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Abstract

A lot of relevance feedback methods have been pro-
posed to deal with Content-Based Image Retrieval (CBIR)
problems. Their goal is to interactively learn the seman-
tic queries that users have in mind. Interaction is used to fill
the gap between the semantic meaning and the low-level im-
age representations.

The purpose of this article is to analyze how to merge all
the semantic information that users provided to the system
during past retrieval sessions. We propose an approach to
exploit the knowledge provided by user interaction based on
binary annotations (relevant or irrelevant images). Such se-
mantic annotations may be integrated in the similarity ma-
trix of the database images. This similarity matrix is ana-
lyzed in the kernel matrix framework. In this context, a ker-
nel adaptation method is proposed, but taking care of pre-
serving the properties of kernels. Using this approach, a se-
mantic kernel is incrementally learnt.

To deal with practical constraint implementations, an
eigendecomposition of the whole matrix is considered, and
a efficient scheme is proposed to compute a low-rank ap-
proximated kernel matrix. It allows a strict control of the
required memory space and of the algorithm complexity,
which is linear to the database size.

Experiments have been carried out on a large generalist
database in order to validate the approach.

1. Introduction

Content-Based Image Retrieval (CBIR) has attracted a
lot of research interest in recent years. This paper addresses
the problem of category search, which aims at retrieving
all images belonging to a given category from an image
database. Content-Based Image Retrieval is characterized
by the gap between high-level semantic and low-level im-
age representation [18]. Users are looking for an image set
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with a semantic meaning, whereas systems deal with low-
level features.

Contrary to the early systems, where people were fo-
cused on fully automatic strategies, recent approaches in-
troduce human-computer interaction into CBIR [20, 19].
Starting with a coarse query, the interactive process allows
the user to refine his request as much as necessary. Many
kinds of interaction between the user and the system have
been proposed [2], but most of the time, user information
consists of binary annotations (labels) indicating whether
or not the image belongs to the desired category. In such a
strategy, the system uses these labels to refine the computa-
tion of new relevant pictures. Many efficient methods have
been proposed in the CBIR community. However, as effi-
cient as a relevance feedback method is, it is still limited by
the low-level image representation.

In a “relevance feedback only” framework, labels pro-
vided by users are never reused: this knowledge is lost at
the end of each retrieval session. Some researchers from
CBIR community propose to memorize this semantic in-
formation [6, 10, 14]. The accumulation of labels during
many retrieval sessions constitutes a knowledge about the
database content. Semantic learning, which exploits this in-
formation, enables the system to enhance the representation
of the pictures, and thus its overall performances.

In this paper, we introduce a new approach to manage
this knowledge. All the semantic information passed by
users to the system during many retrieval sessions is ana-
lyzed. As it is composed of binary annotations, we can di-
rectly represent it in the similarity matrix of the database
images. This similarity matrix is analyzed in the kernel ma-
trix framework. In this context, some constraints have to be
verified in order to get the kernel matrix properties. That
means we can not manipulate these matrices, for instance
by modifying some values, without taking strong precau-
tions. A kernel adaptation method is proposed, taking care
of keeping the nice metric properties of kernels. The pro-
posed modifications aims at enhancing the similarity be-
tween any images which have been labelled as relevant dur-



ing one of the retrieval sessions.

The exploitation of this semantic matrix arises major dif-
ficulties in terms of storage and computational complexity.
To deal with practical constraint implementations, eigende-
composition of the whole matrix is considered, and an ef-
ficient scheme is proposed to compute a low-rank approx-
imated kernel matrix. This optimization scheme allows a
strict control of the required memory space and of the al-
gorithm complexity, which is linear to the database size
(O(N) complexity, where N is the size of the database).

This approach allows the use of any kernel- or metric-
based relevance feedback method. After any retrieval ses-
sion, the kernel matrix may be updated in order to reflect
user average behavior. In order to validate the approach, our
method is experimented with a SVM classifier and an active
learner on a generalist image database.

In this scope, we first present in Section 2 some meth-
ods aiming at learning semantics, from CBIR and statisti-
cal learning community, and then our framework to build
an efficient semantic learner. In Section 3, the adaptive ap-
proach, based on a kernel matrix updating technique, is pro-
posed. In Section 4, a method to build the semantic kernel
according to user labelling is introduced. In Section 5, the
practical implementation strategy based on eigenvalue ker-
nel matrix analysis is presented. In Section 6, experiments
carried out on the COREL photo database are reported.

