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Abstract

In this paper, a new class of LDPC codes, named hybrid LDPC codes, is introduced. Hybrid LDPC

codes are characterized by an irregular connectivity profile and heterogeneous orders of the symbols

in the codeword. We show in particular that the class of hybrid LDPC codes can be asymptotically

characterized and optimized using density evolution (DE) framework, and we also present a technique to

maximize the minimum distance of the code. Numerical assessment of hybrid LDPC code performances

is provided, by comparing them to protograph-based and multi-edge type LDPC codes. We show that

hybrid LDPC codes allow to achieve an interesting trade-offbetween good error-floor performance and

good waterfall region with non-binary coding techniques.

I. INTRODUCTION

During the 1990s, remarkable progress was made towards the Shannon limit, using codes that are

defined in terms of sparse random graphs, and which are decoded by a simple probability-based message-

passing algorithm. Two families of sparse-graph codes are excellent for error-correction: Low-Density

Parity-Check (LDPC) codes, and Turbo Codes. The class of LDPC codes was first proposed in [1] in

1963, and rediscovered thirty years later [2], [3], [4], [5], after the invention of Turbo Codes [6]. LDPC

codes are decoded through the iterative local message-passing algorithm based on theBelief Propagation

(BP) principle [7]. These codes have been shown to exhibit excellent performance, under iterative BP

decoding, over a wide range of communication channels, approaching channel capacity with moderate

decoding complexity.

Asymptotically in the codeword length, LDPC codes exhibit athreshold phenomenon. Indeed, if the

noise level is smaller than a certain decoding threshold (which depends on the bipartite graph properties)

then it is possible to achieve an arbitrarily small bit errorprobability under iterative decoding, as the

codeword length and the number of decoding iterations tend to infinity. On the contrary, for noise level

larger than the threshold, the bit error probability is always larger than a positive constant, for any

codeword length [4], [5]. There are two main tools for asymptotic analysis of LDPC codes, i.e. for

September 15, 2009 DRAFT



2

evaluating the decoding threshold associated to a given degree distribution: density evolution [4] and

EXtrinsic Information Transfer (EXIT) charts [8]. One of the features that makes LDPC codes very

attractive is the possibility to design, for several transmission channels, the degree distribution of the

bipartite graph which provides a decoding threshold extremely close to the channel capacity [9].

While the asymptotic analysis and design of LDPC codes is mostly understood, the design of finite-

length LDPC codes still remains an open question. Indeed, the local message-passing algorithm cor-

responds to the exact computation ofa posteriori probabilities of variable values only if the graph is

cycle-free, i.e., the BP decoder is exactly the Maximum-Likelihood (ML) decoder because it finds the

global maximum of the ML criterion. In the finite length case,cycles appear in the graph [10]. In that

case, the BP decoder does not compute anymore thea posterioriprobabilities of variable values, thereby

turning into suboptimal in the sense it does not correspond anymore to ML decoding. This leads to

the loss of performance of BP decoding, compared to ML decoding, and particularly in the error-floor

region. Moreover, finite length LDPC codes with a degree distribution associated to a decoding threshold

close to capacity, though characterized by very good waterfall performance, usually exhibit bad error

floor performance. This is due to a large fraction of degree-2variable nodes leading to a poor minimum

distance [11], [12].

The attempt to improve the trade-off between waterfall performance and error floor has recently inspired

the study of more powerful, and somewhat more complex, coding schemes. This is the case of non-binary

LDPC codes, Generalized LDPC (GLDPC) codes [13], Doubly-Generalized LDPC (D-GLDPC) codes

[14] or Tail-biting LDPC (TLDPC) codes [15]. Non-binary LDPC codes have been introduced by Gallager

in [1], and their finite-length assets have been underlined by Daveyet al. in [16]. The main interest of

non-binary LDPC codes actually lies in the decoder: good non-binary LDPC codes have much sparser

factor graphs (or Tanner graphs) than binary LDPC codes [17], and the BP decoder is closer to optimal

decoding since the small cycles can be avoided with a proper graph construction, as proposed in [18].

In order to improve the trade-off between waterfall performance and error floor, we introduce and

study a new class of LDPC codes that we callhybrid LDPC codes. The class of hybrid LDPC codes

is a generalization of existing classes of LDPC codes, both binary and non-binary. For hybrid LDPC

codes, we allow the connectivity profile to be irregular and the orders of the symbols in the codeword

to be heterogeneous. The rest of the paper is organized as follows. In Section II, notation is given.

The structure and decoding of the class of hybrid LDPC codes are given in Section III. The asymptotic

analysis is presented in Section IV, and the distribution optimizations in Section V. Section VI presents

a finite-length optimization of hybrid LDPC codes, and Section VII some numerical results. The proofs
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are gathered in the Appendix.

II. N OTATION

Vectors are denoted by boldface notations, e.g.,x. Random variables are denoted by upper-case

letters, e.g.X and their instantiations in lower-case, e.g.,x. There are two possible representations

for the messages: plain-density probability vectors or Log-Density-Ratio (LDR) vectors. We denote theq

elements of the finite groupG(q) (or the finite fieldGF (q)), of orderq, by (α0, . . . , αq−1), whereα0 = 0.

The probability that the random variableX takes the valuex is denoted byP (X = x). A q-dimensional

probability vector is a vectorx = (x0, . . . , xq−1) of real numbers such thatxi = P (X = αi) for all i,

and
∑q−1

i=0 xi = 1.

Definition 1: Given a probability vectorx, the components of the corresponding LDR vectorw are

defined as

wi = log

(

x0

xi

)

, i = 0, . . . , q − 1 .

The natural logarithm is used. We use the notationw = LDR(x). Note that for allx, w0 = 0. We

define the LDR-vector representation ofx as theq − 1 dimensional vectorw = (w1, . . . , wq−1). The

observation of the channel under LDR form is a Logarithmic Likelihood Ratio (LLR). For convenience,

in the derivation of the message properties and the corresponding proofs, the valuew0 = 0 is not defined

as belonging tow. Given an LDR-vectorw, the components of the corresponding probability vectorx

can be obtained by

xi =
e−wi

1 +
∑q−1

k=1 e−wk

, i = 0, . . . , q − 1 . (1)

We use the notationx = LDR−1(w). A random probability-vector is defined to be aq-dimensional

random variableX = (X0, ...,Xq−1). A random LDR-vector is a(q − 1)-dimensional random variable

W = (W1, ...,Wq−1). We give the definition of the+g operation, as introduced in [19]. Given a

probability vectorx and an elementg ∈ G(q), x+g is defined by

x+g = (xg, x1+g, . . . , x(q−1)+g)

where addition is performed overG(q).

x⋆ is defined as the set

x⋆ = {x,x+1, . . . ,x+(q−1)} .

Moreover,n(x) is defined as the number of elementsg ∈ G(q) satisfyingx+g = x.

The LDR vectors corresponding tox and x+g are denoted byw and w+g, respectively. Owing to
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Definition 1 of the components of a LDR vector, theith component ofw+g is w+g
i which is defined by

w+g
i = wg+i − wg, ∀i = 0 . . . q − 1 . (2)

For the sequel, we simplify the notation as follows: for any group G(q), for all a ∈ {0, . . . , q − 1}, the

elementαa is now denoted bya.

III. T HE CLASS OF HYBRIDLDPC CODES

A. General hybrid parity-check equations

Classically, non-binary LDPC codes are described thanks tothe local constraints given by parity-check

equations involving some of the codeword symbolsci. If a code is linear over a finite fieldGF (q), the

parity-check equation corresponding to theith row of the parity-check matrixH, is

∑

j

hijcj = 0 in GF (q) . (3)

The fieldGF (2p) can be represented using the vector space
(

Z

2Z

)p
in a natural way. Multiplications in

GF (2p) can be represented as matrix multiplications, after choosing a suitable representation. The set of

matrices representing field elements then forms a field of invertible matrices. Thus, interpreting variables

as elements of
(

Z

2Z

)p
and using matrix multiplication to form linear constraintscan be used to model

LDPC overGF (2p). In all this work,p does not need to be prime.

We aim at generalizing the definition of the parity-check equation by allowing more general operations

than multiplications byhij ∈ GF (q), and moreover, by considering parity-checks where codeword

symbols can belong to different order finite sets:cj ∈ G(qj). G(qj) is a finite set of orderqj = 2pj

with a group structure. Indeed, we will only consider groupsof the typeG(qj) =
(

(

Z

2Z

)pj
,+
)

with

pj = log2(qj). Such a group corresponds to an ensemble ofpj-sized vectors whose elements lie inZ2Z
.

Let N be the codeword size. A hybrid LDPC code is defined on the groupG which is the Cartesian

product of the groups to which the codeword symbols belong:

G = G(q1) × · · · × G(qN ) .

Let qj denote the group order of thejth codeword symbol (either information or redundancy as the

considered codes are systematic as described later in Section III-E). Such a group order is equivalently

called the group order of thejth variable node, or of thejth column ofH. Let qi denote the group order

of the ith redundancy codeword symbol. Such a group order is equivalently called the group order of

the ith check node, or of theith row of H. The non-zero elements of the parity-check matrix are maps
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which project a value in the column group (variable node group), onto a value in the row group (check

node group, see Figure 1). This is achieved thanks to functions namedhij such that

hij : G(qj) → G(qi)

cj 7→ hij(cj)

Hence, a hybrid parity-check equation is given by

∑

j

hij(cj) = 0 in G(qi) . (4)

We notice that, in equation (3) as well as in equation (4), theadditive group structure defines the local

constraints of the code. Moreover, as mentioned in [5] and deeply studied in [20], the additive group

structure has a Fourier transform, whose importance for thedecoding is pointed out in Section III-F.

To sum up, the graph of a hybrid LDPC code is made of the following components. Variable nodes

belong to different order groups, the messages going out of variable nodes are therefore of different sizes.

On each edge, there is a general application from the group ofthe variable node to the group of the

check node. The messages going into a given check node are therefore of the same size, and a hybrid

check node is a usual non-binary parity check node.

Let us notice that this type of LDPC codes built on product groups has already been proposed in the

literature [21][22], but no optimization of the code structure has been proposed and its application was

restricted to the mapping of the codeword symbols to different modulation orders.

Since the mapping functionshij can be of any type, the class of hybrid LDPC codes is very general

and includes classical non-binary and binary codes.
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Fig. 1. Factor graph of parity-check of a hybrid LDPC code.
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B. Different sub-classes of hybrid LDPC codes

Among the huge set of hybrid LDPC codes, we can distinguish asmany classes as different types of

non-zero elements of the parity-check matrixH. As above mentioned, such a non-zero element is a map

hij , which projects theqj symbols ofG(qj) onto a subset ofqj symbols ofG(qi). Let us consider the

case where these maps are linear, i.e., represented by a matrix, with dimensionspi × pj . In that way,hij

actually connects the binary map vector of a symbol inG(qj) to the binary map vector of a symbol in

G(qi).

Remark: At this stage, it is quite straightforward to establish a connection between hybrid LDPC

codes and Doubly-Generalized LDPC (D-GLDPC) codes, thoroughly studied in [14][23]. Indeed, the

linear maphij can be seen as part of the generalized check node and generalized variable node. The

code corresponding to thejth generalized variable nodev would have a number of information bits

K = pj and lengthN =
∑

i pi, where the sum is done over the groups of all the check nodes connected

to v. The code of theith generalized check nodec would have a number of redundancy bitsM = pi

and lengthN =
∑

j pj, where the sum is done over the groups of all the variable nodes connected to

c. However, it is important to note that, if the idea is the same, hybrid LDPC codes are not exactly

D-GLDPC codes owing to the decoder. Indeed, with D-GLDPC codes, one considers that the generalized

codes are at variable and check node sides, whereas with hybrid LDPC, we consider that the generalized

codes for each node are split on the edges going into the node.As detailed in Section V on optimization,

this difference allows us to affect different connection degrees on the nodes depending on their group

order, i.e., depending onK for variable nodes and onM for check nodes. In other words, we will be

able to optimize the length of the codes, given the dimension.

