb ¢ Im(A):

« In the case wherg, # —oc:
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We have to show that

e P(X* = y) = P(X*A = yTh) .
If 4, # oo, thenP(X*4 =y) = 0. If y, = oo, thene™ = 0. Thus, we have to show that
Vb ¢ Im(A), P(X*4 =y*?) =0. (25)

To prove equation (25), it is sufficient to show thét ¢ I'm(A) such thatyjb # oco. We have
Y = ypri — yp. It is sufficient to chooseé = b, theny,” = —y,. Sincey,” = —y;, # oo by
hypothesis,P(X*4 = y*?) = 0.

« In the casey, = —oco, to prove equation (24), we have to prove tX*4 = y) = 0, which
is straightforward because¢ I'm(A), and henceP(X*4 = y) # 0 = y, = oo. By taking the

contraposition, we end up with the sought result.

Hence we have proved equation (24) in the casé ®flm(A).
Caseb € Im(A):

Let 6, , be the Kronecker delta function whose value is I i y, 0 otherwise. We have
P(X*t =y) = P(X ) 11 5%,
z¢|m
Sinceb belongs toIm(A), we denote by: the element in{0,...,q1 — 1} such thath = Aa. The input

message&X is symmetric, hence we have
P(X =y ) = e P(X = (y*47)")
Recall that, for any extensioA, we havey;A*1 = YAa-

. —1 A-1 1
VZG{O,...,ql—l}, (yXA )—'Hl = y7,><+a _y;A

2

= YA(i+a) — YAa

+Aa
= Yu

+Aa)?<A’1
i

= (y
Thus
PX* =y) = e P(X = (y™ )4 ] 5% . (26)
zgﬂm
We note that:
P(XXA _ y+Aa) _ P(X ( +Aa XA~ 1 H 5 +Aa ) (27)
Jﬁﬂm(A)
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=0

YAa+;,0

o0 = Oynars—yaa,o0 .Foralli € {0,...,¢g2—1},
if i ¢ Im(A), thendj ¢ Im(A): i = Aa + j. Therefore{i € {0,...,q2 — 1} s.t.i ¢ Im(A)} = {j €
{0,...,q2 — 1} s.t. Aa+j ¢ Im(A)}. We finally obtain:

[T dpm = II v
)

jelma) i¢lm(A

In this case, for alj € {0,...,g2—1}, 6,440 ., =6

The above equality allows to insert equation (27) into eignaf26). We can now conclude that, whén
is in Im(A), equation (24) is satisfied.

This completes the proof of the first part of Lemma 7.

We now prove that any truncation of a symmetric random LDRtarecemains symmetric. We have
to prove that
Vae{0,....,q1—1}, P(YA =x)=¢"P(Y4 =xt). (28)

Let b be the image ot by A: b = Aa.

PYA =x) = >, P(Y=y)

Y:Yo==To,
YA1=T1,

ey
YA(q1 —1)=Tq; -1

= Z e P(Y =y*t?)

Y:Yo==Zo,
Ya1==1,

yA(th*-l-)-’:xﬂ*l
= ¢ Y PY=y"

Y:Yo==To,
Ya1=21,

ey
YA(qr —1)=Tq; -1

We note that:

Vie Im(A), ¥/ =yaari — Yaa = Tasa-1i — Ta = (@)1,
where the last step is infered thanks to equation (2). Thus
P(YA ' =x) = e > P(Y =y)
yiyo=(z+)g %,

yAl:(era)zlAv

ety
ayx A
Ya(a -n=(@* )fx(qlm

= " P(YAT = xt)
(29)

We have obtained equation (28).
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This completes the proof of Lemma 3.

