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KERNELS ON BAGS OF FUZZY REGIONS FOR FAST OBJECT RETRIEVAL
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⊤ETIS / CNRS, 6 ave du Ponceau, 95014 Cergy, France
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ABSTRACT

We propose in this paper a general kernel framework to deal
with database object retrieval embedded in images with het-
erogeneous background. We use local features computed on
fuzzy regions for image representation summarized in bags,
and we propose original kernel functions to deal with sets of
features and spatial constraints. Combined with SVMs clas-
sification and online learning scheme, the resulting algorithm
satisfies the robustness requirements for representation and
classification of objects. Experiments on a specific database
having objects with heterogeneous backgrounds show the per-
formance of our object retrieval technique.

Index Terms— Information retrieval, Learning systems,
Interactive systems, Object recognition, Machine vision

1. INTRODUCTION

Significant progress in the performance of object catego-
rization and retrieval systems has been achieved in the last
decade. Powerful strategies have been proposed for object
recognition in different poses, in the presence of clutter,oc-
clusion and varying lighting conditions. However, the prob-
lem remains very hard when considering object categorization
and retrieval. Databases may be very large, with many objects
embedded in large images with heterogeneous background.

In this difficult context, object retrieval systems must sat-
isfy two main requirements: an effective data representation
based on local descriptors in order to catch the object char-
acterization, and an effective classification strategy. Many
papers focus on the representation of local features in im-
ages, and very efficient techniques are now available, such
as points of interest approaches [1] or region-based tech-
niques [2]. SVMs are state-of-the-art large margin classifiers
which have demonstrated remarkable performance in object
recognition.

We propose in this paper a general kernel framework
to deal with object retrieval. We use local features com-
puted on fuzzy regions for image representation summarized
in bags, SVMs for classification [3], and we combine these
two successful approaches via the introduction of a specific
class of kernels on bags of features. The resulting algorithm
satisfies the robustness requirements for representation and
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Fig. 1. An example of fuzzy segmentation. (a) Original im-
age. (b) Defuzzified regions. (c) Fuzzy region 11.

classification. We present several experiments on a specific
database built from the well-known Columbia database when
adding heterogeneous background. The RETIN active learn-
ing framework previously introduced in [4] is used to investi-
gate the performance of our kernel-based learning algorithm
for online object retrieval.

2. REGION-BASED FEATURE REPRESENTATION

In the same way than the human visual system perceives
coarse zones with their approximate colors and sizes, we build
regions which roughly correspond to the main color parts of
the image. Despite the fact that our visual system does not
perform an accurate segmentation of the scene, the recogni-
tion of a landscape or a painting is instantaneous. Differently
from the other systems which use regions [2], we use a seg-
mentation into fuzzy regions. The main advantage is to be
able to segment any image, even in difficult cases, when there
is no clear limit between some parts of the objects. Fig. 1
shows an example of fuzzy segmentation. Also note that,
compared to points of interest (PoI) [1, 5], the region-based
representations are able to provide a very compact local rep-
resentation : where it is usually required to have hundreds to
thousands of PoI, only a few dozen of regions are necessary
for an image.

2.1. Fuzzy segmentation algorithm

Details of the algorithm of fuzzy segmentation are given in
[6]. Extracted regions have the following properties : unifor-
mity in terms of color, contained expansion by high gradient
norms, uncertainty where two (or more) regions encounter.
The algorithm first performs a watershed algorithm on the



image of gradient norms, the uniform areas (of null color gra-
dient norm) constitute the cores of the fuzzy regions. The
membership degrees of pixels to regions are then computed
using the topographic distance to these cores, which is de-
fined as the length of the shortest path connecting the pixel to
the core, along the surface constituted by the gradient normin
the 3D space. The degrees slowly decrease according to the
spatial distance to the core and strongly decrease when meet-
ing an edge, zone of a large gradient norm. Impulse noise is
bypassed, because a shorter path is found around it.

2.2. Region indexing

Each imagei of the database is represented with a bagBi =
{bri}r of regionsbri ∈ R

p. Vectorsbri are the concatena-
tion of one color histogram and 3 texture histograms. His-
tograms are obtained by adding the membership degrees of
the pixels to the region. Thus pixels with small membership
degrees belonging to transitions or outliers inside a region
have little influence on the histogram shape.