We distinguish different sub-classes of hybrid LDPC codes whose non-zero elements are linear maps:

(i) Maps which are not of rankpj. This encompasses the case where the group order of a column is

higher than the group order of the row. From a D-GLDPC perspective, this allows to have generalized

variable nodes whose codes haveK > N , that is to say the number of incoming bits is projected

to a smaller one. This could be thought of as puncturing, and,as a consequence, we get back the

result that the rate of the graph can be lower than the code rate. This case is out of the scope of

this paper.

(ii) Maps which are of rankpj. They are referred to as full-rank transforms, and correspond to matrices

of sizepi ×pj with necessarilypj ≤ pi. Such a map is depicted in Figure 2. We consider only these

types of hybrid LDPC codes in this work.
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C. Hybrid LDPC codes with linear maps

Let us consider all(i, j) such that there is an edge between thejth variable node and theith check

node. The corresponding column is inG(qj) and the corresponding row is inG(qi). In this work, we

consider only hybrid LDPC codes whose non-zero elements arelinear full-rank transforms of rank equal

to log2(qj), thus with qj ≤ qi. Linear maps always associate the null element of one group to the null

element of the other. When looking at the factor graph of a hybrid LDPC code (see Figure 1), we

G(qi)

α′

0

α′

1

α′
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α′

3

α′

4

α′
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α′

6

α′

7

α0

α1

α2

α3

A

A−1

G(qj) = {α0, α1, α2, α3}

G(qi) = {α′

0, α′

1, α′

2, α′

3, α′

4, α′

5, α′

6, α′

7}

G(qj)

Fig. 2. Message transform through linear map.

note that an edge of the graph carries two kinds of probability-vector messages: messages of sizeqj

and messages of sizeqi. Let A be an element of the set of linear maps fromG(qj) to G(qi) which

are full-rank. The transform of the probability vector is denotedextensionfrom G(qj) to G(qi) when

passing throughA from variable node to check node, and the transform fromG(qi) to G(qj) is denoted

truncation from check node to variable node. Let Im(A) denote the image ofA (A is injective since

dim(Im(A))=rank(A)=pj). The notations are the ones of Figure 2.

A : G(qj) → G(qi)

αk 7→ α′
l = A(αk)

Definition 2: The extensiony of the probability vectorx by A is denoted byy = x×A and defined
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by, for all l = 0, . . . , qi − 1,

yl =







0 if α′
l /∈ Im(A);

xk with k such thatα′
l = A(αk), if α′

l ∈ Im(A).

Although A is not bijective, we defineA−1 by

A−1 : Im(A) → G(qj)

α′
l 7→ αk with k such thatα′

l = A(αk)

Definition 3: The truncationx of the probability vectory by A−1 is denoted byx = y×A−1

and

defined by, for allk = 0, . . . , qj − 1,

xk = yl with l such thatα′
l = A(αk) .

It is worth noting that a vector resulting from truncation ofa probability vector is not anymore a

probability vector because a normalization would be neededto be so. When the decoding is performed

using probability vectors instead of LDR vectors, we assumethat only one normalization is performed

at the end of the variable node update.

In the sequel, we use a shortcut by calling extension a linearmapA, and by truncationA−1. Indeed,

extension or truncation are generated by a linear mapA and do not apply to group elements, but to

probability vectors. Additionally, we denote byEj,i the set of extensions fromG(qj) to G(qi), and by

Ti,j the set of truncations fromG(qi) to G(qj).

D. Parametrization of hybrid LDPC code ensembles

Classical LDPC codes are parametrized by two polynomials(λ(x), ρ(x)), whose each coefficientλi

(resp.ρj) describes the fractions of edges connected to a variable node of degreei (resp. to a check

node of degreej) [4]. Kasai et al. [24] introduced a detailed representation of LDPC codes, described

by two-dimensional coefficientsΠ(i, j), which are the fraction of edges connected to a variable node

of degreei and also to a check node of degreej. Another detailed and more general representation of

LDPC codes is the multi-edge type [25].

In our case, an edge of the Tanner graph has four parameters(i, qk, j, ql). We extend the notation

adopted by Kasai et al. in [24], and we denote byΠ(i, j, k, l) the fraction of edges connected to a

variable node of degreei in G(qk) and to a check node of degreej in G(ql).
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Hence,Π(i, j, k, l) is a joint probability which can be decomposed in several ways thanks to Bayes

rule. For example, we have :

Π(i, j, k, l) = Π(i, j)Π(k, l|i, j)

whereΠ(i, j) corresponds exactly to the definition adopted by Kasai, andΠ(k, l|i, j) describes the way

the different group orders are allocated to degreei variable nodes and degreej check nodes.

An ensemble of hybrid LDPC codes is parametrized byΠ and made of all the possible parity-check

matrices whose parameters are those of the ensemble. The linear map of the parity-check matrices are

chosen uniformly at random.

In the sequel, for more readable notations, we will writeΠ(i, j, k) to denote the marginal distribution

over l. The same with any other combinations ofi, j, k, l, we will always use the same lettersi, j, k, l to

identify the parameters and the considered marginals.

Remark: Compared to D-GLDPC, the parametrization of hybrid LDPC codes allow to optimize the

length of the generalized codes, both at variable and check nodes, given their dimensionsK or M which

are the group order characteristics. However, this representation is not as general as the one of multi-

edge type LDPC codes [25] because it cannot distinguish a check node connected to only one degree-1

variable node, thereby preventing the use of degree-1 variable nodes in such described hybrid LDPC

code ensembles.

We also define node wise fractions:Π̃(i, k) and Π̃(j, l) are the fractions of variable nodes of degree

i in G(qk) and check nodes of degreej in G(ql), respectively. The connections between edgewise and

nodewise fractions are the following:

Π̃(i, k) =

P

j,l Π(i,j,k,l)

i
∑

i,k

P

j,l Π(i,j,k,l)

i

;

Π̃(j, l) =

P

i,k
Π(i,j,k,l)

j
∑

j,l

P

i,k
Π(i,j,k,l)

j

.

(5)

The design code rate, i.e., the code rate when the parity-check matrix is full-rank, is expressed by:

R = 1 −
∑

l

(

∑

j

P

i,k Π(i,j,k,l)

j

)

log2(ql)

∑

k

(

∑

i

P

j,l Π(i,j,k,l)

i

)

log2(qk)
.

We define thegraph rateas the rate of the binary LDPC code whose Tanner graph has parametersΠ(i, j).

It is interesting to express the graph rateRg in terms ofΠ, to compare it to the code rate of the hybrid
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code:

Rg = 1 −
∑

j

P

i Π(i,j)
j

∑

i

P

j
Π(i,j)

i

.

For the linear maps we consider, variable nodes are always ingroups of order lower than or equal to

the group orders of the check nodes to which they are connected. Hence the graph rate will be always

higher than the code rate.

E. Encoding of hybrid LDPC codes

To encode hybrid LDPC codes whose non-zero elements are aforementioned full-rank linear maps,

we consider upper-triangular parity-check matrices whichare full-rank, i.e., without all-zero rows. The

redundancy symbols are computed recursively, starting from the redundancy symbol depending only on

information symbols. The images by the linear maps of the symbols involved in the parity-check equation

but the redundancy symbol being computed, are summed up. Thesummation is performed in the group

of the redundancy symbol, i.e., the group of the corresponding row. The redundancy symbol is set to the

inverse of this sum by the linear map connected to it. This linear map is bijective fromG(ql) to G(ql),

if G(ql) is the group the redundancy symbol belongs to. Hence, information symbols satisfy that any

assignment of values to them is valid, and the redundancy symbols are computed from them.

F. Decoding algorithm for hybrid LDPC codes

To describe the BP decoding, letl
(t)
cv denote the message going into variable nodev from checkc at

the tth iteration, andr(t)
vc the probability-vector message going out of variable nodev to check nodec

at thetth iteration. The connection degrees ofv and c are denoted bydv anddc, respectively. LetAvc

denote the linear map on the edge connecting variable nodev to check nodec. The ath component of

l
(t)
cv is denoted byl(t)cv (a). The same holds forr(t)

vc (a). Let x be the sent codeword andN the number

of codeword symbols. We recall that we simplify the notationas follows: for any groupG(q), for all

a ∈ {0, . . . , q − 1}, the elementαa is now denoted bya. Also, sinceA is a linear map, the matrix of

the map is also denoted byA. Hence, for all linear mapsA from G(q1) to G(q2), A(αi) = αj with

αi ∈ G(q1) andαj ∈ G(q2), is translated intoAi = j with i ∈ {0, . . . , q1 − 1} andj ∈ {0, . . . , q2 − 1}.

• Initialization: Let xi ∈ G(qi) be theith sent symbol andyi be the corresponding channel output,

for i = 0 . . . N − 1. For each check nodec connected to thevth variable nodev, and for any

a ∈ {0, . . . , qk − 1}:

r(0)
vc (a) = r(0)

v (a) = P (Yv = yv|Xv = a) ;
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l(0)vc (a) = 1 .

• Check node update: Consider a check nodec and a variable nodev. Let {v1, . . . , vdc−1} be the set

of all variable nodes connected toc, exceptv. Let G be the Cartesian product group of the groups

of the variable nodes in{v1, . . . , vdc−1}. For all a ∈ G(qv)

l(t)cv (a) =
∑

(b1,...,bdc−1)∈G:
Ldc−1

i=1 Avicbi=Avca

dc−1
∏

n=1

r(t)
vnc(bn) (6)

where the
⊕

operator highlights that the addition is performed overG(qc), the group of the row

corresponding toc, as defined in Section III-C.

• Variable node update: Consider a check nodec and a variable nodev. Let {c1, . . . , cdv−1} be the

set of all check nodes connected tov, exceptc. For all a ∈ G(qv)

r(t+1)
vc (a) = µvcr

(0)
v (a)

dv−1
∏

n=1

l(t)cnv(a) (7)

whereµvc is a normalization factor such that
∑qv−1

a=0 r
(t+1)
vc (a) = 1.

• Stopping criterion: Consider a variable nodev. Let {c1, . . . , cdv
} be the set of all check nodes

connected tov. Equation (8) corresponds to the decision rule on symbols values, at iterationt:

x̂(t)
v = arg max

a
r(0)
v (a)

dv
∏

n=1

l(t)cnv(a) . (8)

Variable and check node updates are performed iteratively until the decoder has converged to a

codeword, or until the maximum number of iterations is reached.

It is possible to have an efficient Belief propagation decoder for hybrid LDPC codes. As mentioned

in [5][20], the additive group structure has a Fourier transform, so that efficient computation of the

convolution can be done in the Fourier domain. One decoding iteration of BP algorithm for hybrid

LDPC codes, in the probability domain with a flooding schedule, is composed of:

• Step 1Variable node update in G(qj) : pointwise product of incoming messages followed by a

normalization

• Step 2Message extensionG(qj) → G(qi) (see Definition 2)

• Step 3Parity-Check update in G(qi) in the Fourier domain

– FFT of sizeqi

– Pointwise product of FFT vectors

– IFFT of sizeqi
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• Step 4Message truncationfrom G(qi) → G(qj) (see Definition 3)

We do not perform a detailed complexity analysis, but we provide the following discussion. Let us

consider equations (7) and (6). In terms of number of operations per iteration, the complexity of hybrid

LDPC decoding is upper-bounded by the complexity of decoding a non-binary LDPC code in the highest

order field. Although the decoding complexity of hybrid LDPCcodes is clearly higher than that of

binary LDPC codes, it is worth noting that hybrid LDPC codes are compliant with reduced complexity

non-binary decoders which have been presented recently in the literature [26], [27]. In particular, [26]

introduces simplified decoding ofGF (q) LDPC codes and shows that they can compete with binary

LDPC codes even in terms of decoding complexity.

