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Abstract

This paper presents a search engine architecture, RETIN, aiming at retrieving com-
plex categories in large image databases. For indexing, a scheme based on a two-step
quantization process is presented to compute visual codebooks. The similarity be-
tween images is represented in a kernel framework. Such a similarity is combined
with online learning strategies motivated by recent Machine-Learning developments
such as Active Learning. Additionally, an offline supervised learning is embedded
in the kernel framework, offering a real opportunity to learn semantic categories.
Experiments with real scenario carried out from the Corel Photo database demon-
strate the efficiency and the relevance of the RETIN strategy and its outstanding
performances in comparison to up-to-date strategies.

Key words: Multimedia Retrieval, Machine Learning, Kernel Functions,
Quantization
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1 Introduction

Large collections of digital images are being created in different fields and many
applicative contexts. Some of these collections are the product of digitizing
existing collections of analogue photographs, paintings, etc, and others result
from digital acquisitions. Potential applications include web searching, cultural
heritage, geographic information systems, biomedicine, surveillance systems,
etc.

The traditional way of searching these collections is by keyword indexing, or
simply by browsing. Digital image databases however, open the way to content-
based searching. Content-Based Image Retrieval (CBIR) has attracted a lot
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of research interest in recent years. A common scheme to search the database,
is to automatically extract different types of features (usually color, texture,
etc.) structured into descriptors (indexes). Theses indexes are then used in a
search engine strategy to compare, classify, rank, etc, the images.

Major sources of difficulties in CBIR are the variable imaging conditions,
the complex and hard-to-describe image content, and the gap between ar-
rays of numbers representing images and conceptual information perceived by
humans. In CBIR field, the semantic gap usually refers to this separation be-
tween the low-level information extracted from images and the semantics [1,2]:
the user is looking for one image or an image set representing a concept, for
instance a type of landscape, whereas current processing strategies deal with
color or texture features !

Learning is definitively considered as the most interesting issue to reduce the
semantic gap. Different learning strategies, such as offline supervised learning,
online active learning, semi-supervised, etc., may be considered to improve the
efficiency of retrieval systems. Some offline learning methods focus on the fea-
ture extraction or on the similarity function improvement. Using experiments,
a similarity function may be trained in order to better represent the distance
between semantic categories [3]. Thanks to local primitives and descriptors,
such as salient points or regions, supervised learning may be introduced to
learn object or region categories [4,5]. The classification function is next used
to retrieve images from the learned category in large databases. Other strate-
gies focus on the online learning to reduce the semantic gap [6,7]. Interactive
systems ask the user to conduct search within the database. The information
provided by the user is exploited by the system in a relevance feedback loop to
improve the system effectiveness. Online retrieval techniques are mainly of two
types: geometrical and statistical. The geometrical methods refer to search-
by-similarity or query-by-example (QBE) systems, based on calculation of a
similarity between a query and the images of the database [8,9]. Recently,
machine learning approaches have been introduced in computer vision and
CBIR context and have been very successful [10,11]. Discrimination methods
(from statistical learning) may significantly improve the effectiveness of visual
information retrieval tasks [12].

In this paper, we introduce our general strategy RETIN to manage indexing
and category retrieval by content in large image databases. Some modules
concern the indexing step and other ones learning strategies based on offline
or online supervising. A first version of our system has been already published
[13]. We propose here a new generation of RETIN. In the manner of Fayyad
description of the challenges of data mining and knowledge discovery [14], our
whole context of visual data mining is summarized on Fig. 1. Starting from
raw data, the first challenge is to extract visual descriptors and to structure
them into indexes, i.e. visual signatures. The indexing step is composed by
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Fig. 1. An overview of the steps that compose the RETIN process. Working on the
raw data, low-level processes consist in extracting visual features and signatures.
Consolidated level focus on similarity and online learning of image categories using
user interaction. High level semantic analysis deeply exploits users’ feedbacks to
reduce the semantic gap.

a new scheme to get visual signatures from images. Let’s say that this is the
low level of analysis. The comparison between the indexes is carried out using
kernel framework. Searching with user interaction allows to extract subsets
of relevant images from the database. A machine-learning-oriented scheme is
proposed to embed all the modules of the search in a coherent and efficient
framework. This is the intermediate level of abstraction and data mining. To go
further towards the knowledge extraction and database structuring, a semantic
learning scheme is also proposed (Fig. 1). All the former user interactions are
used to progressively learn data clusters in the database. This is our high level
or semantic level of data analysis.

