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ABSTRACT
In this paper, a kernel-based method for multi-object re-
trieval in large image database is presented.
First, our approach exploits a fuzzy region segmentation ap-
proach in order to get robust local feature extraction and
characterization. All the region features are summarized in
bags representing the image index. The main part of this
work concerns the kernel functions to deal with sets of fea-
tures. Based on the linear combination of minor kernels, a
family of kernels on bags is introduced. Several weighting
schemes and combinations are proposed. Their introduction
are motivated in the specific context of dealing with multi-
object recognition with heterogeneous background. Com-
bined with SVMs classification and interactive online learn-
ing framework, the resulting algorithm satisfies the robust-
ness requirements for representation and classification of ob-
jects. Experiments and comparisons demonstrate the good
performances of our multi-object retrieval technique.

1. INTRODUCTION
Powerful strategies have been proposed for object catego-

rization and retrieval in the last decade. Significant progress
in object recognition including variation in poses, presence
of clutter, occlusion and varying lighting conditions has
been achieved. However, the problem remains very hard
when considering multi object categorization and retrieval.
Databases may be very large, with many objects embedded
in large images with heterogeneous background.
In this context, object retrieval systems have to combine two
main requirements:
• Effective data representation. Local-based image analysis
are usually preferred to global ones in order to better grasp
the relevant features characterizing the embedded objects.
Many papers focus on these local feature detection, and very
efficient techniques are now available, such as point of inter-
est approaches (PoI) [9] or region-based techniques [1]. The
main question is then: how to get an effective image signa-
ture from them ? Instead of computing a vector signature,
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working explicitly on a set of local features (a bag) consti-
tutes an alternative way to represent an image that offers
very interesting new possibilities for data comparison and
classification. Kernel methods allow to develop new similar-
ity between bags.
• Effective classification strategy. Combined with kernel-
based data representations, SVMs are state-of-the-art large
margin classifiers which have demonstrated remarkable per-
formance in object recognition.

We propose in this paper to investigate the kernel frame-
work to deal with multi-object retrieval in large databases.
First, we propose to represent each image as a bag of fuzzy
regions. Using fuzzy regions is a robust strategy to extract
local information from images that match to objects or ob-
ject parts. Next, local features computed on fuzzy regions
are summarized in bags.

The main contribution of this paper is the introduction
of specific classes of kernels on bags of features. We first
motivate the approach of not building a feature map for
bags, and then organize our kernel-based analysis around
two points: the choice of the minor kernel, and the way to
develop some kernels on bags that are Mercer kernels. The
resulting algorithm satisfies the robustness requirements for
representation and classification. Several experiments and
comparisons have been carried out on a database of ob-
jects from the Columbia database with heterogeneous back-
grounds. The RETIN active learning framework previously
introduced in [3] is used to investigate the performance of
our kernel-based learning algorithm for online object re-
trieval.

2. BAG-OF-FEATURES KERNEL FRAME-
WORK

Before detailing the segmentation process in the next ses-
sion, we develop here kernel framework that we are consider-
ing. Based on the region feature computation, each image is
represented as a bag Bi of unordered vectors bri. If hetero-
geneous backgrounds are considered, several feature vectors
are relevant for object characterization, many are irrelevant
or let’s say noise. The next step is now to consider similarity
functions between them. The major aim is to find the set of
local descriptors that discriminates an object from other ob-
jects and from the background. In other words, we have to
detect within the bag Bi which feature vectors are relevant.

An interesting and quite generic way to build functions



on bags is the one introduced in [11]:

K(Bi, Bj)
△
=
X

r

X

s

k(bri,bsj) (1)

When this function K on bags is based on a kernel func-
tion k on vectors (called minor kernel), it is easy to prove
that K is also a kernel: let φ be the mapping into a Hilbert
space H associated to the kernel function k:

k(bri,bsj) = 〈φ(bri), φ(bsj)〉

From this statement, we have:
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It follows that the mapping function Φ(Bi) defined as:

Φ(Bi) =
X

r

φ(bri)

allows to write K as the corresponding dot product in the
induced space:

K(Bi, Bj) = 〈Φ(Bi), Φ(Bj)〉

A problem when considering this class of kernels is the
computational complexity with large bags. For PoI ap-
proaches, where 100 to 1000 vectors are usually required,
several propositions have been made to reduce this com-
plexity. A common strategy is to build a model of the bags,
and next propose a kernel function for these models. For in-
stance, in [6], Gaussian functions are used to represent bags,
and a Bhattacharyya kernel to compare them. Another way
is to represent a bag as a distribution of prototypes of points
of interest [5, 4]. The main drawback is that the mapping is
explicit in that case. To deal with the computational com-
plexity, we have selected a different strategy, which is to
work with regions : an image can be efficiently represented
using around 10 times less regions than points of interest.