IV. A SYMPTOTIC ANALYSIS OF HYBRID LDPC CODE ENSEMBLES

This section describes the density evolution analysis for hybrid LDPC codes. Density evolution is a

method for analyzing iterative decoding of code ensembles.We first prove that, on a discrete memoryless

symmetric-output channel, the analysis can be led assumingthat the all-zero codeword is transmitted,

because the error probability of the hybrid LDPC decoding isindependent of the transmitted codeword.

We express the density evolution for hybrid LDPC codes, and mention the existence of fixed points,

which can be used to determine whether or not the decoding of agiven hybrid LDPC code ensemble is

successful for a given SNR, in the infinite codeword length case. Thus, convergence thresholds of hybrid

LDPC codes are similarly defined as for binary LDPC codes [4].However, as forGF (q) LDPC codes,

the implementation of density evolution of hybrid LDPC codes is too computationally intensive, and an

approximation is needed.

Thus, we derive a stability condition, as well as the EXIT functions of hybrid LDPC decoder under

Gaussian approximation, with the goal of finding good parameters for having good convergence threshold.

A. Channel symmetry

Only memoryless symmetric channels are considered in this work. Extension to arbitrary memoryless

channels can be done by a coset approach, as detailed in [19] for GF (q) LDPC codes. In this section,

we introduce classical results leading to asymptotic analysis, but we prove them in the specific case of

hybrid LDPC codes and of the definition of channel symmetry weconsider.

Definition 4: [28] A channel is symmetric when the density of the observation in probability form

fulfills:

P (Y = y|x = i) = P (Y = y+i|x = 0)
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Lemma 1:Let P
(t)
e (x) denote the conditional error probability after thetth BP decoding iteration of

a hybrid LDPC code, assuming that codewordx was sent. If the channel is symmetric, thenP
(t)
e (x) is

independent ofx.

The proof of this lemma is provided in Appendix. This property allows to assume that the all-zero

codeword has been transmitted, for the remaining of the asymptotic analysis of hybrid LDPC code

ensemble performance.

B. Message symmetry

The channel symmetry can entail a certain property of messages spreading over the graph during

the decoding iterations. This property is the symmetry of the messages. The definitions of symmetric

probability vectors and LDR vectors are given hereafter.

Definition 5: [19] A random probability-vectorY is symmetric if for any probability vectory, the

following expression holds:

P (Y = y|Y ∈ y⋆) = y0 · n(y) (9)

wherey⋆ andn(y) are as defined in Section II.

Definition 6: [19] Let W be a random LDR-vector. The random variableY = LDR−1(W) is

symmetric whenW satisfies

P (W = w) = ewiP (W = w+i) (10)

for all LDR vectorsw.

The proof of the equivalence between these two definitions isprovided in [19].

Let us connect the channel symmetry property to the message symmetry property.

Lemma 2:Let Y be the observation in probability form, and letW = LDR(Y). If the channel is

symmetric, then, under the all-zero codeword assumption, the densityP0 of W is symmetric:

P (W = w|x = 0) = P0(w) = ewiP0(w
+i)

The proof of this lemma is provided in Appendix.

Lemma 3: If the bipartite graph of a hybrid LDPC code is cycle-free, then, under the all-zero codeword

assumption, all the messages on the graph at any iteration ofBP decoding, are symmetric.

Proof of Lemma 3 is given in Appendix.

September 15, 2009 DRAFT



14

C. Density evolution

Analogously to the binary or non-binary cases, density evolution for hybrid LDPC codes tracks the

distributions of messages produced by the BP algorithm, averaged over all possible neighborhood graphs

on which they are based. The random space is comprised of random channel transitions, the random

selection of the code from a hybrid LDPC ensemble parametrized byΠ, and the random selection of an

edge from the graph. The random space does not include the transmitted codeword, which is assumed to

be set to the all-zero codeword (following Lemma 1). We denote byR(k)(0) the initial message across an

edge connected to a variable inG(qk), by R(i,k)(t) the message going out of a variable node of degree

i in G(qk) at iterationt. The message going out of a check node of degreej in G(ql) at iterationt is

denoted byL(j,l)(t) . We denote byxl andxk any two probability vectors of sizeql andqk, respectively.

Let us denote byPq the set of all probability vectors of sizeq. Let rqk
(r(0), l(1), ..., l(i−1)) denote the

message map of a variable node of degreei in G(qk), as defined in equation (7): the input arguments

are i probability vectors of sizeqk. Let lql
(r(1), ..., r(j−1)) denote the message map of a check node of

degreej in G(ql): the input arguments arej − 1 probability vectors of sizeql.

P (L(j,l)(t) = xl) =

∑

r
(1),...,r(j−1)∈Pql

:

lql
(r(1),...,r(j−1))=xl

j−1
∏

n=1

∑

i,k

Π(i, k|j, l)
∑

A∈Ek,l:

(r(n)×A−1×A

)=r
(n)

P (A)P (R(i,k)(t) = r(n)×A−1

) ; (11)

P (R(i,k)(t) = xk) =

∑

r
(0),l(1),...,l(i−1)∈Pqk

:

rqk
(r(0),l(1),...,l(i−1))=xk

P (R(k)(0) = r(0))

i−1
∏

n=1

∑

j,l

Π(j, l|i, k)
∑

A∈Ek,l

P (A)
∑

r∈Pql
:

r
×A−1

=l
(n)

P (L(j,l)(t) = r) . (12)

Richardson and Urbanke [5] proved aconcentration theoremthat states that, as the block lengthN

tends to infinity, the bit error rate at iterationt, of any graph of a given code ensemble, converges to

the probability of error on a cycle-free graph in the same ensemble. The convergence is in probability,

exponentially inN . As explained in [19] for classical non-binary LDPC codes, this theorem carries over

hybrid LDPC density-evolution unchanged by replacing bit-with symbol- error rate.

Moreover, one can prove that the error-probability is a non-increasing function of the decoding itera-

tions, in a similar way to the proof of Theorem 7 in [4]. This non-increasing property ensures that the

sequence corresponding to density evolution, by iteratingbetween equations (11) and (12), converges

to a fixed point. Implementing the density evolution allows to check whether or not this fixed point

corresponds to the zero error probability, which means thatthe decoding in the infinite codeword length
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case has been successful. Furthermore, Richardson and Urbanke proved in [5] the monotonicity of error

probability in terms of the channel parameter for physically degraded channels. Thus hybrid LDPC codes,

like binary or non-binary LDPC codes, exhibit a threshold phenomenon.

Like for GF (q) LDPC codes, implementing the density evolution for hybrid LDPC codes is too

computationally intensive. Thus, in the sequel, we presenta useful property of hybrid LDPC code

ensembles, which allows to derive both a stability condition and an EXIT chart analysis for the purpose

of approximating the exact density evolution for hybrid LDPC code ensembles.

D. Invariance induced by linear maps (LM-invariance)

Bennatan and Burshtein in [19] used permutation-invariance to derive a stability condition for non-

binary LDPC codes, and to approximate the densities of graphmessages using a one-dimensional

parameter. The difference between non-binary and hybrid LDPC codes lies in the non-zero elements of

the parity-check matrix. Indeed, the non-zero elements do not correspond anymore to cyclic permutations,

but to extensions or truncations (see Definitions 2 and 3). Our goal in this section is to prove that linear-

map invariance (shortened by LM-invariance) of messages isinduced by choosing uniformly the linear

maps as non-zero elements.

Until the end of the current section, we work with probability domain random vectors, but all the

definitions and proofs also apply to LDR random vectors. Let us recall thatEj,i is the set of extensions

from G(qj) to G(qi), andTi,j is the set of truncations fromG(qi) to G(qj).

Definition 7: A random vectorY of size ql is said to be LM-invariant when for allk < l and

(A−1, B−1) ∈ Tl,k × Tl,k, the random vectorsY×A−1

andY×B−1

are identically distributed, i.e., when

P (Y×A−1

= y) = P (Y×B−1

= y) for all y ∈ R
k.

Lemma 4: If a random vectorY of size ql is LM-invariant, then all its components are identically

distributed.

Proof of Lemma 4 is given in Appendix.

Definition 8: Let X be a random vector of sizeqk, we define the random-extension of sizeql of X,

denotedX̃, as the random vectorX×A, whereA is uniformly chosen inEk,l and independently ofX.

Lemma 5:Consider a random vectorY of sizeql. If there existqk and a random vectorX of sizeqk

such thatY = X̃, thenY is LM-invariant.

Proof of Lemma 5 is given in Appendix.

Thanks to Lemma 7, the messages on the graph of a hybrid LDPC code, in the code ensemble with

uniformly chosen extensions, are LM-invariant, except themessages going out of variable nodes.
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E. The Stability condition for hybrid LDPC codes

The stability condition, introduced in [4], is a necessary and sufficient condition for the error probability

to converge to zero, provided it has already dropped below some value. This condition must be satisfied

by the Signal to Noise Ratio (SNR) corresponding to the threshold of the code ensemble. Therefore,

ensuring this condition, when implementing an approximation of the exact density evolution, helps to

have a more accurate approximation of the exact threshold.

In this paragraph, we generalize the stability condition tohybrid LDPC codes. Letp(y|x) be the

transition probabilities of the memoryless output symmetric channel andc(k) be defined by

c(k) =
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)p(y|0)dy .

Let x be a positive real-valued vector of size the number of different group orders. Let us define theg

function by:

g(k, c(k),Π,x) = c(k)Π(i = 2|k)
∑

j,l

Π(j, l|i, k)(j − 1)
∑

k′

Π(k′|j, l)qk′ − 1

ql − 1
xk′ .

For more readable notations, we also define the vector outputfunction G(x) by:

G(x) = {g(k, c(k),Π,x)}k

which means that thepth component ofG(x) is Gp(x) = g(p, c(p),Π,x). Let P
(k)t

e = Pe(R
(k)
t ) be the

probability that the messageR(k)
t be erroneous, i.e., corresponds to an incorrect decision. The average

probability that any rightbound message be erroneous isP t
e =

∑

k

Π(k)P
(k)t

e . Let us denote the convolution

by ⊗. Thenx⊗n corresponds to the convolution of vectorx by itself n times.

Theorem 1:Consider a given hybrid LDPC code ensemble parametrized byΠ(i, j, k, l). If there exists

a vectorx with all positive components, such that, for allk,

lim
n→∞

g(k, c(k),Π,G⊗n(x)) = 0, then there existt0 and ǫ such that, ifP t0
e < ǫ, then P t

e converges to

zero ast tends to infinity.

Proof of Theorem 1 is given in Appendix. This condition is sufficient for stability.

Let us note that, for a non-binaryGF (q) LDPC codes, the stability condition for hybrid LDPC codes

reduces to the stability condition forGF (q) LDPC codes, given by [19]. Indeed,

lim
n→∞

g(k, c(k),Π,G⊗n(x)) = 0

is equivalent in this case to

ρ′(1)λ′(0)
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)p(y|0)dy < 1 .
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When the transmission channel is BIAWGN, we have
∫

√

p(y|i)p(y|0)dy = exp(− 1

2σ2
ni) .