We emphasize in this article the global efficiency and consistency of our search
engine architecture to deal with complex category retrieval in large databases.
Some specific contributions are also proposed in each part. For indexing, the
computing of visual codebooks is a real challenge, we propose an original two-
step vectorization scheme in section 2. The similarity between images is the
core of the search, we propose a kernel framework to manage this aspect in
section 3. It allows us to propose a powerful online learning strategy motivated
by recent machine-learning developments such as active or transductive learn-
ing, presented in section 4. Offline supervised learning is also embedded in our
kernel framework, our innovative long-term learning strategy is presented in
section 5.

2 Visual codebook based quantization

Building a visual codebook is an effective way of extracting the relevant visual
content of an image database, which is used by most of the retrieval systems.

3



A first approach is to perform a static clustering, like [15] where 166 regular
colors are a priori defined. These techniques directly provide an index and
a similarity for comparing images, but the visual codebook is far from being
optimal, except in very specific applications.

A second approach is to perform a dynamic clustering, using a clustering
algorithm, such as k-means. In this case, the visual codebook is adapted to
the image database. When using color features, this strategy extracts the
dominant colors in the database[16]. Using a k-means algorithm leads to a
sub-optimal codebook, where codewords are under- or over-representing the
visual content. An usual way to find a good visual codebook is to train several
times the clustering algorithm and to merge the codebooks or to keep the
best one. However, because of the large number of vectors to be clustered,
this strategy has a very high cost in computational time.

In this section, we first study new alternatives to the standard k-means algo-
rithm, and select the most efficient in terms of efficiency and time cost. Next,
we address the problem of the quantization of a very large number of vec-
tors, where standard clustering algorithm can not be directly applied, since
the whole vector set can not be stored in memory. In this last sub-section,
we propose a clustering algorithm which leads to a near to optimal codebook
with only one training pass.

2.1 Low-level feature extraction

In order to build the visual codebook, we first need a large set V = {v1, ...,vm}
of feature vectors extracted from the images of the database. In this paper,
we use two visual features:

• Color from CIEL⋆a⋆b⋆ space. Each pixel of coordinates (x, y) is converted to
a L⋆a⋆b⋆ vector of dimension 3, i.e. pixel(x, y) 7→ (L⋆(x, y) a⋆(x, y) b⋆(x, y))⊤.

• Texture from complex Gabor filters. We process each image of the database
with 12 complex Gabor filters, in 3 scales and 4 orientations. The output
of these 12 filters provide 12 images F1, . . . , F12. For each pixel of coordi-
nates (x, y), we consider the vector of 12 dimensions whose values corre-
spond to the 12 filter outputs at the same coordinates (x, y). That is to say
pixel(x, y) 7→ (F1(x, y) . . . F12(x, y))⊤.

2.2 Dynamic quantization

Vector quantization aims at finding the optimal set W ⋆ = {w1, ...,wκ} of code-
words able to represent a set V = {v1, ...,vm} of vectors. This issue is solved
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by splitting the set V into clusters. Each vector will then be represented by the
closest vector of W , qW (v) = argmin

w∈W
d(v,w), for a given distance d (usually

the Euclidean distance). The problem can be addressed as an optimization
problem which aims at minimizing the distortion of each cluster:

W ⋆ = argmin
W

DW (V ) (1)

where the distortion of a set V for a codebook W is defined by :

DW (V ) =
∑

v∈V

d(v, qW (v))2 (2)

The distortion measures the average squared distance between a vector v and
its corresponding codeword qW (v). Minimizing this criterion aims at getting
compact and equidistribued clusters.