Lemma 8: Ej,; denotes the set of extensions fra#ig;) to G(g;). For givenk and/,

. CardAc By : Al j=i 1
Vird) € ooy — 1) x (L — 1), 2204 ot 2 )qu_l

Proof: p, andp; denotelog,(gx) andlogsy(q;), respectively.
Without any constraint to build a linear extension A fraitq,) to G(g;), except the one of full-rank,
we have2P: — 2"~ choices for then'” row, n =1,...,p,.
For giveni and j, with the constraint thatli = j, we have2r —bi + 2L%J — 271 choices for then!”
row,n = 1,...,p;, whereb; is the number of bits equal tbin the binary map ofy;. Thus, the number

of A such thatdi = j is dependent only oi Let say

CardA € By : A™'j =i) = 5

we have .
q—
Z C&I’C{A S EkJ Al = ]) = Carc(Ek,l)
j=1

Therefore

. CardAc Ey; : Ai=j 1
v(zaj)6{17-..,Qk—1}X{l,...7ql—1}7 c{Carc(Ekl) ):ql_l

Lemma 4. If a random probability-vectol of sizeg; is LM-invariant, then for al(m, n) € {0, ..., ¢—

1} x {0,...,q — 1}, the random variable%,,, andY;, are identically distributed.

Proof: For any(qx, a1), gx < qi, 11,1 denotes the set of all truncations fratig;) to G(qx). We assume
Y LM-invariant. A=* and B~! denote two truncations independently arbitrary chosefijn For any
m andn in {0,...,¢ — 1}, we can choose extension A such thatc Im(A) and A~!m is denoted by
i. Also, we choose B such th&: = n. Y LM-invariant implies

Vi, AL B™Y € {0, qp — 1} X Tig X Tip, POV = 2) = PP = 0)

This is equivalent to

P(YAZ = 1’) = P(YBZ' = 1’)
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and hence
P(Y,, =z)=P(Y, =x), V(m,n) €{0,...,q0 — 1} x{0,...,q; — 1}
[l

Lemma 5. Consider a random vectoY of sizeg;. If there existy;, and a random vectoX of sizeg,

such thatY = X, thenY is LM-invariant.

Proof: We want to prove that, for ath < [, for any (B,C) € E,; x E,, y*B™ andY*C" are
identically distributed.
By hypothesisY = X*4, with X of size g, and A uniformly chosen at random if, ;. Let D®) pe
D®) = B~10 A and D(©) be D(©) = C~10 A, whereo stands for the composition of functions. Then

yxBTh = x*xP andy x0T = Xx*P'“ Let v(B) be a random vector of sizg, defined by:

Vizo,...,qn—l, V. g

2

A=Y Bi) if Bie Im(A);
{ 0 otherwise

We can define the random vectef®) in a similar way. With such definitions, wheX is a probability
vector, we have:

X, if vB) £ o; 0)
0 otherwise

Vi=0,...,q0—1, YB' = {
(The same holds wheX is a LDR vector by replacing by co.) We end up with the sought result
by showing thatv(?) andv(©) are identically distributed (we recall th& and C' are fixed whileA is
chosen uniformly at random). For ath of sizeg, in G(qx)?, we define the events E and F:
« the event E that for alp such thatm, # 0, A is such thatdm, = Bp,
« the event F that for alp such thatn, = 0, A is such that: there is nbe G(g;) such thatdi = Bp.
Thus we have

Pv®B =m)=PENF).

In the proof of Lemma 8, we have proven that, for all given G(¢x) andj € G(q;), P(‘A is such that Ai=j)
is dependent only on Thus, it is easy to see th&(v(®) = m) does not depend oB. v(¥) andv(®)
are therefore identically distributed, so a@e? " andY*“ " owing to equation (30). This completes

the proof.
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Lemma 9: The product of two LM-invariant random vectors is LM-inwani.
Proof: Let U andV be two LM-invariant random vectors of sizg. For anyq; < ¢;, let A and B be
any two linear maps fron@(q;) to G(g;). SinceU is LM-invariant, U*4™" andU*?"" are identically
distributed, by definition of LM-invariance. The same hofds V. U*4 ' Vx4~ and U*B v *E™'
are therefore identically distributed. Moreover, it isaflghatU*4 ' v*4™" = (UV)*4"" | for any A.