Let ∆ be defined by

∆ =
1

qk − 1

qk−1
∑

i=1

exp(− 1

2σ2
ni)

with ni, the number of ones in the binary map ofαi ∈ G(q). Under this form, we can prove that∆ tends

to zero asq goes to infinity on BIAWGN channel. This means that any fixed point of density evolution

is stable asq tends to infinity for non-binary LDPC codes. This shows, in particular, that non-binary

cycle-codes, i.e., with constant symbol degreedv = 2, are stable at any SNR provided thatq is large

enough.

F. EXIT charts for hybrid LDPC codes

The purpose is to approximate the decoding threshold of a hybrid LDPC code ensemble with parameters

Π, in such a way that it can be used in an optimization procedure, where the threshold will be used as

the cost function. To do so, the message densities are projected on one-scalar parameter. The considered

channel is the Binary Input Additive White Gaussian Noise (BIAWGN) channel with BPSK modulation.

With binary LDPC codes, Chung et al. [29] observed that the variable-to-check messages are well

approximated by Gaussian random variables, in particular when the variable node degree is high enough.

The approximation is much less accurate for messages going out of check nodes. Furthermore, the

symmetry of the messages in binary LDPC decoding implies that the meanm and varianceσ2 of

the random variable are related byσ2 = 2m. Thus, a symmetric Gaussian random variable may be

described by a single parameter. This property was also observed by ten Brink et al. [8] and is essential

to their development of EXIT charts for Turbo Codes. In [14],the authors analysed D-GLDPC on the

BEC, which allowed to track only one parameter, the extrinsic information, instead of complete message

densities. In the context of non-binary LDPC codes, Li et al.[28] obtained a description ofq − 1-

dimensional Gaussian distributed messages byq − 1 parameters. Bennatan et al. in [19] used symmetry

and permutation-invariance to reduce the number of parameters from q − 1 to one. This enabled the

generalization of EXIT charts toGF (q) LDPC codes.

First, let us discuss the accuracy of the Gaussian approximation of the channel output in symbolwise

LLR form for hybrid LDPC code ensembles. The channel outputsare noisy observations of bits, from

which we obtain bitwise LLR, all identically distributed asN ( 2
σ2 , 4

σ2 ) [29]. Let s be the vector gathering
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the LLRs b1, . . . , bpk
of bits of which a symbol inG(qk) is made:s = (b1, . . . , bpk

)T . Each component

of an input LLR random vectorl of size (qk − 1) is then a linear combination of these bitwise LLRs:

l = Bqk
· s (13)

whereBqk
is the matrix of sizeqk × log2(qk) in which theith row is the binary map of theith element

of G(qk). The distribution of initial messages is hence a mixture of one-dimensional Gaussian curves,

but are not Gaussian distributed vectors. Indeed, it is easyto see that the covariance matrix of vectorl

is not invertible.

Secondly, let us introduce a slight extension of Theorem 6 in[19].

Theorem 2:Let W be an LDR random vector, Gaussian distributed with meanm and covariance

matrix Σ. Assume that the probability density functionf(w of W exists and thatΣ is nonsingular. Then

W is both symmetric and LM-invariant if and only if there exitsσ > 0 such that:

m =

















σ2/2

σ2/2
...

σ2/2

















, Σ =

















σ2 σ2/2

σ2

. . .

σ2/2 σ2

















The proof of Theorem 2 is the same as the proof of Theorem 6 in [19], because the permutation-invariance

property [19] is used only through the fact that the components of a vector satisfying this property are

identically distributed. This fact is ensured by a LM-invariant vector thanks to Lemma 4.

Thirdly, Lemma 4 ensures that, if a vector is LM-invariant, then its components are identically

distributed. Hence, if we assume that a message is Gaussian distributed, symmetric and LM-invariant,

its density depends on only one-scalar parameter. Let us nowdiscuss the relevance of approximating

the message densities of a hybrid LDPC code ensemble by Gaussian random vectors. Letr(t)(x) be the

density of a LDR message going out of a variable node inG(qk) after being extended by an extension

chosen uniformly at random inEk,k. Any component of such vector has densityr(t)(x). Messages going

out of variable nodes are extended when passing through the linear extension function nodes. As described

in Section III-C, the extension turns, e.g., aq1-sized probability vector into aq2-sized vector, withq2 ≥ q1.

This means thatq2 − q1 of the resulting extended LDR message components are infinite, because these

components of the corresponding probability vector are zero. Hence, the density of each component, of

an extended message, is a mixture including a Dirac∆∞. Since this LDR vector is the random extension

of the variable node output message, it is LM-invariant. From Lemma 4, each component is identically

distributed.
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Property 1: The probability density function of any component of an LDR message after extension at

iteration t, is expressed as

d(t)(x) = βr(t)(x) + (1 − β)∆∞

where the weightβ is independent oft.

Proof: At any decoding iteration,r(t)(x) cannot have a∆∞ component because there exists no set of

linear maps connected to the neighboring check nodes ofv, such that there exists forbidden elements in

G(qk) to which the symbol value associated tov cannot be equal. This is due to the fact that each check

node (or the associated redundancy symbol) is in a group of order higher or equal to the group orders of

its neighboring variable nodes. Hence,β is independent of the decoding iterations (it depends only on

the groups of the codeword symbols).

�

It is therefore easy to show that any normalized moment, of order greater than 1, of the vector density

(expectation of the product of a different number of its components) is equal to the same moment of the

vector densityr(t)(x). Thus, if we assume that the vector densityr(t)(x), i.e., at variable node output,

is dependent on only one scalar parameter, so is the whole density of the extended vector message.

In other words, the density of vector message of a hybrid LDPCcode cannot be approximated by a

Gaussian density, owing to the∆∞ component in the density, but is dependent on only one parameter if

we assume that the densityr(t)(x) is Gaussian. The same property holds for messages before truncation,

if we assume that messages going into variable nodes are Gaussian distributed. Since the messages going

into variable nodes are symmetric and LM-invariant, their sum done during the variable node update, is

symmetric and LM-invariant by Lemma 18 in [19] and Lemma 9 (see Appendix). Hence, the one-scalar

parameter approximation for hybrid LDPC codes is not less accurate than forGF (q) LDPC codes [19].

The parameter, defining the message densities, we choose to track is the mutual information between

a message and the codeword sent.

Definition 9: [19] The mutual information between a symmetric LDR-vectormessageW of sizeq−1

and the codeword sent, under the all-zero codeword assumption, is defined by:

I(C;W) = 1 − E logq

(

1 +

q−1
∑

i=1

e−Wi |C = 0

)

The equivalent definition for the probability vectorX = LDR−1(W ) of sizeq is

I(C;X) = 1 − E logq

(

∑q−1
i=0 Xi

X0
|C = 0

)

. (14)
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In the following, the shortcut “mutual information of a LDR vector” is used instead of “mutual information

between a LDR vector and the codeword sent”.

Since the connection between mutual information and the expectation of a symmetric Gaussian dis-

tributed variable is easily obtained by interpolating simulation points, we consider expectations of Gaus-

sian distributed vectors with same mutual information as the message vectors. That is we consider a

projection of the message densities on Gaussian densities,based on Property 1 which ensures that densities

of messages going out of or into check nodes are dependent on the same parameters as densities of

messages going into or out of variable nodes. There are two models of messages handled by the hybrid

decoder, and hence we define two functions to express the mutual information:

• Messages going out of variable nodes are not LM-invariant, and their mutual information is expressed

thanks to a function calledJv(σ
2,m, qk) in terms of the BIAWGN channel varianceσ2, a mean

vector m and qk, the group order of the variable node. The meanm is the mean of a Gaussian

distributed vector.

• For a hybrid LDPC code ensemble with uniformly chosen linearmaps, messages going into and

out of check nodes are LM-invariant. IfG(ql) denotes the group of the check node, the mutual

information of messages is expressed by a functionJc(m, ql). m is the mean of a Gaussian random

variable (any component of a Gaussian distributed vector with same mutual information as the graph

message).

Let us now detail the evolution of mutual information of messages through BP decoding.

• The mutual information of a variable node output is expressed thanks to theJv(·, ·, ·) function

applied to sum of means, since variable node update is the summation of LDRs. Here,xin is the

mutual information of truncation operator output, and1qk
is the all-one vector of sizeqk. The mutual

informationxout of the output of a variable node inG(qk) with connection degreei, is given by:

xout = Jv(σ
2, (i − 1)J−1

c (xin, qk)1qk−1, qk) .

• The mutual information of extended message fromG(qk) to G(ql) does not depend on which linear

extension is used, but only on the group orders. Letxin andxout denote the mutual information of

extension input and output, respectively. It follows from Definition 9

(1 − xout) log2(ql) = (1 − xin) log2(qk) .

• To express the mutual information of truncated message fromG(ql) to G(qk), we use the LM-

invariance property of input and output of the truncation operator. Letxin and xout denote the
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mutual information of truncation input and output, respectively.

xout = Jc(J
−1
c (xin, ql), qk)

• Let v denote a probability vector, andf(v) the corresponding Fourier Transform (FT) vector. Letxv

be the mutual information of a probability vectorv, andxf(v) denote the function given in equation

(14) applied to the vectorf(v).

Lemma 6: The connection betweenxv andxf(v) is

xf(v) = 1 − xv .

The proof is provided in Appendix. Through a check node inG(ql) with connection degreej, the

mutual information transform from the FT perspective is equivalent to the one given by the reciprocal

channel approximation [30]:

xout = 1 − Jc((j − 1)J−1
c (1 − xin, ql), ql) .

The reciprocal channel approximation used for hybrid LDPC codes is not looser than when it is

used with non-binary LDPC codes, since the message densities are considered as, or projected on,

Gaussian densities in both cases. However, by computer experiment, the approximation is looser

than for binary LDPC codes in the first decoding iterations when the check node degree is very low

(j = 3 or 4).

We obtain the whole extrinsic transfer function of one iteration of the hybrid LDPC decoder (equation

(17)). The mutual information of a message going out of a check node of degreej in G(ql) at thetth

iteration and before truncation is denoted byx
(j,l)(t)

cv . The same after truncation to becomeqk sized is

denotedx(j,l)(t)

cv,k . Analogously, the mutual information of a message going outof a variable node of degree

i in G(qk) at thetth iteration and before extension is denoted byx
(i,k)(t)
vc . The same after extension to

becomeql-sized is denotedx(i,k)(t)

vc,l .

x
(i,k)(t)

vc,l = 1 − log2(qk)

log2(ql)

(

1 − x(i,k)(t)

vc

)

(15)

x(j,l)(t)

cv = 1 − Jc



(j − 1)J−1
c (1 −

∑

i,k

Π(i, k|j, l)x(i,k)(t)

vc,l , ql), ql



 (16)

x
(j,l)(t)

cv,k = Jc

(

J−1
c (x(j,l)(t)

cv , ql), qk

)

x(i,k)(t+1)

vc = Jv



σ2, (i − 1)J−1
c (
∑

j,l

Π(j, l|i, k)x
(j,l)(t)

cv,k , qk), qk



 (17)
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We also define the a posteriori (or cumulative) mutual information for each kind of variable node at the

tth iteration by

y(i,k)(t) = Jv



σ2, i · J−1
c (
∑

j,l

Π(j, l|i, k)x
(j,l)(t)

cv,k , qk), qk



 . (18)

For any(i, k), y(i,k)(t) is the quantity that must tend to 1 whent tends to infinity, for successful decoding.

In the remainder, we refer to this mutual information evolution equation by using the notationF (.) such

that:

{x(i,k)(t+1)

vc }i,k = F ({x(i,k)(t)

vc }i,k,Π(i, j, k, l), σ2) .