3. KERNEL DESIGN FOR BAGS OF FEATURES

After the region feature computation, each image is repre-
sented by sets of unordered vectors. If heterogeneous back-
ground is considered, several feature vectors are relevantfor
object characterization, many are irrelevant or let’s say noise.
The next step is now to consider similarity functions between
them. The major aim is to find the set of local descriptors that
discriminate an object from other objects and the background.
In other words, we have to detect within the bagsBi which
features are relevant.

3.1. Kernel on bags

As bagsBi = {bri}r belongs to the set of subsetsP(B), the
input space is a non vectorial space. Let us noteΦ : P(B) →
H the embedding function which maps any bagBi to a vector
Φ(Bi) in a Hilbert spaceH. To design kernels over sets, one
can find a functionK corresponding to a dot product in the
induced space:

K(Bi, Bj) = 〈Φ(Bi), Φ(Bj)〉

Some authors have recently proposed strategies using ex-
plicit mappingΦ [7]. These approaches are not really kernel-
oriented and most of the work focuses in that case on prepro-
cessing to map bags into a finiteR

p space.
Contrary to previous techniques, kernel framework deals

with building a function without explicit evaluation of thecor-
responding mappingΦ. Several kernel functions have been
proposed [8, 9, 10]. We address this issue for the following
class of kernels:

K(Bi, Bj) =
∑

bri∈Bi

∑

bsj∈Bj

k(bri,bsj) (1)

Wherek is the minor function onbri ∈ B with φ as embed-
ding function into the feature spaceH. We have in this case:
Φ(Bi) =

∑

bri∈Bi
φ(bri). One interesting property of this

formalization is that changingφ to another does not change
theΦ embedding structure.

The function of Eq. (1) satisfy the Mercer’s conditions
(see [11], Chap. 9 for proof), however it returns the average
similarity between all the local descriptors. In order to in-
crease the high matchesk(bri,bsj), Lyu introduces the fol-
lowing function [12]:

Klyu(Bi, Bj) =
1

|Bi|

1

|Bj |

∑

bri∈Bi

∑

bsj∈Bj

k(bri,bsj)
q (2)

Using a high value ofq, high matches will be increased much
more than low matches.

However, with high values ofq, the function of Eq. (2)
produces a very discriminative kernel. In other words, func-
tion of Eq. (2) tends to be the value of the highest match
powerq, i.e. Klyu(Bi, Bj) ∝ maxr,s k(bri,bsj)

q. Then,
the Hilbert space induced byKlyu tends to be of infinite di-
mension, just like the Gaussian kernels with a very smallσ.
In order to get a higher generalization capacity, we propose
the following function:

Ksingle(Bi, Bj) =





∑

bri∈Bi

∑

bsj∈Bj

k(bri,bsj)
q





1

q

(3)

As Minkowski distance tends to be theL∞ distance
as q → ∞, this function tends to be the function
maxr,s k(bri,bsj) asq → ∞.

3.2. Integration of spatial constraints

Representing an image as an unordered set of regions is as-
suming that the regions are independent, which means that
objects with similar regions laid out differently are indistin-
guishable. We propose to extend our kernel function in order
to improve discrimination using spatial constraints. We show
an example in Fig. 2, where the query is the left image that
contains a green can. Using only independent regions, the
image on the top right with a red can will be more similar
than the image on the bottom right with a green can, since red
regions 2,5,10 in the left image will match with the bottom
of the red can (region 10). However, if we use pairs of re-
gions instead of single regions, the bottom right image witha
green can will be the closest one to the query : pair (4,11) in
the query only matches with the pair (9,1) in the bottom right
image that also contains a green can.

To take into account spatial dependencies between re-
gions, we are considering pairs of adjacency regions : for
each region of an image, we build 3 pairs with its 3 closest
regions. Each imagei is then represented with a setPi of
pairsPvi ∈ B × B.



Fig. 2. Integration of spatial constraints.

Next, each pair is considered as a “mini-bag” of two re-
gions, which leads to the following function:

Kpairs(Pi,Pj) =





∑

Pvi∈Pi

∑

Pwj∈Pj

Ksingle(Pvi, Pwj)
q





1

q

(4)
Another way to represent spatial relations on objects con-

cerns graph representations. Kernel on graph design has been
proposed by considering matches on paths of the graph [13].
However, their computational needs are intractable for real
applications.