2. Semantic learning
2.1. CBIR approaches

Researchers from CBIR community propose solutions
to store and exploit semantics, usually with an ad hoc ap-
proach.

Some approaches are the competition of feature space di-
mensions [14]. These methods have no high storage prob-
lems and allow the use of different feedback learning ap-
proaches. Otherwise they can not memorize many semantic
links.

Some other approaches compute and store a similarity
matrix [7]. For a set of user annotations, an heuristic up-
dates some parts of the similarity matrix to reflect users
general behavior. Such approaches fill the similarity ma-
trix with no assumption about its properties. For instance,
the matrix can not induce a metric: there is no possible gen-
eralization about the relevance between two pictures. It also
suffer from high memory needs: the system has to store N2
elements, with NV the size of the database. This is not fea-
sible for large values of V. For instance, for an one mil-
lion image database, similarity matrix using float numbers
would require 4TB (4 x 10'2 Bytes).

Some researchers propose to perform a clustering of the
database to enhance system performances [10]. These ap-

proaches can help in the storage of similarities, and in the
browsing of a database. Such methods improve retrieval
process using relevance feedback, but they usually need a
specific relevance feedback tuning.

2.2, Statistical learning approaches

Researchers from statistical learning community also
propose solutions to store and exploit semantics, usually
with strong theoretical models.

Actually, a lot of approaches are based on the Kernel
Alignment [5]. The idea is to adapt a kernel matrix (which
is a particular similarity matrix) considering user labelling.
This problem can be solved using semi-definite quadratic
programming' [13], and uses a low-rank approximation of
kernel matrix. These methods seem to be interesting for
CBIR, and should be experimented in this context. How-
ever, they have been designed mostly for transduction and
clustering, i.e., two class problems. They have also a high
computational cost.

Other approaches have also been proposed — the Latent
Semantic Index and its kernel version [4]. Latent seman-
tic index are used for text retrieval, and solutions for CBIR
have been proposed [11]. They are tuned to build a repre-
sentation of the semantics from a set of user labels.

2.3. Semantic learning framework

CBIR and statistical learning approaches have each one
its advantages and drawbacks. The first one allows to mem-
orize more semantics, but with an ad hoc modeling of the
problem, which needs dedicated feedback learning. The
later one lets memorize less semantics, but strong theoreti-
cal learning models can be used for relevance feedback.

Considering all these points, we propose the following
constraints in order to build an efficient semantic learner:

e Scalability / Processing of huge databases. A com-
plexity in terms of computation and memory needs
higher than O(N) quickly bounds the scalability of a
retrieval system. For instance, a O(IN?) complexity on
current computers limits the maximum number of pic-
tures to be around 10,000.

o General framework easy to combine with relevance
feedback techniques. A lot of work has been made in
relevance feedback. Actually, several efficient methods
have been proposed. Using a dedicated relevance feed-
back method needs the rebuilding of learning models
for each specific approach.

o System must be dynamic. The update of a semantic
learner should be able to learn any semantic in any

1 Semi-definite programming allows efficient algorithms.



case. Suppose that users change their mind about some
part of the database, if the semantic learner stalls in its
current state, it becomes useless and perhaps can de-
crease system performances.

In the following sections, we propose an adaptive ap-
proach and a method considering these constraints.

3. Adaptive kernel matrix approach

One way to store semantics is to store similarities be-
tween pictures of the database, according to the system us-
age. These informations can be store in a N x N matrix K °,
with NV the database size.

3.1. Similarity matrix as a kernel

In our framework, the capability to combine the seman-
tic learning with relevance feedback methods is required.

Interactive retrieval techniques are mainly of two types:
statistical and geometrical [19, 16]. The geometrical meth-
ods refer to search-by-similarity systems [12, 17]. The ob-
jective of the statistical methods is to update a relevance
function [1, 3] or a binary classification of images using the
user annotations. Recently, statistical learning approaches
have been introduced in CBIR context and have been very
successful [19, 2].