Furthermore, the definitive advantage is that the potential
of the kernel framework is preserved. We focus on the design
of the kernels. In this scope, we address the two major points
of kernel design:
• The choice and the tuning of the minor kernel function;
• The combination of these minor kernels to build a bag
function which satisfies Mercer’s conditions.

In this framework, we present bags using fuzzy regions,
existing propositions for kernels on bags in the literature,
and in the next section our solutions to enhance them.

3. REGION-BASED FEATURE REPRE-
SENTATION

In the same way as the human visual system perceives
coarse zones with their approximate colours and sizes, we
build regions which roughly correspond to the main colour
parts of the image. Despite the fact that our visual system
does not perform an accurate segmentation of the scene, the
recognition of a landscape or a painting is instantaneous.
Differently from the other systems which use regions [1], we
use a segmentation into fuzzy regions. The main advan-
tage is to be able to segment any image, even in difficult

(a) (b) (c)

Figure 1: An example of fuzzy segmentation. (a)
Original image. (b) Defuzzified regions (only used
for display). (c) One of the fuzzy regions (the
whiter, the higher the membership degree).

cases, when there is no clear limit between some parts of
the objects. Fig. 1 shows an example of fuzzy segmentation.
Also note that, compared to points of interest (PoI) [9, 7],
the region-based representations are able to provide a very
compact local representation : where hundreds to thousands
of PoI are usually required, only a few dozen of regions are
necessary for an image.

3.1 Fuzzy segmentation algorithm
Details of the algorithm of fuzzy segmentation are given

in [10]. Extracted regions have the following properties :
uniformity in terms of colour, contained expansion by high
gradient norms, uncertainty where two (or more) regions
encounter.

The algorithm first performs a watershed algorithm on the
image of gradient norms, the uniform areas (of null colour
gradient norm) constitute the cores of the fuzzy regions.
The membership degrees of pixels to regions are then com-
puted using the topographic distance to these cores, which
is defined as the length of the shortest path connecting the
pixel to the core, along the surface constituted by the gra-
dient norm in the 3D space. The degrees slowly decrease
according to the spatial distance to the core and strongly
decrease when meeting an edge, zone of a large gradient
norm. Impulse noise is bypassed, because a shorter path is
found around it.

3.2 Region indexing
Each image i of the database is represented with a bag

Bi = {bri}r of regions bri. Vectors bri are the concatena-
tion of 4 histograms of 8 bins each, 1 for colors and 3 for
textures. Histograms are obtained for each bin by adding
the membership degrees of the pixels to the region. Thus
pixels with small membership degrees belonging to transi-
tions or outliers inside a region have little influence on the
histogram shape.

4. PREVIOUS WORKS ON MATCHING
KERNELS

The first approach for building kernels on bag is to find
match-based similarity functions which satisfy Mercer’s con-
ditions. In this framework, a minor kernel function k(br,bs)
is used as a matching function, i.e. a function that returns
a high value if br and bs are similar.

The simplest case is the function which returns the value
of the best match between the vectors of two bags, thus the
highest similarity between two feature vectors:

K(Bi, Bj) = max
r

max
s

k(bri,bsj) (2)

This function does not satisfy Mercer’s conditions, al-



trough in pratice it achieves good performances.
In Multiple Instance Learning framework, it is known that

a single match is not sufficient for a good discrimination [2].
The idea is then to build a similarity function that includes
several matches, for instance the average value of the best
matches for each region [14]:

K(Bi, Bj) = 1
|Bi|

P

r
maxs k(bri,bsj)

+ 1
|Bj |

P

s
maxr k(bri,bsj)

(3)

Again, this function is not a kernel function. An approx-
imation as been proposed in [8] :

K(Bi, Bj) = 1
|Bi|

1
|Bj |

P

r

P

s k(bri,bsj)
q

(4)

However, when q → ∞,this kernel is similar to function
of Eq. 3, except that the minor kernel is raised to power q :

1
|Bi|

P

r
maxs k(bri,bsj)

q+ 1
|Bj |

P

s
maxr k(bri,bsj)

q. With

large values of q, this kernel tends to have no generalization
capacity, just like a Gaussian with a very small σ.