Hence,(UV)*4™" and (UV)*Z " is LM-invariant. This completes the proof.
O

Proof of Theorem 1 X(*) denotes a random probability-vector of sige The j** component of the

random truncation oX () is denoted by Xt The j component of the random extension Xf*) is

denoted ber(‘;). The j** component of the random extension followed by a random #timie of X (%)

is denoted by%
We define the operatab, by:

To shorten the notations we can omit the index of iteratioMoreover, in the remainder of this proof,
we choose to use simpler notations although not fully riger@®®U") denotes a message going into a
check node of degregin G(g) while R*) denotes a message going out of a variable of degjine
G(qx). However, there is not ambiguity in the sequel thanks to thigue use of indexes j, k,[ and
we always precise the nature of a message.

The n*"* component of a message coming from a variable of degrieeG(q;) is denoted byR,(f’k).

The n'" component of the initial message going into a variablé i) is denoted byRﬁLO)(k). Thenth
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component of a message going into a degre@riable inG(qx) is denoted byLﬁf’k). The data pass,

through a variable node of degréén G(qx), is translated by
i—1
RGP = i T 2469

wherey is a normalization factor, which has no impact in the seqaearay rates of vector components
are involved. Lengk) denote the average message going out of a variable na@égj). By noting that

the messagek("*) are i.i.d. when(i, k) is set, we have:

Lo ([RPTIA P
DRy = Y M(ilk)——>"E e
i o =175 Ry H;;llL(()’k)
i—1
1 & RO® LGh)
= nGk)—— > E —— | E ——
2 qk—l; RO PR
v (i,k)
— STIu(ilk) E s | Da(LOR))
Tz 2E (|
The last step is obtained thanks to the LM-invariancd.6f). Finally we get:
Da(R{") = Dy(RO™) Y TH(ilI) Dy (L) (31)

Moreover, if we consider two LM-invariant vectofs*) and L), whereL(*) is the random truncation

of L) | it is clear thatD,(L*) = D,(L"). Hence:
") = T, i, k) Da(LUY) (32)
¥

whereLU) is the message going out of a check node of degraeG(q;).

Let us recall the result of equation (68) in [19]:

1) = Zpd (1- D(Et))d_l +0 (D(Et)2) :

We can apply this result, since our definition Bf, corresponds to the definition the authors gavéto
We obtain
— Da(LYY) > (1 = Do(RUD))/ ™! + O(Da(RVY)?) (33)

where RUY) is a message going into a check node of degrée G(g;). It is straightforward from

definition of D,(-) to get:

DL(RUD) = S 117, K3, 1) _11DQ(R<i’vk’>). (34)
ik’
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By gathering equations (31), (32), (33) and (34), we obtain:

i—1
ji—1
Do(R{?) < Du(RO™) 321Gl [ZHW”“ (“ZH K150 (‘Qk/;llDa(R““’”))] +0<Da(R<i’vk’>>2’>}
Y qr —
J,l k (35)
which is also:
j—1qt—1
Da(R™) < D,RO™) ZH(z\k [Zny,uzk (1—211 KD D(R““)) } +O0(Da(Ri1)%) (36)
1 —

! et

whereD,(Ry—1) = > . D (ngl) By power series in the neighborhood of zero, we finally get:

D.(R?M) < D,ROIn

L :2|k>ZH<j,Z|z',k><j—1)Zn<k'|j,z>qq’j_‘1 Du(R{")) + O(Da(Ri1)") . (37)

Let ¢® = D,(RO™) and p(y|z) the transition probabilities of the memoryless output syetrin

channel. We recall that we assume that the all-zero codehascdeen sent. Then

P - Da(R(O)(k))
1L S el

= E
qk — 1 Z ( p(yl0)

_ k_l‘”zl/m

qr—1

p(yli)p(y|0)

We introduce hereafter some notations, for ease of reading:
Let x be a positive real-valued vector of size the number of diffiergroup orders. Let us define the

function by:

g(k, ¢®) 11 x) = W16 = 2|k) ZHJ>Z|Zk (j—1) ZH (K|, le_
For more readable notations, we also define the vector ofiipation G(x) by:

G(X) = {g(k> C(k) L X)}k

which means that thg”* component ofG (x) is G, (x) = g(p, "), TI, x). Let us denote the convolution
by ®. Thenx®" corresponds to the convolution of vectorby itself n times. With these notations, we

can write, for alln > 0:

D.RM) < gk, ™, I, G2V ({D,(RF))}1)) + O(Du(Rr)?) -
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Let Pe(k)t = Pe(Rﬁk)) be the probability that the messaBék) be erroneous, i.e., corresponds to an incor-
rect decision. The average probability that any rightbomessage be erroneousi$ = EH(k:)Pe(k)t.

k
Let us recall lemma (34) in [19]:

1
?DAX”“))Z < P(XW) < (g — 1)Do(X®)) . (38)
k

Let us consider a giveh. If there exists a vectox such that lim g(k, ¢*), I, G®(»~1)(x)) = 0, then

there existoe andn > 0 such that ifvk, Da(Rﬁf)) < «, then
DR < KD, R¥)), vk (39)

where, for allk’, K, is a positive constant smaller thanlf we considerP’ < ¢ such thatvk, Pe(k)tU <
(qr)?, then equation (38) ensures that, Da(Rﬁf)) < —”;jm <.

As previously explained, in this case, there exits 0 such that inequation (39) is fulfilled. By induction,

for all t > tg, there exists: > 0 such that

DR ) < KD, (RF), '

t+n

We haveV(k,t),Da(ng)) > 0, therefore the sequen({d)a(ng))};’ito converges to zero for alt.
Finally, equation (38) ensures that, for alIPe(k)t converges to zero astends to infinity. Thusp!, the
global error probability, averaged over all symbol sizemwerges to zero astends to infinity.

This proves the sufficiency of the stability condition.

Lemma 6: The connection between, and z () is

Tpyp)y =1 —ap .

Proof: Let p be a probability vector of size, associated to a symbol i&(q), andf its Discrete
Fourier Transform of sizg too. p;, and f; are thek! and thei** components op andf, respectively.

f is defined by:
qg—1
fi=Y p(-1)*, i€ GF(q)
k=0

i - k is the scalar product between the binary representatioh®tbf elements and k.

The mutual information’ of a symmetric probability vectgp, under the all-zero codeword assumption,
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is defined by

-1
zp=1—Ep <logq(1 + Z &)> .

i=1 PO
As in the binary case, we want to prove that
Tp =1—x¢

wherezy is defined byzy = 1 — Eg <logq(1 + Zg:—ll %))

The equationz, = 1 — x¢ is equivalent to

q—1 ) q—1 )
Ee <logq(1+2%)> = 1-E <logq(1+2&)>

i—1 = Po

— By (1-1om)

q—1 .
E¢ <logq(1 - Z £)> = Ep (logy(apo))

fo=1 Iimplies

q—1
Eg <1qu( fi)) = Ep (log,(gpo)) (40)
=0
q—1 q=1q=1 )
Since 3" fi = > > pj(—1)¥*, it finally remains to prove that
i=0 =0 k=0
qg—1qg—1
py(_l)l'k =0
1=0 k=1
q—1 q—1
pi Y (=) =0 (41)
k=1 =0
which is ensured by
qg—1
Y (-1F =0, Vk={l..q—1}.
=0

We are going to demonstrate this last expression. Let saykthies m bits equal tol in its binary

representation.

e miseveni-kis

m/2 )

even 2%;0 ()  times (42)
m/2—1 )

odd L = (51,) ftimes (43)
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e misoddi-kis

l

m

even 5L 20 (5) times (44)

2

odd 5% ; (57,) times (45)

o

We complete the proof by showing that equations (42) and &&)equal, as well as equations (44) and
(45):
m a b
B m m Nk _ m B m _
- =3 () =3 (5) -2 (o) ¢
k=0 1=0 1=0
wherea = % andb = % —1when mis even, and = b = mT‘l when m is odd. This completes the

proof.

Detailed simulation results for rate one-half
SNR points:[1.0,1.2,1.4,1.6,1.8,1.9,2.0];
Number of frames in error for hybrid LDPC code 100100100100623];
Number of sent frames for hybrid LDPC code[21014349283967218879002253150];
Number of frames in error for hybrid LDPC code [2001001005545829];
Number of sent frames for hybrid LDPC code[10436612837938645002318000123146300130052350].
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