V. D ISTRIBUTIONS OPTIMIZATION

A. Context of the optimization

Let us denote the code rateR, and the target code rateRtarget. The optimization procedure consists

in finding Π(i, j, k, l) which fulfills the following constraints at the lowest SNR:

Code rate constraint: R = Rtarget

Sum constraint:
∑

i,j,k,l

Π(i, j, k, l) = 1

Sorting constraint: Π(i, j, k, l) = 0, ∀(i, j, k, l) such thatqk > ql (19)

Successful decoding condition: lim
t→∞

y(i,k)(t) = 1, ∀(i, k) (20)

with {x(i,k)(t+1)

vc }(i,k) = F ({x(i,k)(t)

vc }(i,k),Π(i, j, k, l), σ2)

B. Optimization with multi-dimensional EXIT charts

The successful decoding conditionlim
t→∞

y(i,k)(t) = 1 for all (i, k), is verified by multi-dimensional

EXIT charts. This technique, for hybrid LDPC codes, is a modification of the technique introduced in

[31], and can be presented as follows:

1) Initialization: t=0. Setx(j,l)(0)

cv = 0 for all (j, l).

2) Computex
(i,k)(t)
vc for all (i, k) with equation (17).

3) Computex
(j,l)(t)
cv for all (j, l) with equation (16).

4) Computey(i,k)(t) for all (i, k) with equation (18).

5) If y(i,k)(t) = 1 up to the desired precision for all(i, k) then stop; otherwiset = t + 1 and go to step

2.
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Optimizing the detailed representationΠ(i, j, k, l), without any restriction on the parameters, requires to

use multi-dimensional EXIT charts with a hill-climbing optimization method, like differential evolution.

However, owing to the huge parameter space and multi-dimensional interpolations leading to a too high

computational complexity, we restrict the parameter spaceto get a linear programming optimization

problem.

C. Optimization with mono-dimensional EXIT charts

In this part, we consider the optimization of hybrid LDPC codes families with all check nodes in

the same groupG(ql) and with connection degrees independent of the variable nodes to which they

are connected. We present how general equations (17) turns into mono-dimensional EXIT charts, and

how this allows the use of linear programming for optimization. Let x
(t)
e denote the averaged mutual

information of extended messages. It is expressed in terms of the mutual informationx(i,k)(t)
vc of messages

going out of variable nodes of degreei in G(qk), by simplification of equation (15):

x(t)
e = 1 − 1

log2(ql)

∑

i,k

Π(i, k) log2(qk)(1 − x(i,k)(t)
vc ) .

From equation (15), we can see that, for any(i, k, l):

lim
t→∞

x
(i,k)(t)

vc,l = 1 ⇔ lim
t→∞

x(i,k)(t)
vc = 1

and then the successful decoding condition (20) reduces to

lim
t→∞

x(t)
e = 1 .

By simplifying equation (17),x(t+1)
e can be expressed by a recursion in terms ofx

(t)
e as:

x
(j,l)
cv,k

(t)
= Jc

“

J−1
c

“

1 − Jc

“

(j − 1)J−1
c (1 − x(t)

e , ql), ql

”

, ql

”

, qk

”

;

x(t+1)
e =

X

i,k

Π(i, k)

 

1 −
log(qk)

log(ql)

 

1 − Jv

 

σ2, (i − 1)J−1
c (
X

j

Π(j|i, k)x
(j,l)
cv,k

(t)
, qk)1qk−1, qk

!!!

. (21)

Thus, the condition for successful decoding of hybrid LDPC codes in that specific case is

∀t ≥ 0, x(t+1)
e > x(t)

e (22)

In that case, the optimization procedure aims at finding distribution Π(i, k|j, l) for given Π(j, l). We

see in equation (21) thatx(t+1)
e depends linearly onΠ(i, k), turning the optimization problem into a

linear programming problem.
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VI. F INITE LENGTH OPTIMIZATION

This section presents an extension of optimization methodsthat has been described in [32] for finite-

length non-binary LDPC codes with constant variable degreedv = 2. We address the problem of the

selection and the matching of the parity-check matrixH non-zero elements. In this section, we assume

that the connectivity profile and group order profile of the graph have been optimized, with constant

variable degreedv = 2. With the knowledge of the graph connectivity, we run a PEG algorithm [33] in

order to build a graph with a high girth.

The method is based on the binary image representation ofH and of its components. First, the

optimization of the rows ofH is addressed to ensure good waterfall properties. Then, by taking into

account the algebraic properties of closed topologies in the Tanner graph, such as cycles or their

combinations, an iterative method is used to increase the minimum distance of the binary image of

the code by avoiding low-weight codewords.

A. Row optimization

Based on the matrix representation of each non-zero element, we give hereafter the equivalent vector

representation of the parity-check equations associated with the rows ofH.

Let x = [x0 . . . xN−1] be a codeword, and letpj be the number of bits representing the binary map

of symbolxj ∈ G(2pj ), j = 0, . . . N − 1. For theith parity-check equation ofH in the groupG(2pi),

we have the following vector equation:

∑

j:Hij 6=0

Hijxj = 0 (23)

where Hij is the pi × pj binary matrix representation of the non-zero elementhij , xj is the vector

representation (binary map) of the symbolxj . The all-zero component vector is denoted by0.

Considering thei-th parity-check equation as a single component code, we defineHi = [Hij0 . . . Hijm
. . . Hijdc−1

]

as its equivalent binary parity-check matrix, with{jm : m = 0 . . . dc − 1} the indexes of the non-zero

elements of thei-th parity-check equation. The size ofHi is pi × (pij0 + . . . + pijdc−1
), with pi andpijk

the extension orders of the groups of the check node and thek-th connected variable node, respectively.

Let Xi = [xj0 . . .xjdc−1
]t be the binary representation of the symbols of the codewordx involved in the

ith parity-check equation. When using the binary representation, thei-th parity-check equation (23), can

be written equivalently asHiXi
t = 0t.

We definedmin(i) as the minimum distance of the binary code associated withHi. As described in

[32], a dc-tuple of dc linear maps is chosen in order to maximize the minimum distance dmin(i) of
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the code corresponding to theith row of H, i = 0, . . . ,M − 1. For hybrid LDPC codes, we adopt the

same strategy, and choose forHi a binary linear component code with the highest minimum distance

achievable with the dimensions ofHi [34].

B. Avoiding low weight codewords

We now address the problem of designing codes with good minimum distance. It has been shown in

[32] that the error floor of non-binary LDPC codes based on ultra-sparse (dv = 2) graph is not uniquely

due to pseudo-codewords, but also to low-weight codewords.Here we consider hybrid LDPC codes

with constant variable degreedv = 2. We adopt for hybrid LDPC codes the same strategy that has been

introduced in [32], which aims at avoiding the low-weight codewords which are contained in the smallest

cycles.

In order to do so, we first extract and store the cycles of the Tanner graph with length belonging to

{g, . . . , g + gap}, whereg is the girth andgap is a small integer such that the number of cycles with

size g + gap is manageable. As in the previous section, we consider the binary images of cycles as

component codes. LetHck
be the binary image of thek-th stored cycle. Since we consider(2, dc) codes,

if some columns ofHck
are linearly dependent, so will be the columns ofH. This means that a codeword

of a cycle is also a codeword of the whole code. The proposed approach is hence to avoid low-weight

codewords by properly choosing the linear maps implied in the cycles, so that no codeword of low weight

is contained in the cycles. This is achieved by ensuring thatthe binary matrices corresponding to the

cycles have full column rank. Hybrid LDPC codes are therefore well-suited to this kind of finite-length

optimization procedure owing to the rectangular structureof the injective linear maps we consider as

non-zero elements of the parity-check matrix.

VII. N UMERICAL RESULTS

A. Rate one-half codes

In the sequel, code rates are expressed in bits per channel use. We first give in Table I two code

distributions and the corresponding thresholds for code rate one-half. Thresholds, denoted by
(

Eb

No

)⋆
, are

approximated by Monte-Carlo simulations in the following manner. To mimic decoding of an infinite-

length code, we consider a finite-length hybrid LDPC code corresponding to the given distribution. The

length we used is20000 coded bits. We send the all-zero codeword, and at each decoding iteration, the

noise added to the codeword is changed, as well as the linear maps of the code, chosen uniformly at

random. If the code is not structured, we also change the interleaver of the graph at each iteration. The
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TABLE I

NODEWISE DISTRIBUTIONS OF THE HYBRIDLDPC CODES USED FOR THE FINITE LENGTH SIMULATIONS.

Hybrid LDPC code 1 Hybrid LDPC code 2

Π̃(i = 2, qk = 32) 0.3950

Π̃(i = 2, qk = 64) 0.4933 0.2050

Π̃(i = 2, qk = 256) 0.4195 0.4000

Π̃(i = 6, qk = 64) 0.0772

Π̃(i = 6, qk = 256) 0.0100

Π̃(j = 5, ql = 256) 0.5450 1

Π̃(j = 6, ql = 256) 0.4550
“

Eb

No

”⋆

(dB) 0.675 0.550

distribution is preserved because connection degrees and groups are not changed. An approximation of

the threshold is the lowest SNR value for which the number of errors of the decoder reaches zero after

500 iterations. We then check that several approximations have small variance w.r.t. the average, and

define the threshold as the average of the obtained approximations.

Thresholds are given only for the codes we are interested in for small codeword length applications.

The channel is the BIAWGN channel with BPSK modulation. The hybrid LDPC code 1 is obtained

by setting the different group orders, and then optimizing the connection profile of variable nodes for

each group. We set the check node parameters (group order andconnection profile), independently of the

variable nodes parameters. Starting fromΠ(i, j, k, l), the assumptions we consider on the parametrization,

are translated into the following decomposition:

Π(i, j, k, l) = Π(i, k, l)Π(j)

= Π(i, k)Π(l|i, k)Π(j)

= Π(i|k)Π(k)Π(l|k)Π(j)

whereΠ(i|k) ∀i is the connection profile of variable nodes inG(qk), which is optimized for allk. We

fix Π(k), Π(l|k) andΠ(j). Check nodes have degree 5 or 6, independently of other parameters, and are

in G(256) as well as all redundancy variable nodes, while the information variable nodes are inG(64).

(HenceΠ(l|k) = Π(l)). The connection profiles for these two groups are then optimized with maximum

variable node degree equal to 10.
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Remark: From a D-GLDPC codes perspective, variable nodes in the highest order group correspond to

poor generalized component codes. It can be observed that the optimization procedure affects these nodes

with as many high connection degrees as possible, given the constraints (i.e., when the code dimension

K, equal to the log of the group order, is high, the lengthN is increased).

The hybrid LDPC code 2 is obtained by fixing the connection profile and optimizing the group orders

of variable nodes. We set the check node parameters (group order and connection profile), indepen-

dently of the variable nodes parameters. Starting fromΠ(i, j, k, l), the assumptions we consider on the

parametrization, are translated into the following decomposition:

Π(i, j, k, l) = Π(i, k, l)Π(j)

= Π(k|i, l)Π(i, l)Π(j)

= Π(k|i, l)Π(i)Π(l)Π(j)

We aim at optimizing as many group order profilesΠ(k|i, l), ∀k, as the number of different variable

node connection degreesi. We fix Π(i), Π(l) and Π(j). The graph connections are set regular with

constant variable degreedv = 2 and constant check degreedc = 5. All check nodes are fixed to be in

G(256). ThereforeΠ(k|i, l) = Π(k|i). Hybrid LDPC code 1 and 2 ensembles are hence unstructured

code ensembles.