The optimization problem addressed by vector quantization is not convex –
this means that the algorithm must find the global minimum between multiple
local minima. The success of convergence is mainly determined by the initial
codebook. The standard k-means algorithm uses a random initial codebook,
and thus converges to a local minimum. Improvements about the initialization
have been proposed, like the k-means splitting or LBG [17]. The algorithm
starts with only one codeword, and step after step, splits the clusters into
two sub-clusters. Patanè proposes ELBG, an enhanced LBG algorithm, that
introduces a heuristic in order to jump from a local minimum to a better one
[18]. This heuristic swaps codewords so that their respective distortions are as
much equal as possible.

We implemented and compared the three methods for the quantization of the
RGB vectors of the images of the ANN database (see appendix). Fig. 2 shows
the results in terms of average PSNR (log value of the distortion), and the
average computation time for the quantization in 256 colors of one image.
PSNR values are of the same order, slightly better for ELBG than for LBG
and standard k-means, but ELBG is much faster than LBG (4 times) and
faster than standard k-means. For those reasons we have adopted the ELBG
algorithm in our large quantization process.

2.3 Quantization of large datasets

The second problem is the large amount of samples to classify. As it is im-
possible to put all pixels in memory at the same time, the method has to be
progressive, that is to say able to manage data part by part.
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Method PSNR(dB) Time(sec)

k-means 37.87 ± 2.76 12.35 ± 1.55

LBG 37.90 ± 2.57 31.99 ± 11.03

ELBG 38.69 ± 2.82 8.49 ± 1.27

Fig. 2. Performances and computational time of the quantization methods.

Adaptive k-means processes samples one by one. This method imposes that
samples are processed in the most possible random way. But this condition is
hard to obtain in image indexing, since for time constraints, pixels cannot be
processed completely randomly. At least for run-time and practical reasons, it
is better to process each image as a whole.

Fournier [19] performs an adaptive k-means by sub-sampling each image :
only a tenth of the pixels of each image randomly chosen are processed. To
compensate this sub-sampling, images are processed ten times.

We propose an adaptive quantization by k-means in two stages, both perform-
ing ELBG method:

• The first stage quantizes each image;
• The second stage quantizes the whole database from the dictionaries ob-

tained at the first stage.

The advantage is that each image is independently processed in the first stage
and even in a parallel way. The number of codewords in that stage can be of a
rather large size (at least greater than any desired codebook for now and the
future). The set of feature vectors Vi of image i are computed and quantized
using ELBG in κ codewords. The codebook for image i is denoted Wi ={
w

j
i , j = 1, ..., κ

}
. In the second stage, the set {Wi, i = 1, ..., n} is clustered

into the expected number of codewords with ELBG classifier. To take into
account the fact that images can be of various sizes, the distortion of any
class C, represented by wC is modified in Eq (2) by adjunction of a weighting
coefficient equal to the cardinality of the class. So after the first stage, we
have for each image i the set of codewords

{
w

j
i , j = 1, ..., κ

}
and the set of

corresponding weights
{
zj

i , j = 1, ..., κ
}

, where zj
i is the cardinal of class j in

image i.

So the formula for distortion of X̃ = {(wj
i , z

j
i )} becomes :

D̃(X̃) =
∑

j

∑

i

zj
i × d(wj

i , q(w
j
i ))

2 (3)
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and the computation of codewords becomes :

wCj
=

∑
i∈Cj

zj
i ×w

j
i

∑
i∈Cj

z
j
i

2.4 Image signature computation

Once a codebook W has been generated, unique for the whole database, the
histogram Hi of image i is computed for each visual feature. We replace each
feature vector v(x, y) corresponding to pixel (x, y) with the the closest code-
word qW (v(x, y)) in the codebook. Next, we count the number of times each
codeword is present in the image to build the histogram. The histogram is
finally normalized to get a distribution vector di = Hi/||Hi||L1. The image
signature xi is then the concatenation (dfeature1

i d
feature2
i . . . )⊤ of distribu-

tions for all visual features (in this paper, color and textures).

The final step is the tuning of the size of the visual codebooks, that we study
in the next section.

2.5 Experiments

The adaptive classification of Fournier[19] and our two-stage method are com-
pared in Fig. 3 and Fig. 4 on the Corel Photo database (see appendix for
details).