Statistical learning method are usually kernel-based
techniques. In this paper, we are dealing with the class of
kernels k that correspond to dot product in induced space H
via a map ®:

® : RPH
x — O(z)

that is,
k(x,x") =< ®(x), ®(x') >

In practice, ®¢(x) in never computed because the induced
space may be very large, and sometimes infinite. An usual
way to perform this computation is to use the kernel trick:
build a function respecting some conditions (for instance,
Mercer’s conditions) or store all possible values of k(.,.)
on a finite input space, for instance all the pictures of a
database:
Kij = k(Xi7Xj)

The resulting N x N matrix K is called the Gram ma-
trix. This matrix is symmetric and semi-definite positive.
The Gram matrix is a particular similarity matrix.

Let D = (X;)ie1,n be the p x N matrix, for which each
column x; is a vector representation of the ¢th picture of the
database. The following matrix:

K=D'D

is the dot product matrix (i.e. K;; =< x;,%; >). Dot prod-
uct may also be seen as a similarity metric. For two close

(collinear) vectors, scalar dot product is large, and for two
far (orthogonal) vectors, scalar dot product is small.

Thus, if the similarity matrix X ° is a Gram matrix (sym-
metric sdp matrix?), we can use it as a kernel. It follows the
use of any kernel-based method for relevance feedback, or
any metric-based method with metric d defined on (x, x’)
by:

d(x,x') = k(x,x) + k(x',x') — 2k(x,x’)
3.2. Adaptive approach

In order to store semantics all along system usage, the
similarity matrix K at the end of any retrieval session ¢ can
be updated. At this step, user has provided several annota-
tions through relevance feedback. These labels are stored in
a N vector y,, with 1 value for relevant pictures, —1 value
for irrelevant pictures, and 0 value for unlabelled pictures.

These labels are semantic about the current search cate-
gory. All pictures with a 1 value in y; are in the same cate-
gory and all pictures with a —1 value in y are not in the cat-
egory. Thus, we can build a new similarity matrix gy, (K7)
according to y;, with gy, a matrix operator.

Assuming that gy, (K;) correctly stores all the seman-
tic in y¢, we should not replace the current similarity matrix
by this one. Several possible categories can be found on the
same database, and all these categories do not build a clus-
tering: many pictures can be in several categories. In order
to grasp this polysemic meaning, we choose an adaptive ap-
proach. We combine the current semantic with the new one
using a weighted sum:

Kiy = (1= p)K} + pgy, (KY) (D

where weight p € [0, 1] is the vigilance parameter. This pa-
rameter is the amount of changes one which to apply to cur-
rent knowledge —how much system must handle new labels.
This parameter can not be removed from such a system, for
trivial reasons. It must be tuned according to a given appli-
cation. If labels come from an expert, p should be high. If
labels come from an anonymous user (for instance, a per-
son seeking pictures on the internet), p should be low.

Thus, after each retrieval process ¢, the current similar-
ity matrix is updated according to user labels. This similar-
ity matrix is representing the average semantic provided by
users.

4. Semantic kernel

In the previous section, we assumed that the matrix op-
erator gy, (.) introduced in eq. 1 correctly stores all the se-
mantic in y;. This section proposes a choice for gy, (.).

2 sdp denotes semi-definite positive.



The aim of the gy, (.) operator is to return a sdp matrix
integrating the y; semantic. A first choice of gy, (.) should
be this one:

Gy, (Kts) = yty{t

Such a matrix explicitly catches the semantic expressed in
y:. However, we are in a global semantic update scheme.
This matrix stores high similarity between relevant pictures,
low similarity between relevant and irrelevant pictures, but
also high similarity between irrelevant pictures. Consider-
ing a database with only 2 categories, high similarity be-
tween irrelevant pictures would not be a problem, but in our
case, we have no assumption about this.
We propose to use the following matrix:

1 ifiel”
E=uu withu; ={ —v ifiel”
0 otherwise

where v € [0, 1] is the joint of irrelevant data parameter, I+
the indexes of positives values of y;, and I~ the indexes of
negatives values of y;.

The E matrix has close to zero similarity between irrele-
vant pictures (72), and low similarity between relevant and
irrelevant pictures (—7).

In order to speed up the learning of the semantic, we pro-
pose to use a matrix 7' to propagate new semantic in the ker-

nel matrix:
T 0
T= < 0 Id )

with 7T = q%r, gt = |I"|. We suppose in this representa-
tion of 7', that all relevant labels have indexes in [1, ¢].

Computing TK;T’ averages the relevant row/columns
of the kernel matrix. All relevant pictures will have the
same similarity between each other, and also the same self-
similarity. All relevant pictures will have the same similar-
ity with all other pictures.