4. EXPERIMENTS

4.1. Database setup

Columbia database has been used a lot to evaluate object
recognition methods. With 100 objects, and 72 shots from
different points of view for each object on a homogeneous
black background, it turns out that most of the methods now
achieve high performances with very few training data.

In order to retrieve objects in a much more realistic
scenario, we built a synthetic database with objects from
Columbia and background from Washington database1. We
randomly selected 12 views of 50 different objects from the
Columbia database, removed the background, and embedded
them on the images of the Washington database (rescaled to a
fixed size). The final database contains 600 images in specific
backgrounds. All these backgrounds have very heterogeneous
content. Examples are shown in Fig.3. In [12], Lyu also con-
siders an extended database with objects. The one we built for
our experiments is comparable to the Lyu’s one, except that
the objects are much smaller in our final database, making the
problem much harder.

1http://www.cs.washington.edu/research/imagedatabase/

4.2. Experimental setup

The computation of the fuzzy regions require a main param-
eter which is the number of regions the algorithm should re-
turn. Since the segmentation has to be automatic, the level
of detail is set through an interval for the number of regions.
For this database the interval was set to[5, 15] fuzzy regions.
Each region is represented by 4 histograms, one of 8 chromi-
nances values fromCIEL⋆a⋆b⋆, and 3 of 8 textures from Ga-
bor filters for 3 different scales. Concerning pairs of regions,
we get around 20 pairs after removing repeated pairs.

We tested several minor kernel functions, and found that a
Gaussian kernel with aχ2 distance is the best choice against
linear, polynomial, Gaussian L1, Gaussian L2, triangle, and
minima kernels. Next, we use the function of Eq. 3 for single
regions, and the function of Eq. 4 for pairs of regions. In both
cases, we found that the best power value isq = 5 on average.

Thanks to the kernel functions on features, we train SVM
classifiers to discriminate images that contain or not the query
object from the others. This also allow us to use active
learning, which has proved its huge interest for interactive
search [14]. In the following experiments, we use a precision-
oriented active learning technique in conjunction with a cor-
rection of the boundary and a fast and efficient batch selection
[4]. Each retrieval session is initialized with 1 image contain-
ing the object the user is looking for. Next, 5 images cho-
sen by the active learning are labeled with binary annotations
(positive: the image contains the query object, negative: the
image does not contain the query object). This process is re-
peated 10 times. At the end of a retrieval session, the training
set is made of 51 labeled images. Performances are evaluated
with the Mean Average Precision, i.e. the sum of the Preci-
sion/Recall curve2.

4.3. Results

Results are shown on Fig. 4. The two fuzzy region-based
methods start at the same position, but next MAP with pairs
of regions increases much more than single regions, which
shows the interest of this strategy for object retrieval. We
compare fuzzy regions to global histograms, which represent
an image with a single histogram of colors and textures [4].
We can see on Fig. 4 that local representations clearly outper-
form the global one. We also compare our fuzzy region index-
ing technique to the well-known approach combining MSER
region detectors and SIFT descriptors[1]. We use them with
the function of Eq. 3. With few training samples, MSER/SIFT
gives better results, but the performances of our techniquein-
crease fast, and equal MSER/SIFT with 35 training samples.
This shows the generalization capacity of our fuzzy region
approach, which is well suited to semantic learning tasks.

The main drawback of the local methods is the time com-
plexity. In our strategy, we tried to overcome this problem

2cf. TRECVid: http://www-nlpir.nist.gov/projects/trecvid/



Fig. 3. Objects of Columbia on random backgrounds.
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Fig. 4. Average performances in Mean Average Precision(%)
for an interactive search of one object using different features
and kernels.

using a limited number of region features. It turns out that
our method is about 100 times faster than MSER/SIFT. This
is due to the very large number of PoI required by the ap-
proach. Since the two methods gave approximately the same
results, using pairs of fuzzy regions is more interesting for
real applications.

5. CONCLUSION

In this paper, a kernel-based method for object retrieval ispre-
sented. Local feature computation on fuzzy regions provides
a robust local-based image representation. The resulting bags
of features are compared thanks to a new class of kernels on
sets to deal with images composed of objects with hetero-
geneous background. These kernels highlight the best local
matches between features, so that they efficiently overcome
the noise problem introduced by the background features. Re-
sults show that our approach is able to perform object retrieval
in real-world scenes with heterogeneous background. The
method using kernels integrating spatial constraints on the re-
gions achieved results as good as PoI ones, but is 100 times
faster !
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