5. PROPOSITIONS
In this section, we first propose two kernels on bag func-

tions which aim at approximating the search of the best
matches. Next, we propose to work on the minor kernel
function, in order to take into account the dependencies of
vectors in the same bag.

5.1 Kernel on Bag
The function of Eq. 2 returns the value of the best match

between the feature vectors of two bags. This function is
not a kernel function, but can be approximated using the
following function, inspired from Minkowski distance, with
high values of q:

K(Bi, Bj) =

 

X

r

X

s

k(bri,bsj)
q

! 1

q

(5)

As Minkowski distance tends to be the L∞ distance as
q → ∞, this kernel function tends to be the function of
Eq. 2 as q → ∞.

Let us note that another interest of this function is that
it includes the parameter q, which allows a tuning between
two extrema : the case q = 1, where the function returns
the average value of the matches, and q = +∞, where the
function returns the highest value of the matches. Let us
also note that, because of the power 1

q
, this kernel on bags is

also usable on minor kernels that return positive values. But
this is not really a problem in our context where histograms
are generally used for the description of regions.

We also propose an approximation of the function of Eq. 3,
which returns the average value of the best matches:

K(Bi, Bj) = 1
|Bi|

P

r

`
P

s k(bri,bsj)
q
´ 1

q

+ 1
|Bj |

P

s

`
P

r k(bri, bsj)
q
´ 1

q

(6)

We are not able to state if these functions satisfies or not
the Mercer’s conditions, altrough in pratice it achieves good
performances.

5.2 Minor kernels
We propose to use a modified version of the Gaussian

kernel with a χ2 distance:
Gaussian χ2: k(br,bs) = exp

“

− 1
2σ2

P

t

(btr−bts)2

btr+bts

”

This minor kernel, that we call “Gaussian χ1”, is similar
to the χ2, except that we replace the squared difference with
an absolute difference:

Gaussian χ1: k(br,bs) = exp
“

− 1
2σ2

P

t

|btr−bts|
btr+bts

”

The advantage of this kernel function is the indepen-
dence to the bias : for any positive diagonal matrix ∆,
k(∆br, ∆bs) = k(br, bs). Thus, no bias normalization pro-
cess is required, which is very interesting for applications
where the test data is not available.

5.3 Weighting feature vectors in bags
We propose in this section to include the fact that feature

vectors within the same bag are not independent. To achieve
this, we add a weight factor αri for each feature vector bri:

φ̂(bri) = αriφ(bri) (7)

Within this context, the first question is to find general
rules for relevant weights. An important point is the noise
generated by redundant feature vectors. In the same image,
many similar regions can be present at the same time. The
similarity of this image to another one is then highly based
on these similar regions, and the matching of a singular one
is lost within this context.

Hence, we propose to reduce these effects by increasing
the importance of the singular feature vectors. The idea is
to attribute a high value to a feature vector r which differs
at most from the feature vectors in its own bag i:

αri =
1

P

t
k(bri,bti)

(8)

More generally, we can see this equation as :

αri =
1

K({bri}, Bi)
(9)

Where K is the basic kernel on bags (Eq. 1) applied on bag
{bri} and bag Bi. Then, K returns how much the feature
vector {bri} matches its own bag Bi. Let us note that we
have only experimented this weighting approach with the
basic kernel on bags, but we are planning to experiment
other kernels on bag in the future.

These weights can be included into any kernel on bags,
for instance the basic kernel on bags (Eq. 1) :

K̂(Bi, Bj) = 〈Φ̂(Bi), Φ̂(Bj)〉

= 〈
P

r
φ̂(bri),

P

s
φ̂(bsj)〉

=
P

r

P

s
〈αriφ(bri), αsjφ(bsj)〉

=
P

r

P

s
αriαsjk(bri,bsj)

In other words, this leads to the replacement of the minor
kernel k(bri, bsj) with k̂(bri,bsj) = αriαsjk(bri,bsj).

6. KERNELS EVALUATION

6.1 Database setup
Columbia database has been widely used to evaluate ob-

ject recognition methods. With 100 objects, and 72 shots
from different points of view for each object on a homoge-
neous black background, it turns out that most of the meth-
ods now achieve high performances with very few training
data.