From Table I, we can say that hybrid LDPC codes do not outperform non-binary LDPC codes in terms

of decoding thresholds. Moreover, both kinds of codes can have better thresholds than those in Table

I by allowing higher connection degrees. However, our purpose is to point out the good finite length

performance of hybrid LDPC codes, that can be evaluated by the error-floor behavior, as explained in

Section I. Since the error-floor is due to cycles in the graph,best error-floor performance are usually

reached with low connection degrees, i.e, with sparser graphs [25]. That is why we have focused on low

connection degrees. For such low degrees, hybrid LDPC codesdo not approach the capacity as close as

multi-edge type LDPC codes do, but their thresholds are in the range of protograph-based LDPC code

thresholds [35][31]. This is due to the adopted detailed representationΠ which cannot handle degree one

variable nodes. However, it would be an interesting perspective to switch from the detailed representation

to a multi-edge type representation for hybrid LDPC codes. This will certainly enable to get capacity-

approaching distributions with low connection degrees. Indeed, it has been shown in [15] that introducing

degree-1 variable nodes in non-binary LDPC codes makes the decoding threshold getting closer to the

theoretical limit.

In the sequel, for all simulated hybrid LDPC codes except hybrid LDPC code 1 in Figure 3, the linear

September 15, 2009 DRAFT



28

1 1.5 2 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

F
ra

m
e 

E
rr

or
 R

at
e

 

 

Hybrid LDPC 2 N=2048
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Hybrid LDPC 1 N=2048

Fig. 3. FER versusEb

No
(in dB): code rate one-half.Nbit = 2048 coded bits except for the multi-edge type LDPC code for

which Nbit = 2560 coded bits.Niter = 500 decoding iterations are performed.

maps are chosen according to the technique presented in Section VI. Detailed simulation results (numbers

of frames in error and simulated) are presented in Appendix.Figure 3 represents frame error rate (FER)

curves for different codes with code rate one-half. The performance curves of hybrid LDPC codes 1 and

2 are compared with a protograph-based LDPC code from [35], and a multi-edge type (MET) LDPC

code from [25]. This code has been specifically designed for low error-floor. All codes haveNbit = 2048

coded bits, except the MET LDPC code which hasNbit = 2560 coded bits.

The graphs of hybrid LDPC codes have been built with the random PEG algorithm described in [36].

To create systematic hybrid LDPC codes with the method of [36], the modification of the technique in

[36] is the same as what is described in [33] (Section V) to create upper-triangular encoding matrices for

LDPC codes. It is worth noting that the input of the graph construction method is only the connection

profile of the code without the group order profile.

We see that the hybrid LDPC code 1 has performance very close to the protograph-based LDPC

code in the simulated range of SNR. The hybrid LDPC code 2 has slightly better waterfall and slightly

higher error-floor than the MET LDPC code which is about500 bits longer. Hybrid LDPC codes are

therefore capable of exhibiting performance equivalent toMET LDPC codes, which are, to the best of

our knowledge, among the most interesting structured codes. It is worth noting that, unlike MET and
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protograph-based LDPC codes, the presented hybrid LDPC codes are non-structured codes.

Furthermore, for sake of clarity in the figures, we did not plot irregular GF (256) LDPC codes

performance. However, we can mention that such codes cannotoutperform regular(2, 4) GF (256) and

hybrid LDPC codes, even not optimized for finite-length (Section VI), in terms of error-floor. Thus, even

though they can provide better waterfall performance than regular(2, 4) GF (256) or hybrid LDPC codes

which have lower connection degrees can, irregularGF (256) LDPC codes do not allow to lower the

error-floor as much as with connection-regular codes. HenceirregularGF (256) LDPC codes do not allow

to get the same amplitude in the choice of the tradeoff between waterfall and error-floor performance,

as hybrid LDPC codes do.

B. Rate one-sixth codes

For communication systems operating in the low SNR regime (e.g., code-spread communication

systems and power-limited sensor networks), low-rate coding schemes play a critical role. Although

LDPC codes can exhibit capacity-approaching performance for various code rates when the ensemble

profiles are optimized [4], in the low-rate region, it is difficult to obtain good low-rate LDPC codes. The

analytical reason for that is given in [37] (Section II.D): “lower rate LDPC codes require larger SNR

increase from the decoding threshold to obtain similar conditions regarding decoding tunnels in EXIT

charts than their higher rate counterparts”. We intend to illustrate the interest of hybrid LDPC codes for

low-rate applications requiring short block length (from 200 to 1000 information bits).

TABLE II

NODEWISE DISTRIBUTION OF THE RATE1
6

HYBRID LDPC CODE

Hybrid LDPC codeR = 1
6

Π̃(i = 2, qk = 8) 0.227

Π̃(i = 2, qk = 16) 0.106

Π̃(i = 2, qk = 256) 0.667

Π̃(j = 3, ql = 256) 1
“

Eb

No

”⋆

(dB) −0.41

Capacity (dB) −1.07

In Figure 4, Bit Error Rates (BER) of a rate1/6 hybrid LDPC code, whose distribution is given in Table

II, are compared with Turbo Hadamard code (TH) taken from [38] and Zigzag Hadamard (ZH) code taken
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Fig. 4. Comparison of hybrid LDPC code with Turbo Hadamard code (TH) taken from [38] and Zigzag Hadamard (ZH) code

taken from [39], forKbit ≃ 200 information bits. The number of decoding iterations isNiter = 30 for Turbo Hadamard codes,

andNiter = 200 for the hybrid LDPC code.

from [39], for Kbit ≃ 200 information bits. The number of decoding iterations isNiter = 30 for Turbo

Hadamard codes, andNiter = 200 for the hybrid LDPC code. However, the comparison is not unfair

because the number of iterations for Turbo-like codes and that for LDPC codes does not scale identically

with performance as, e.g., pointed out in [40]. This can be interpreted by the fact that the complexity

per iteration of Turbo-like codes is higher than that of LDPCcodes, owing to the BCJR algorithm run

at each iteration. The hybrid LDPC code outperforms with 0.3dB gain the ZH code. Additionally, the

hybrid code has no observed error floor up to a BER=10−7. When comparing the computer simulation

of the hybrid LDPC code with the union bound of ZH code, we observe that the BER of the hybrid

LDPC code has gain of about one decade atEb

N0
= 2dB. This gives a hint to predict that the error floor

of the hybrid LDPC code is lower than the error floor of the ZH code.

In Figure 5, the FER comparison is drawn for code rate1/6 andKbit ≃ 1000 information bits. The

quasi-cyclic LDPC code is designed to have low error-floor [42]. The hybrid LDPC code is better than

the quasi-cyclic LDPC in the waterfall region. However, theerror-floor of the quasi-cyclic LDPC code

is not provided in [42], and we were not able to evaluate the minimum distance of the hybrid LDPC

code. Indeed, unlike quasi-cyclic LDPC codes, the proposedhybrid LDPC code is not structured. For

unstructured LDPC codes, the minimum distance can be evaluated by the method presented in [43]. In
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MET LDPC code

Hybrid LDPC

quasi−cyclic GF(2) code

THC (1,6/7)
8
 M=3 R=1/6

Fig. 5. Comparison of hybrid LDPC code with punctured Turbo Hadamard (PTH) taken from [41] and other powerful codes,

for code rate1/6. The PTH code hasKbit = 999 information bits, and the other codes haveKbit = 1024 information bits.

Niter = 50 for the PTH code, andNiter = 200 for the other codes.

Figure 5, the codeword length is 6144 bits, which results in atoo much high complexity to implement

the technique of [43]. That is why we were unable to approximate the minimum distance of the hybrid

LDPC code for this codeword length. The hybrid LDPC code is better than the PTH codes both in the

waterfall and in the error-floor regions. The hybrid LDPC code has poorer waterfall region than the

MET LDPC code [44], but better error-floor. Hence, for rate1/6 too, the performance of hybrid LDPC

codes are equivalent to the one of MET LDPC codes, by allowingto reach comparable trade-off between

waterfall and error-floor performance.

Remark: Let us mention that hybrid LDPC codes, with injective linear maps as non-zero elements,

are well-fitted to low code rates thanks to their structure. Indeed, like all other kinds of codes with

generalized constraint nodes (Turbo Hadamard code [38], LDPC Hadamard codes [45], GLDPC [13],

D-GLDPC [14], or Tail-biting LDPC [15]), they are well-fitted to low code rates because the graph rate is

higher than the code rate. This can help the iterative decoding: when the code rate is very low, decoding

on a higher rate graph can lead to better performance.
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VIII. C ONCLUSIONS

A new class of LDPC codes, named hybrid LDPC codes, has been introduced. Asymptotic analysis of

this class of codes has been carried out for distribution optimization, as well as finite-length optimization.

Numerical simulations, for code rates one-half and one-sixth, illustrate that hybrid LDPC codes can be

good competitors for the best known codes, like protograph-based or MET LDPC codes, by allowing to

reach interesting trade-off between waterfall and error-floor performances.

APPENDIX

Lemma 1 Let P
(t)
e (x) denote the conditional error probability after thetth BP decoding iteration of

a GF (q) LDPC code, assuming that codewordx was sent. If the channel is symmetric, thenP
(t)
e (x) is

independent ofx.

Proof: The proof has the same structure as the proof of Lemma 1 in [5]. The notations are the same

as in [5] and Section III-F.

Let Ψ
(t)
v (m0,m1, . . . ,mdv−1) denote the message map of any variable node at iterationt, according to

equation (7). The size of argument messages is implicitly the one of the group of the variable node.

Let Ψ
(t)
c (m1, . . . ,mdc−1) be the message map of any check node. The sizes of argument messages are

implicitly the one of the group of each variable node connected to the check node, according to equation

(6).

• Check node symmetry: LetG be the Cartesian product group defined in Section III-F. For any

sequence(b1, . . . , bdc−1) in G such that
⊕dc−1

i=1 Avicbi ∈ Im(Avc), we have (see equation (6))

Ψ(t)
c (m+b1

1 , . . . ,m
+bdc−1

dc−1 ) = Ψ(t)
c (m1, . . . ,mdc−1)

+A−1
vc (

Ldc−1
i=1 Avicbi)

• Variable node symmetry: We also have, for anyb ∈ GF (qv):

Ψ(t)
v (m+b

0 ,m+b
1 , . . . ,m+b

dv−1) = Ψ(t)
v (m1, . . . ,mdc−1)

+b

Let Zi denote the random variable being the channel output in probability form, conditionally to the

transmission of the zero symbol. EachZi for any i = 1 . . . N has same size as the group of the

corresponding codeword symbol. Any memoryless symmetric channel can be modeled as

Yi = Z+xi

i

wherexi is the ith component ofx which is a vector of size N, denoting an arbitrary codeword ofthe

hybrid LDPC code. The channel output in probability formYi results from the transmission ofx.
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Let v denote an arbitrary variable node and letc denote one of its neighboring check nodes. For any

observation in probability formw, letm(t)
vc (w) denote the message sent fromv to c in iterationt assuming

w was received. The quantityw is hence a set of channel output vectors in probability formwi, for all

i = 1 . . . N . The same definition holds form(t)
cv (w) from c to v. From the variable node symmetry at

t = 0 we havem(0)
vc (y) = m

(0)
vc (z)+xv . Assuming now that in iterationt we havem(t)

vc (y) = m
(t)
vc (z)+xv .

Sincex is a codeword, we have
⊕dc

i=1 Avicxi = 0, and hence
⊕dc−1

i=1 Avicxi = Avcxv. From the check

node symmetry condition we conclude that

m(t+1)
cv (y) = m(t+1)

cv (z)+xv .

Moreover, from the variable node symmetry condition, it follows that in iterationt + 1 the message sent

from v to c is

m(t+1)
vc (y) = m(t+1)

vc (z)+xv .