Although we have used the distortion and the time cost criteria to select
the quantization method in the first stage of our algorithm, we use here the
Mean Average Precision (see appendix for definition) in order to evaluate the
performances of a codebook in the CBIR context. Indeed, this statistic is used
a lot in information retrieval framework.

For Fournier’s method, the complete quantization must be done again for each
codebook size. For our method, ELBG is first computed to get a quantization
of each image into 256 image-dependent codewords. The codewords and their
weights are then clustered by the second stage with ELBG.

Concerning color codebooks, both methods are close, with a small advan-
tage for our method. Both methods have a maximal MAP for 50 codewords.
Concerning texture quantization, the proposed method clearly outperforms
Fournier’s one. The global maximum is also obtained for 50 codewords. An-
other interest is the time saving with our method, which is much faster than
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Fig. 3. Color quantization into 6, 12, 25, 50, 100, and 200 codewords (L⋆a⋆b⋆) with
Fournier’s adaptive quantization method, and our two-stage method.
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Fig. 4. Texture quantization into 6, 12, 25, 50, 100, and 200 codewords (Gabor fil-
ters), with the adaptive quantization method of Fournier, and the two-stage method
we propose.

Fournier’s one, since the first stage can be achieved in parallel on several
machines. As the quantization in 25 codewords almost reaches the same per-
formances as the quantization in 50 codewords, for signatures twice smaller
and a time saving, we have opted for a quantization into 25 codewords for
color and 25 codewords for texture.
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These experiments also show the interest of our method for tuning the size
of the visual codebook. Assuming that we have a priori knowledge about the
categories likely to be searched, several visual codebooks of various sizes can
be easily computed and evaluated since only the second step of the algorithm
is necessary.

Furthermore, the two stages allow a fast adding/removal of images in the
database. When adding new images, only the computation of their visual
descriptors and the second stage of the method are required to compute the
new codebook.

3 Similarity using kernel functions

Once signatures are computed, a metric or a similarity function has to be
defined to compare images.

Basically, the Euclidean distance is used to compute the similarity between
histograms, or more generally a Minkowski distance. However, these metrics
are not necessary relevant for histograms. Alternatives have been proposed,
such as histogram intersections [20], entropy [21,22], or χ2 distance [23]. These
metrics independently compare each value of the histograms, and do not ad-
dress the problem of correlation between axes. More robust metrics have been
proposed to solve this, like in [24], Earth Mover’s Distance [25], or generalized

quadratic distances (d(xi,xi) =
√

(xi − xj)⊤A(xi − xj))

Whenever these metrics are efficient for histograms, they all lead to a non-
linear problem, and, most of the time, particular learning techniques must be
developed to use them. In order to use powerful learning techniques that have
been recently introduced [26], we have chosen to use kernel functions.

3.1 Kernel framework

The approach consists in finding a mapping Φ from input space X (here
our histogram space) to a Hilbert space H. Thus, once found this mapping,
all the addressed learning problems become linear. Furthermore, we do not
directly work on the mapped vectors, but on their dot products k(xi,xj) =
〈Φ(xi), Φ(xj)〉.

In our case, since we are working on histograms, an interesting kernel function

is the Gaussian one k(xi,xj) = e−
d(xi,xj )2

2σ2 . This function depends on a distance
d(xi,xj), which allows us to pickup one of the distances for histograms. For
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Fig. 5. Mean Average Precision(%) for a classification by SVM according to the
number of training data, for several kernel functions on the Corel Photo database.

instance, we can use the χ2 distance d(xi,xj) =
∑p

r=1
(xri−xrj)

2

xri+xrj
. Note that we

could use more robust distances, such as the the Earth Mover’s Distance [25],
but this leads to a too high computational cost for the processing of huge
databases.

In order to evaluate the interest of this kernel against the standard ones,
we have compared their performances for a SVM classifier (see appendix for
details). Results are shown on Fig. 5. The linear kernel, which can be seen as
the ”no kernel” strategy, gives the worst performances. It is followed by the
polynomial kernel (of degree 3), which was originally tuned for the tracking
of high-level correlations of data. Close to this one is the Gaussian kernel,
with an Euclidean distance, and next is the triangle kernel, which is invariant
to scale variation. Finally, the Gaussian kernel with a χ2 distance gives the
best performances, results which are consistent with the use of histograms as
index. Thus, in the following experiments, we will use a Gaussian kernel with
a χ2 distance.