In order to retrieve objects in a much more realistic
scenario, we built a synthetic database with objects from



Figure 2: Objects of Columbia database on random
backgrounds.

Columbia and background from the Washington database1.
We randomly selected 12 views of 50 different objects
from the Columbia database, removed the background, and
embedded them on images of the Washington database
(rescaled to a fixed size). The final database contains 600
images. All these backgrounds have very heterogeneous con-
tent. Examples are shown in Fig.2. In [8], Lyu also considers
an extended database with objects. The one we built for our
experiments is comparable to the Lyu’s one, except that the
objects are much smaller in our final database, making the
problem much harder.

6.2 Experimental setup
The computation of the fuzzy regions requires a main pa-

rameter which is the number of regions the algorithm should
return. As it depends on the level of detail expected by the
user, it is specified by an interval. We tested several sizes
and found that the interval [5, 15] of fuzzy regions is robust
for this kind of images. Each region is represented by 4
histograms, one of 8 chrominances values from CIEL⋆a⋆b⋆,
and 3 of 8 textures from Gabor filters for 3 different scales.

Thanks to the kernel functions on features, we train SVM
classifiers to discriminate images that contains or not the
query object. This also allows us to use active learning,
whose huge interest for interactive search is now well known
[12]. In the following experiments, we use a precision-
oriented active learning technique [3]. Each retrieval ses-
sion is initialized with one image containing the object the
user is looking for (cf. Fig. 3). Next, 5 images chosen by
active learning are labelled with binary annotations (pos-
itive: the image contains the query object, negative: the
image does not contain the query object). This process is
repeated 5 times. At the end of retrieval session, the size of
the training set is then 26 labels. Performances are evalu-
ated with the Mean Average Precision, i.e. the sum of the
Precision/Recall curve2.

6.3 Maximum functions
We first experimented the Maximum function (Eq. 2) and

the Average of Maximum function (Eq. 3) with different
minor kernels. Results are shown on Fig. 4(a) and (b).
Globally, one can see that the Average of Maximum is more

1http://www.cs.washington.edu/research/imagedatabase/
2cf. TREC VIDEO conference:
http://www-nlpir.nist.gov/projects/trecvid/

Figure 3: The RETIN graphic user interface. Top
part: retrieved images; Bottom part: images se-
lected by the active learner.

interesting than the Maximum function, certainly because
a single region is not always sufficient to discriminate an
object. Comparing minor kernels, the Gaussian-based ker-
nels are the most interesting, especially the Gaussian kernels
with χ1 or χ2 distances. This can be explained by the fact
that Gaussian-based kernels are good matching functions,
as soon as the image of the feature space is an hypersphere
of H. In other words, when two feature vectors match, the
value returned by a Gaussian-based kernel is always close to
1, independently to their norm.

Next, we modified these two bag functions with the
weighting approach proposed in section 5.3. Results are
shown on Fig. 4 (a’) and (b’). In many cases, this in-
creases the performance by around 10%, especially with the
Gaussian-based kernels. Again, this result is due to the ca-
pacity of these kernels to behave like a matching function.

6.4 Power kernels
We experimented the Power kernel (Eq. 5) which is the

approximation of the Maximum function, and the Aver-
age Power function (Eq. 6) which is the approximation of
the Average of Maximum function. We only tested for the
most relevant minor kernel found during the previous exper-
iments: Gaussian χ1, χ2, L2, and the Triangle kernel. We
first confirmed that the power kernels are good approxima-
tions of maximum function, since their behavior tends to be
the same with high values of q. Next, we carried out sereval
runs to tune the parameter q in these functions. Results are
shown on Fig. 4(c) and (d). Concerning the Power kernel,
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best parameters tuning.

the tuning of parameter q is interesting, since the perfor-
mances are enhanced. However, for the Average of Power
function, the best q were the highest ones, which means that
the Average of Maximum is the most efficient function.

We also tested these kernels with the weighting approach
proposed in section 5.3. Results are shown on Fig. 4(c’) and
(d’). Again, we observe an increase of around 10%.