Thus, all messages to and from variable nodev when y is received are permutations byxv of the

corresponding message whenz is received. Hence, both decoders commit exactly the same number of

errors, which proves the lemma.

�

Lemma 2 If the channel is symmetric, then, under the all-zero codeword assumption, the densityP0

of the initial message in LDR form is symmetric:

P0(W = w) = ewiP0(W = w+i)

Proof: Let xnoisy be the noisy observation of the sent symbolx. Let L(.) be the surjective map which

relates the noisy observation to a LDR vector:W = L(xnoisy). The set of observations resulting in LDR

vector w is denoted byL−1(w). Thus we have, for alli ∈ G(q), P (W = w|x = i) = P (xnoisy ∈
L−1(w)|x = i).

Furthermore, lety bey = LDR−1(w) andY beY = LDR−1(W). By definition ofYi, for all i ∈ G(q),

Yi = P (xnoisy|x = i), therefore we also haveYi = P (xnoisy ∈ L−1(W)|x = i) and yi = P (xnoisy ∈
L−1(w)|x = i). Owing to the channel symmetry, we haveP (Y = y+i|x = 0) = P (Y = y|x = i).
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Let us prove thatP0(W = w) satisfies equation (10):

ewiP0(W = w+i) = ewiP (W = w+i|x = 0)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (Y = y+i|x = 0)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (Y = y|x = i)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (W = w|x = i)

=
P (xnoisy ∈ L−1(w)|x = 0)

P (xnoisy ∈ L−1(w)|x = i)
P (xnoisy ∈ L−1(w)|x = i)

= P (xnoisy ∈ L−1(w)|x = 0)

= P (W = w|x = 0)

= P0(W = w)

�

Lemma 3 If the bipartite graph is cycle-free, then, under the all-zero codeword assumption, all the

messages on the graph at any iteration, are symmetric.

Proof: When hybrid LDPC codes are decoded with BP, both data pass and check pass steps are the

same as classical non-binary codes decoding steps. Since these steps preserve symmetry [4] if the graph

is cycle-free, the following Lemma 7 ensures that the hybriddecoder preserves the symmetry property

if the input messages from the channel are symmetric.

Lemma 7: If X andY are a symmetric LDR random vectors, then the extensionX×A of X, by any

full-rank linear extensionA, remains symmetric. The same for the truncationY×A−1

of Y by the inverse

of A.

Proof: We first prove that anyq2-sized extension of aq1-sized symmetric random vector remains sym-

metric. We want to show that

∀b ∈ {0, . . . , q2 − 1}, P (X×A = y) = eybP (X×A = y+b) . (24)

Caseb /∈ Im(A):

• In the case whereyb 6= −∞:
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We have to show that

e−ybP (X×A = y) = P (X×A = y+b) .

If yb 6= ∞, thenP (X×A = y) = 0. If yb = ∞, thene−yb = 0. Thus, we have to show that

∀b /∈ Im(A), P (X×A = y+b) = 0 . (25)

To prove equation (25), it is sufficient to show that∃i /∈ Im(A) such thaty+b
i 6= ∞. We have

y+b
i = yb+i − yb. It is sufficient to choosei = b, then y+b

b = −yb. Sincey+b
b = −yb 6= ∞ by

hypothesis,P (X×A = y+b) = 0.

• In the caseyb = −∞, to prove equation (24), we have to prove thatP (X×A = y) = 0, which

is straightforward becauseb /∈ Im(A), and henceP (X×A = y) 6= 0 ⇒ yb = ∞. By taking the

contraposition, we end up with the sought result.

Hence we have proved equation (24) in the case ofb /∈ Im(A).

Caseb ∈ Im(A):

Let δx,y be the Kronecker delta function whose value is 1 ifx = y, 0 otherwise. We have

P (X×A = y) = P (X = y×A−1

)
∏

i/∈Im(A)

δyi,∞ .

Sinceb belongs toIm(A), we denote bya the element in{0, . . . , q1 − 1} such thatb = Aa. The input

messageX is symmetric, hence we have

P (X = y×A−1

) = eyAaP (X = (y×A−1

)+a)

Recall that, for any extensionA, we havey×A−1

a = yAa.

∀i ∈ {0, . . . , q1 − 1}, (y×A−1

)+a
i = y×A−1

i+a − y×A−1

a

= yA(i+a) − yAa

= y+Aa
Ai

= (y+Aa)×A−1

i

Thus

P (X×A = y) = eyAaP (X = (y+Aa)×A−1

)
∏

i/∈Im(A)

δyi,∞ . (26)

We note that:

P (X×A = y+Aa) = P (X = (y+Aa)×A−1

)
∏

j /∈Im(A)

δy+Aa
j ,∞ . (27)
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In this case, for allj ∈ {0, . . . , q2−1}, δy+Aa
j ,∞ = δyAa+j−yAa,∞ = δyAa+j ,∞. For all i ∈ {0, . . . , q2−1},

if i /∈ Im(A), then∃j /∈ Im(A): i = Aa + j. Therefore{i ∈ {0, . . . , q2 − 1} s.t. i /∈ Im(A)} = {j ∈
{0, . . . , q2 − 1} s.t. Aa + j /∈ Im(A)}. We finally obtain:

∏

j /∈Im(A)

δy+Aa
j ,∞ =

∏

i/∈Im(A)

δyi,∞ .

The above equality allows to insert equation (27) into equation (26). We can now conclude that, whenb

is in Im(A), equation (24) is satisfied.

This completes the proof of the first part of Lemma 7.

We now prove that any truncation of a symmetric random LDR vector remains symmetric. We have

to prove that

∀a ∈ {0, . . . , q1 − 1}, P (Y×A−1

= x) = exaP (Y×A−1

= x+a) . (28)

Let b be the image ofa by A: b = Aa.

P (Y×A−1

= x) =
∑

y:y0=x0,
yA1=x1,

...,
yA(q1−1)=xq1−1

P (Y = y)

=
∑

y:y0=x0,
yA1=x1,

...,
yA(q1−1)=xq1−1

eybP (Y = y+b)

= exa

∑

y:y0=x0,
yA1=x1,

...,
yA(q1−1)=xq1−1

P (Y = y+b)

We note that:

∀i ∈ Im(A), y+Aa
i = yAa+i − yAa = xa+A−1i − xa = (x+a)×A

i ,

where the last step is infered thanks to equation (2). Thus

P (Y×A−1

= x) = exa

∑

y:y0=(x+a)×A
0 ,

yA1=(x+a)×A
A1 ,

...,
yA(q1−1)=(x+a)×A

A(q1−1)

P (Y = y)

= exaP (Y×A−1

= x+a)

(29)

We have obtained equation (28).
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�

This completes the proof of Lemma 3.

�

Lemma 8:Ek,l denotes the set of extensions fromG(qk) to G(ql). For givenk and l,

∀(i, j) ∈ {1, . . . , qk − 1} × {1, . . . , ql − 1}, Card(A ∈ Ek,l : A−1j = i)

Card(Ek,l)
=

1

ql − 1

Proof: pk andpl denotelog2(qk) and log2(ql), respectively.

Without any constraint to build a linear extension A fromG(qk) to G(ql), except the one of full-rank,

we have2pl − 2n−1 choices for thenth row, n = 1, . . . , pl.

For giveni and j, with the constraint thatAi = j, we have2pl−bi + 2⌊
bi

2
⌋ − 2n−1 choices for thenth

row, n = 1, . . . , pl, wherebi is the number of bits equal to1 in the binary map ofαi. Thus, the number

of A such thatAi = j is dependent only oni. Let say

Card(A ∈ Ek,l : A−1j = i) = βi

we have
ql−1
∑

j=1

Card(A ∈ Ek,l : Ai = j) = Card(Ek,l)

Therefore

∀(i, j) ∈ {1, . . . , qk − 1} × {1, . . . , ql − 1}, Card(A ∈ Ek,l : Ai = j)

Card(Ek,l)
=

1

ql − 1

Lemma 4. If a random probability-vectorY of sizeql is LM-invariant, then for all(m,n) ∈ {0, . . . , ql−
1} × {0, . . . , ql − 1}, the random variablesYm and Yn are identically distributed.

Proof: For any(qk, ql), qk < ql, Tl,k denotes the set of all truncations fromG(ql) to G(qk). We assume

Y LM-invariant. A−1 andB−1 denote two truncations independently arbitrary chosen inTl,k. For any

m andn in {0, . . . , ql − 1}, we can choose extension A such thatm ∈ Im(A) and A−1m is denoted by

i. Also, we choose B such thatBi = n. Y LM-invariant implies

∀(i, A−1, B−1) ∈ {0, . . . , qk − 1} × Tl,k × Tl,k, P (Y ×A−1

i = x) = P (Y ×B−1

i = x)

This is equivalent to

P (YAi = x) = P (YBi = x)
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and hence

P (Ym = x) = P (Yn = x), ∀(m,n) ∈ {0, . . . , ql − 1} × {0, . . . , ql − 1}

�

Lemma 5. Consider a random vectorY of sizeql. If there existqk and a random vectorX of sizeqk

such thatY = X̃, thenY is LM-invariant.

Proof: We want to prove that, for alln < l, for any (B,C) ∈ En,l × En,l, Y ×B−1

and Y ×C−1

are

identically distributed.

By hypothesisY = X×A, with X of size qk andA uniformly chosen at random inEk,l. Let D(B) be

D(B) = B−1 ◦A andD(C) be D(C) = C−1 ◦ A, where◦ stands for the composition of functions. Then

Y ×B−1

= X×D(B)

andY ×C−1

= X×D(C)

. Let v(B) be a random vector of sizeqn defined by:

∀i = 0, . . . , qn − 1, v
(B)
i =







A−1(Bi) if Bi ∈ Im(A);

0 otherwise.

We can define the random vectorv(C) in a similar way. With such definitions, whenX is a probability

vector, we have:

∀i = 0, . . . , qn − 1, Y ×B−1

i =







Xv
(B)
i

if v
(B)
i 6= 0;

0 otherwise.
(30)

(The same holds whenX is a LDR vector by replacing0 by ∞.) We end up with the sought result

by showing thatv(B) andv(C) are identically distributed (we recall thatB andC are fixed whileA is

chosen uniformly at random). For allm of sizeqn in G(qk)
qn , we define the events E and F:

• the event E that for allp such thatmp 6= 0, A is such thatAmp = Bp,

• the event F that for allp such thatmp = 0, A is such that: there is noi ∈ G(qk) such thatAi = Bp.

Thus we have

P (v(B) = m) = P (E ∩ F ) .

In the proof of Lemma 8, we have proven that, for all giveni ∈ G(qk) andj ∈ G(ql), P (‘A is such that Ai=j’)

is dependent only oni. Thus, it is easy to see thatP (v(B) = m) does not depend onB. v(B) andv(c)

are therefore identically distributed, so areY ×B−1

andY ×C−1

owing to equation (30). This completes

the proof.

�
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Lemma 9:The product of two LM-invariant random vectors is LM-invariant.

Proof: Let U andV be two LM-invariant random vectors of sizeql. For anyqk < ql, let A andB be

any two linear maps fromG(qk) to G(ql). SinceU is LM-invariant,U×A−1

andU×B−1

are identically

distributed, by definition of LM-invariance. The same holdsfor V. U×A−1

V×A−1

and U×B−1

V×B−1

are therefore identically distributed. Moreover, it is clear thatU×A−1

V×A−1

= (UV)×A−1

, for any A.

Hence,(UV)×A−1

and (UV)×B−1

is LM-invariant. This completes the proof.