The use of these matrices leads to the following opera-
tor:

9y, (K}) = a x (TK;T' + bE) 2)

witha,b € RT,

The matrix returned by gy, is symmetric sdp, because
of the following properties of symmetric semi-definite pos-
itive matrices: Let M be a N x N symmetric matrix:

o Missdp < ¥x € RN, x’Mx > 0;

e M is sdp <= eigenvalues of M are positives or zero;

e Let Ebea N x N symmetric sdp matrix. Then: M is
sdp = M + E is symmetric sdp;

e Let T'be a N x N matrix. Then: M is sdp = TMT’
is symmetric sdp.

We compute b such as relevant diagonals of TK;T" +
bE are 1,and a suchas >, (K7 )i = D55 (57)ije

5. Kernel computation
5.1. Kernel matrix decomposition

The whole N x N kernel matrix can not be stored in
memory — such an approach would not be linear with the
database size.

In order to compress the information included in this ma-
trix, we propose to use a low-rank approximation of this
one. As the kernel matrix is real and symmetric, we are
able to compute its eigendecomposition. The approximation
consists of keeping the m largest eigenvalues:

K$ = ViV 3)

with V; as the N x m eigenvector matrix, and A; the m x m
eigenvalue diagonal matrix.

This algebraic approximation should however preserve
most of the information (sometimes it can even be the ex-
act development of the whole matrix). The tuning of m pa-
rameter will be discussed in the experiment section.

Assuming that m < N, the storage of K ° is considered
as linear with the size of the database.

5.2. Iterative scheme

This section proposes a method to compute K}, 4, with
a complexity linear to the database size. We denote by I the
indexes of non-zero values of y;, ¢ = |I|. For sake of sim-
plicity, we suppose that the g first values of y, are the non-
zeros values (I = {1, ..., ¢}).

Thanks to Eq. 1 and Eq. 2, K}, ; may be expressed as
follows:

Kin = (1-pK;+pg(K;)
= (1-p)K; + pa(TK;T' 4 bE)

We have to develop this expression in order to find an ap-
proximation compatible with our constraints.
First, we use the eigendecomposition of K (cf. Eq. 3):

2o = (L= pVIAV! + pa(TVIAV/T' +bE) ()

Our solution aims at computing the eigendecomposi-
tion of K}, in an efficient way. That will allow us to ap-
proximate K7}, ; using only the m largest eigenvalues. The
scheme may be iterated in that way.

A straight eigenvalue decomposition is not feasible. As
one can see in Eq. 4, there is no simple way to compute
Ai4q and Viqq from A; and V;. We propose a matrix fac-
torization and an adapted (Q R decomposition to reduce to a
small eigendecomposition problem:

K;, = ABA
with the N x (¢ + 2m) matrix A:
A= (1d TV, V)



and the (¢ + 2m) x (g + 2m) matrix B:

pabFE 0 0
B = 0 pal; 0
00 (1-pA

The QR decomposition of A (detailed in Appendix A) leads
to a smaller eigenproblem. Indeed, if A = QR, with @ an
orthonormal N x (¢ +m) matrix, and R an upper triangular
(g +m) x (g + 2m) matrix, then it follows that:

K:,, = ABA

QRB(QR)'

= Q(RBR)Q’
UMU’

= (QU)M(QUY

with UMU’ is the eigendecomposition of the (m + ¢) x
(m + ¢) matrix RBR'.

Finally, we approximate K, ; with its m largest eigen-
values:

S~ !
K = Vi A Vi

with:
A = M(J,J)
Vier = (QU)(:, J)

J indexes of m largest eigenvalues of RBR'.

5.3. Constraints
This method deals with the constraints of the problem:

e Scalability / Processing of huge databases. The opera-
tion which depends on the database size (/V) are:

- QR decomposition of V%: O((N — q)m?);
— Computation of QU: O(N(m + q)?).

With N = 100, 000, ¢ = m = 50, this update needs
12s to compute with a Pentium 3GHz.

o General framework easy to combine with relevance
feedback techniques. Because this method keep semi-
definite positive property, any kernel based method can
be used;

e System is dynamic. The computation of a such as
> (Ki)ij = 224 (K7)i; allow this update to be
repeated indefinitely. The kernel matrix will never di-
verge to a zero or infinite matrix. Because a < 1, all
diagonals of kernel matrix will always be lowered at
each update. Thus b > 0, and E is always added.