6.5 Comparison of kernels on bags
We summarized in Fig. 5 the results of each kernel on bags

with the best parmater tuning :
• Maximum, weighting approach, Gaussian χ2

• Average of Maximum, weighting approach, Gaussian χ2

• Power, q = 1.6, weighting approach, Gaussian χ2

• Average of Power, q = 5, weighting approach, Gaussian
χ2

• Lyu’s kernel [8], q = 1.4, weighting approach, Gaussian χ2

It turns out that Power, Average of Power and Average of
Maximum have the same performances, followed by Lyu’s
kernel and the Maximum. This shows the interest of the
Power kernel which, after a good tuning, provides excellent
performances while being a true kernel function. However,
efficiency speaking, the Average of Maximum is the most
interesting, despite it is not a true kernel function, it does
not require any paramater tuning, except for the choice of
the minor kernel.

7. OTHER EXPERIMENTS

7.1 Feature comparison
We compare local features computed on regions to global

features which represent an image with a single histogram of
colors and textures [3]. We can see on Fig. 6 that local repre-
sentations clearly outperform the global one. We also com-
pare our fuzzy region indexing technique to the well-known
approach combining MSER region detectors and SIFT de-
scriptors[9]. We built two sets of MSER/SIFT descriptors,
one with around 100 points per image, and another one with
around 10 points per image. We also tested the different ker-
nels for MSER/SIFT, and the same conclusions about the

0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

Number of training samples

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

~100 x MSER/SIFT (86.3%)
~10 x Fuzzy regions (82.3%)
~10 x MSER/SIFT (45.6%)
Global histograms (39.4%)

Figure 6: Performances with different features.

best kernel on bags and minor kernel were found (any ker-
nel on bags except the Maximum, weighting approach, and
Gaussian χ2). With around 100 PoI per image, our kernel
on bags technique performs better than when using region
features. However, for equal numbers of features (around
10), the kernels on bags of regions performs significantly
better. Thus, in terms of computational complexity, using
bags of around 10 regions is more interesting for real appli-
cations since it provides performances a little lesser to 100
MSER/SIFT, but runs 100 times faster.

7.2 An example of retrieval session
We present in this section an example of interactive search

of all images containing a specific object with our graphic
user interface (cf. Fig. 3). The session is initialized with
one image containing the query object, a white plastic cat.
As one can see on Fig. 7(a), the first returned image is a
red truck on exactly the same background - which is not
surprising since this produces perfect matches3. Next, we
labeled the images selected by the active learner, and then
we asked for an update of the ranking (green squares on
Fig. 7(b)). At this step, we get 9 out of the 12 images that
contain our object. Notice that in the 3 last images, there
is one with exactly the same background than one of the
positive labeled images. The two other ones are images with
a lot of sky, which is very present is every images we labeled
as positive. Then, labeling these images as negative drops
off the sky features, and brings two images with our object,
and a last one with a green background (Fig. 7(c)). This
shows the behavior of the system - in case of redundant
features, it assumes that they are relevant for the object.
Finally, we update the ranking with new labels, and get the
12 objects of the class (Fig. 7(d)).

8. CONCLUSION
A kernel framework to deal with database object retrieval

is presented in this paper. The database objects we are deal-
ing with are embedded in images with heterogeneous back-
ground. Our approach is based on local feature analysis:

3On this database, we have several images with exactly the
same background from the Washington database.



first, a fuzzy segmentation is proposed to get fuzzy regions
with overlapping. The process includes a region merging
step to better control the final number of region, and is thus
fully automatic. The segmentation is coarse, edges are in-
accurate when there is no sharp gradient, regions overlap
somewhat. But this inaccuracy is compensated by the fea-
ture computation which takes into account the membership
degres of the pixels In comparison to point of interest ap-
proaches, the required number of local features to get an
efficient representation of an image is quite smaller.
Region characterization next provides bags of feature vectors
for each image. The resulting bags of features are matched
thanks to a new class of kernels on sets to deal with images
composed of objects with heterogeneous background. These
kernels highlight the best local matches between features, so
that they efficiently overcome the artifacts introduced by the
background features. Results show that our approach is able
to perform object retrieval in complex databases with het-
erogeneous backgrounds. The local region-based approach
combined with powerful kernels designed on bags performs
very well and provides a nice tradeoff between retrieval and
computational efficiency.
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Figure 4: MAP(%) with each kernel on bags, for different minor kernels.



(a) Initial ranking with one query image.

(b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 7: An example of retrieval session. Initialization with 1 image, 5 labels per iteration according to the
active learner.