�

Proof of Theorem 1: X(k) denotes a random probability-vector of sizeqk. The jth component of the

random truncation ofX(k) is denoted by rt
X(k)

j

. The jth component of the random extension ofX(k) is

denoted by re
X(k)

j

. The jth component of the random extension followed by a random truncation of X(k)

is denoted byrt+re
X

(k)
j

.

We define the operatorDa by:

Da(X
(l)) =

1

ql − 1

ql−1
∑

j=1

E







√

√

√

√

X
(l)
j

X
(l)
0






.

The following equalities are hence deduced from the previous definitions:

E





√

√

√

√

re
X(k)

j

re
X(k)

0



 =
∑

l

Π(l|k)
1

ql − 1

qk−1
∑

i=1

E





√

√

√

√

X
(k)
i

X
(k)
0





E





√

√

√

√

rt
X

(l)
i

rt
X(l)

0



 =
1

ql − 1

ql−1
∑

j=1

E







√

√

√

√

X
(l)
j

X
(l)
0







= Da(X
(l))

E





√

√

√

√

rt+re
X(k)

i

rt+re
X

(k)
0



 =
∑

l

Π(l|k)
1

ql − 1

qk−1
∑

i=1

E





√

√

√

√

X
(k)
i

X
(k)
0





To shorten the notations we can omit the index of iterationt. Moreover, in the remainder of this proof,

we choose to use simpler notations although not fully rigorous: R(j,l) denotes a message going into a

check node of degreej in G(ql) while R(i,k) denotes a message going out of a variable of degreei in

G(qk). However, there is not ambiguity in the sequel thanks to the unique use of indexesi, j, k, l and

we always precise the nature of a message.

The nth component of a message coming from a variable of degreei in G(qk) is denoted byR(i,k)
n .

The nth component of the initial message going into a variable inG(qk) is denoted byR(0)(k)

n . Thenth

September 15, 2009 DRAFT



40

component of a message going into a degreei variable inG(qk) is denoted byL(i,k)
n . The data pass,

through a variable node of degreei in G(qk), is translated by

R(i,k)
n = µR(0)(k)

n

i−1
∏

p=1

L(i,k)
n ,

whereµ is a normalization factor, which has no impact in the sequel as only rates of vector components

are involved. LetR(k)
t denote the average message going out of a variable node inG(qk). By noting that

the messagesL(i,k) are i.i.d. when(i, k) is set, we have:

Da(R
(k)
t ) =

∑

i

Π(i|k)
1

qk − 1

qk
∑

n=1

E





√

√

√

√

R
(0)(k)

n
∏i−1

p=1 L
(i,k)
n

R
(0)(k)

0

∏i−1
p=1 L

(i,k)
0





=
∑

i

Π(i|k)
1

qk − 1

qk
∑

n=1

E





√

√

√

√

R
(0)(k)

n

R
(0)(k)

0



E





√

√

√

√

L
(i,k)
n

L
(i,k)
0





i−1

=
∑

i

Π(i|k)
1

qk − 1

qk
∑

n=1

E





√

√

√

√

R
(0)(k)

n

R
(0)(k)

0



Da(L
(i,k))

The last step is obtained thanks to the LM-invariance ofL(i,k). Finally we get:

Da(R
(k)
t ) = Da(R

(0)(k)

)
∑

i

Π(i|k)Da(L(i,k)) . (31)

Moreover, if we consider two LM-invariant vectorsL(k) andL(l), whereL(k) is the random truncation

of L(l) , it is clear thatDa(L
(k)) = Da(L

(l)). Hence:

Da(L
(i,k)) =

∑

j,l

Π(j, l|i, k)Da(L(j,l)) (32)

whereL(j,l) is the message going out of a check node of degreej in G(ql).

Let us recall the result of equation (68) in [19]:

1 − D(Lt) ≥
∑

d

ρd (1 − D(Rt))
d−1 + O

(

D(Rt)
2
)

.

We can apply this result, since our definition ofDa corresponds to the definition the authors gave toD.

We obtain

1 − Da(L
(j,l)) ≥ (1 − Da(R

(j,l)))j−1 + O(Da(R
(j,l))2) (33)

where R(j,l) is a message going into a check node of degreej in G(ql). It is straightforward from

definition of Da(·) to get:

Da(R
(j,l)) =

∑

i′,k′

Π(i′, k′|j, l)qk′ − 1

ql − 1
Da(R

(i′,k′)) . (34)
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By gathering equations (31), (32), (33) and (34), we obtain:

Da(R
(k)
t ) ≤ Da(R(0)(k)

)
X

i

Π(i|k)

2

4

X

j,l

Π(j, l|i, k)

0

@1 −
X

i′,k′

Π(i′, k′|j, l)

„

qk′ − 1

ql − 1
Da(R(i′,k′))

«j−1

+ O(Da(R(i′,k′))2)

1

A

3

5

i−1

(35)

which is also:

Da(R
(k)
t ) ≤ Da(R(0)(k)

)
X

i

Π(i|k)

2

4

X

j,l

Π(j, l|i, k)

0

@1 −
X

i′,k′

Π(i′, k′|j, l)
qk′ − 1

ql − 1
Da(R(i′,k′))

1

A

j−13

5

i−1

+ O(Da(Rt−1)2) (36)

whereDa(Rt−1) =
∑

k Da(R
(k)
t−1). By power series in the neighborhood of zero, we finally get:

Da(R
(k)
t ) ≤ Da(R(0)(k)

)Π(i = 2|k)
X

j,l

Π(j, l|i, k)(j − 1)
X

k′

Π(k′|j, l)
qk′ − 1

ql − 1
Da(R

(k′)
t−1) + O(Da(Rt−1)

2) . (37)

Let c(k) = Da(R
(0)(k)

) and p(y|x) the transition probabilities of the memoryless output symmetric

channel. We recall that we assume that the all-zero codewordhas been sent. Then

c(k) = Da(R
(0)(k)

)

=
1

qk − 1

qk−1
∑

i=1

E

(
√

p(y|i)
p(y|0)

)

=
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)
p(y|0)p(y|0)dy

=
1

qk − 1

qk−1
∑

i=1

∫

√

p(y|i)p(y|0)dy

We introduce hereafter some notations, for ease of reading:

Let x be a positive real-valued vector of size the number of different group orders. Let us define theg

function by:

g(k, c(k),Π,x) = c(k)Π(i = 2|k)
∑

j,l

Π(j, l|i, k)(j − 1)
∑

k′

Π(k′|j, l)qk′ − 1

ql − 1
xk′ .

For more readable notations, we also define the vector outputfunction G(x) by:

G(x) = {g(k, c(k),Π,x)}k

which means that thepth component ofG(x) is Gp(x) = g(p, c(p),Π,x). Let us denote the convolution

by ⊗. Thenx⊗n corresponds to the convolution of vectorx by itself n times. With these notations, we

can write, for alln > 0:

Da(R
(k)
t+n) ≤ g(k, c(k),Π,G⊗(n−1)({Da(R

(k′)
t )}k′)) + O(Da(Rt)

2) .
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Let P (k)t

e = Pe(R
(k)
t ) be the probability that the messageR

(k)
t be erroneous, i.e., corresponds to an incor-

rect decision. The average probability that any rightboundmessage be erroneous isP t
e =

∑

k
Π(k)P

(k)t

e .

Let us recall lemma (34) in [19]:

1

q2
k

Da(X
(k))2 ≤ Pe(X

(k)) ≤ (qk − 1)Da(X
(k)) . (38)

Let us consider a givenk. If there exists a vectorx such that lim
n→∞

g(k, c(k),Π,G⊗(n−1)(x)) = 0, then

there existα andn > 0 such that if∀k,Da(R
(k)
t0 ) < α, then

Da(R
(k)
t0+n) < Kk′Da(R

(k′)
t0 ), ∀k′ (39)

where, for allk′, Kk′ is a positive constant smaller than1. If we considerP t0
e < ξ such that∀k, P

(k)t0

e <

(qkα)2, then equation (38) ensures that∀k,Da(R
(k)
t0 ) ≤

√
P

(k)t

e

qk
< α.

As previously explained, in this case, there exitsn > 0 such that inequation (39) is fulfilled. By induction,

for all t > t0, there existsn > 0 such that

Da(R
(k)
t+n) < Kk′Da(R

(k′)
t ), ∀k′ .

We have∀(k, t),Da(R
(k)
t ) ≥ 0, therefore the sequence{Da(R

(k)
t )}∞t=t0 converges to zero for allk.

Finally, equation (38) ensures that, for allk, P
(k)t

e converges to zero ast tends to infinity. Thus,P t
e , the

global error probability, averaged over all symbol sizes, converges to zero ast tends to infinity.

This proves the sufficiency of the stability condition.

�

Lemma 6: The connection betweenxv and xf(v) is

xft(p) = 1 − xp .

Proof: Let p be a probability vector of sizeq, associated to a symbol inG(q), and f its Discrete

Fourier Transform of sizeq too. pk andfi are thekth and theith components ofp and f , respectively.

f is defined by:

fi =

q−1
∑

k=0

pk(−1)i·k, ∀i ∈ GF (q)

i · k is the scalar product between the binary representations ofboth elementsi andk.

The mutual informationI of a symmetric probability vectorp, under the all-zero codeword assumption,
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is defined by

xp = 1 − Ep

(

logq(1 +

q−1
∑

i=1

pi

p0
)

)

.

As in the binary case, we want to prove that

xp = 1 − xf

wherexf is defined byxf = 1 − Ef

(

logq(1 +
∑q−1

i=1
fi

f0
)
)

.

The equationxp = 1 − xf is equivalent to

Ef

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

= 1 − Ep

(

logq(1 +

q−1
∑

i=1

pi

p0
)

)

Ef

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

= Ep

(

1 − logq(
1

p0
)

)

Ef

(

logq(1 +

q−1
∑

i=1

fi

f0
)

)

= Ep

(

logq(qp0)
)

f0 = 1 implies

Ef

(

logq(

q−1
∑

i=0

fi)

)

= Ep

(

logq(qp0)
)

(40)

Since
q−1
∑

i=0
fi =

q−1
∑

i=0

q−1
∑

k=0

pj(−1)i·k, it finally remains to prove that

q−1
∑

i=0

q−1
∑

k=1

pj(−1)i·k = 0

q−1
∑

k=1

pj

q−1
∑

i=0

(−1)i·k = 0 (41)

which is ensured by
q−1
∑

i=0

(−1)i·k = 0, ∀k = {1 . . . q − 1} .

We are going to demonstrate this last expression. Let say that k has m bits equal to1 in its binary

representation.

• m is even: i · k is

even q
2m

m/2
∑

l=0

(

m
2l

)

times (42)

odd q
2m

m/2−1
∑

l=0

( m
2l+1

)

times (43)
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• m is odd: i · k is

even q
2m

m−1

2
∑

l=0

(m
2l

)

times (44)

odd q
2m

m−1

2
∑

l=0

( m
2l+1

)

times (45)

We complete the proof by showing that equations (42) and (43)are equal, as well as equations (44) and

(45):

(1 − 1)m =
m
∑

k=0

(

m

k

)

(−1)k =
a
∑

l=0

(

m

2l

)

−
b
∑

l=0

(

m

2l + 1

)

= 0

wherea = m
2 and b = m

2 − 1 when m is even, anda = b = m−1
2 when m is odd. This completes the

proof.

�

Detailed simulation results for rate one-half

SNR points:[1.0, 1.2, 1.4, 1.6, 1.8, 1.9, 2.0];

Number of frames in error for hybrid LDPC code 1:[100100100100623];

Number of sent frames for hybrid LDPC code 1:[41014349283967218879002253150];

Number of frames in error for hybrid LDPC code 2:[1001001005545829];

Number of sent frames for hybrid LDPC code 1:[10436612837938645002318000123146300130052350].
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