6. Experiments
6.1. Feature Distributions

Color and texture information are exploited. L*a*b*
space is used for color, and Gabor filters, in twelve dif-
ferent scales and orientations, are used for texture analy-
sis. Both spaces are clustered using an enhanced version of
LBG algorithm [15]. We take the same class number for
both spaces. Tests have shown that ¢ = 25 classes is a good
choice for all our feature spaces. Image signature is com-
posed of one vector representing the image color and tex-
ture distributions. The input size p is then 50 in our experi-
ments.

6.2. Image Database

Tests are carried out on the generalist COREL photo
database, which contains more than 50,000 pictures. To
get tractable computation for the statistical evaluation, we
randomly selected 77 of the COREL folders, to obtain a
database of 6,000 images. To perform interesting evalua-
tion, we built from this database 11 categories3 (cf. Table 1)
of different sizes and complexities. The size of these cat-
egories varies from 111 to 627 pictures, and the complex-
ity varies from monomodal (low semantic) to highly mul-
timodal (high semantic) classes, relatively to feature vec-
tors. Some of the categories have common images (for in-
stance, castles and mountains of Europe, birds in savannah).
For any category search, there is no trivial way to perform a
classification between relevant and irrelevant pictures.

6.3. Performance Metric

The CBIR system performances are measured using pre-
cision(P), recall(R) and statistics computed on P and R for
each category. Let us note A the set of images belonging to
the category, and B the set of images returned to the user,
then: P = % and R = |A‘2f‘. Usually, the cardinality
of B varies from 1 to database size, providing many points
(PR).

We use the average precision P, which represents the
value of the P/R integral function. This metric is used in
the TREC VIDEO conference*, and gives a global evalua-
tion of the system (over all the (P,R) values).

For each evaluation of performances on one of the cat-
egories, a robot simulates the usage of the system. Simula-
tion start with 1 relevant image, randomly choosen in one

3 A description of this database and the 11 categories can be found at:
http://www-etis.ensea.fr/~cord/data/mcorel.tar.gz. This archive con-
tains lists of image file names for all the categories.

4 http://www-nlpir.nist.gov/projects/trecvid/



of the 11 categories. The robot labels 10 pictures accord-
ing to the active learner, during 5 feedback steps. At the
end of this search, the training set has 51 labels (0.85% of
database size). For each category, 100 retrieval processes
are simulated, and as many P, values are computed. Aver-
age precision is then computed on the average of the 100 P,
values.

6.4. Relevance Feedback Method

The relevance feedback method used in these experi-
ments is the RETIN AL method [9]. This method uses
a kernel-based classification method (Support Vector Ma-
chines) to discriminate between the relevant and irrelevant
pictures. It also uses an active learner to choose the best im-
ages to label. A comparison of this method to several other
relevance feedback methods has proven its efficiency [8].

Semantic kernel matrix K is initialized with the dot
product between each picture distributions:

io=D'D

with D = (x;);e[1,n] the p x N distribution matrix, for
which each column x; is a vector representation of the ith
picture of the database.

Next, at each end of a retrieval process, the semantic ker-
nel matrix is updated according to user labels.

6.5. Experiments

The semantic kernel matrix has m = p = 50 eigenval-
ues, in order to initialize it with no approximation. Vigilance
parameter p is set to 0.1, and joint of irrelevant data param-
eter -y is set to 0.1.

First experiments are the performances of the system
with no semantic learning ((cf. Table 1)). Next, system us-
age is simulated with a semantic kernel update at the end of
each retrieval process. Initialization, number of labels per
feedback, and number of feedback steps are the same than
in the performance evaluation. Thus, ¢ = 51 in the proposed
algorithm. This simulation is repeated several times start-
ing randomly from any picture from one of the categories.
At 1000, 2000, 3000, 4000 and 5000 semantic kernel up-
dates, system performances are computed as described pre-
viously, and reported in Table 1.

First, one can notice that the system performances are
category dependent. Results on birds category are very low
in comparison to performances on doors category. This can
be explained by the capabilities of the low-level features to
represent well the semantic categories. For instance, birds
images have very few common colors and textures, while
doors images have many common features (horizontal and
vertical textures).

Figure 1. Images 1-30 returned at ¢t = 0 (no se-
mantic kernel update) for the mountains cat-
egory.

Performances converge after a large number of updates.
This is explained by the behavior of the active learner.
As kernel is updated according to the labels at the end
of a retrieval process, and these labels depend on the ac-
tive learner, then the kernel update also depends on the ac-
tive learner. The active learner we use in these experiments
has not been made to deal with the semantic kernel up-
date scheme. Thus, with a category initially highly clus-
tered according to feature vectors (for instance, birds cat-
egory), this active learner usually does not seek far enough
to catch two pictures in two clusters of the same category.
However, when it happens, both clusters are joint and per-
formances quickly rise (for instance, dogs category between
0 and 1000 updates). For any category, the more the kernel
is updated, the higher the performances are.

Statistical evaluation based on P, gives average results
for all the recall values. To better illustrate the efficiency of
semantic learning, we also report from Figure 1 to Figure 3
the top precision with or without semantic kernel updates.
Figure 1 shows the first images returned by the system with
no semantic kernel update. In accordance to the feature dis-
tributions, mountain pictures are returned, but also some
pictures with a different semantic (fish, for instance). Af-
ter 5000 uses of the system, the first images returned by the
system with the same labels are only mountain pictures (cf.
Fig. 2). The first non-mountain picture is the 139th image
returned by the system (cf. Fig. 3).

7. Conclusion

In this paper, a semantic learning approach for image
database processing is proposed. The method aims at merg-



Categories Ave. Precision vs semantic kernel updates
name size description 0 | 1000 | 2000 | 3000 | 4000 | 5000
birds 219 birds from all around the world 9 14 27 28 31 34

castles 191

modern and middle ages castles

12 | 16 33 47 50 51

caverns 121 inside caverns

45 | 61 71 76 75 76

dogs 111 dogs of any species 15| 52 72 71 72 73
doors 199 doors of Paris and San Francisco 80 87 92 95 96 95
Europe 627 European cities and countryside 21 | 26 33 36 40 44
flowers 506 flowers from all around the world 48 62 71 77 81 82
food 315 dishes and fruits 34 47 65 79 81 85

mountains | 265 mountains

26 | 38 46 66 70 78

objects 116

single objects on an uniform background | 54 | 70 74 73 73 78

savannah | 408

animals in African savannah

29 | 33 57 67 73 76

Table 1. Average precision for each category, after 0,1000,2000,3000,4000 and 5000 semantic ker-
nel updates. Simulation protocol for each precision/recall computation: initialization with 1 relevant
image, 10 annotations per feedback, 5 feedback steps.

Figure 2. Images 1-30 returned at ¢ = 5000
(5000 semantic kernel updates) for the moun-
tains category.

Figure 3. Images 121-150 returned at ¢ = 5000
(5000 semantic kernel updates) for the moun-
tains category.

ing all the semantic information based on binary annota-
tions provided by users during retrieval sessions.

All the semantic annotations are used to update the simi-
larity matrix of the database images. We adopted the kernel
matrix framework to develop our method. This strong the-
oretical framework offers nice properties on matrices and
efficient combinations with kernel-based techniques for im-
age retrieval classifiers.

To deal with practical implementations, an efficient alge-
braic scheme has been carried out to compute the kernel ma-
trices with an acceptable computation complexity. We keep
under control the required memory space and the algorithm

complexity, which is linear to the database size. This last
point is decisive for scalability. The proposed method al-
lows the processing of huge databases.

The method has been validated through experiments in
an images category retrieval application. The results show
the efficiency of the proposed method which may be used
as a powerful tool to improve performances.

The framework of semantic kernel building and adap-
tation is large. We have proposed one application related to
on-line image category retrieval, but many applications may
be concerned. Actually, any approach dealing with seman-
tic information and metrics may take advantages of such



a kernel framework. Our current investigations aims at us-
ing these kernels for browsing and off-line clustering of the
database.

Appendix A
QR decomposition of A

This part presents the QR decomposition of the follow-
ing matrix, according to notations in section 5:

A= (Id TV, V)

We denotes by V! = Vi(I,:) the labeled rows of V;, and
V% = Vi(1,:) the unlabeled rows of V;. According to the
previous assumption that I = {1, ..., ¢},

Vl
()

If Q“R" is the QR decomposition of V', then:

A = (Id TV V)
Id TVt V!
0o v yu
B Id 0 Id Ttvt v!
- (5 o) (8T )
Q R

because we assume that m < N, @) is an orthonormal N x
(¢+m) matrix, and R is an upper triangular (¢+m) x (g+
2m) matrix.
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