Note that, although the Gaussian distance χ2 is the most interesting for our
indexes, it will be no longer true on non-histograms ones. However, assuming
that one can find a kernel function relevant for one’s indexes, all the results
about the learning techniques we present in the next sections are still valid,
since they are made to work in a Hilbert space induced by a kernel function.
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3.2 Similarity matrix

In any cases, we assume that we are working in a Hilbert space. Then, several
standard operators may be expressed using k, as for instance the Euclidean
distance d(Φ(xi), Φ(xj))

2 = k(xi,xi) + k(xj,xj) − 2k(xi,xj) [27]. Similarity
s may also be defined as the dot product in the induced space s(xi,xj) =
k(xi,xj). But other measures, as for instance the angle between two vectors,

may be used, for instance s(xi,xj) = |k(xi,xj)|√
k(xi,xi)k(xj ,xj)

.

We use kernel function k as the similarity function, and kernel matrix K

defined by Kij = k(xi,xj) as the similarity matrix. As k is a kernel function,
matrix K is symmetric and semi-definite positive (sdp), that is to say a Gram
matrix. This matrix embeds the index information X = {x1, . . . ,xn} and
the similarity function k related to the whole database. All the data mining
processes, classification ranking, and so on, are only based on this Gram matrix
data. The advantage of this framework is then to well separate the learning
problem from the similarity definition.

We propose in the next section online learning algorithms before introducing
an extended kernel framework merging the low-level similarity matrix K with
high-level information obtained from user interaction.

4 Active classification for interactive retrieval

Indexes and similarity function allow to compare any pair of images. In CBIR,
the retrieval may be initialized using a query as an example. The top rank
similar images are then presented to the user. Next, the interactive process
allows the user to refine his request as much as necessary. Many kinds of
interaction between the user and the system have been proposed [28], but most
of the time, user information consists of binary annotations (labels) indicating
whether or not the image belongs to the desired category. The positive labels
indicate relevant images for the searched category, and the negative labels
irrelevant images.

In document retrieval framework, a strategy is to consider the query concept.
The aim of this strategy is to refine the query according to the user label-
ing. A simple approach, called query modification, computes a new query by
averaging the feature vectors of relevant images [1]. Another approach, the
query reweighting, consists in computing a new similarity function between
the query and a picture in the database. A usual heuristic is to weight the
axes of the feature space [29]. In order to perform a better refinement of
the similarity function, optimization-based techniques can be used. They are
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based on a mathematical criterion for computing the reweighting, for instance
Bayes error [30], or average quadratic error [31,32]. Although these techniques
are efficient for target search and monomodal category retrieval, they have
difficulties to track complex image categories.

Performing an estimation of the query concept can be seen as a statistical
learning problem, and more precisely as a binary classification task between
the relevant and irrelevant classes [12]. In image retrieval, many techniques
based on statistical learning have been proposed, for instance Bayes classifi-
cation [33], k-Nearest Neighbors [34], Support Vector Machines [28,12,11,35],
Gaussian Mixtures [36], or Gaussian random fields [37].

4.1 Statistical learning approach

We have chosen a statistical learning approach for the RETIN system because
of its capacity to retrieve complex categories. This capacity is in part due
to the possibility to work with kernel functions, with all the advantages we
described in the previous sections.

However, a lot of strategies consider CBIR as a pure classification problem,
and thus are not fully adapted to the special characteristics of this context.
For instance, we have shown in a previous paper [38] that the few training
data and the imbalance of the classes lead to a noisy boundary.

We summarize here the characteristics of our context:

(1) High dimension. Feature vectors are usually large (from 100 to 1000),
which leads to the problem named as the curse of dimensionality.

(2) Complex classes. As image categories are unknown beforehand, it is dif-
ficult to make high assumptions about the distribution of the data. For
instance, an usual Gaussian distribution assumption is rarely true. As
a result, images of a given category can be dispatched in several small
clusters.

(3) Imbalance of data. The size of the relevant class is very small against
the size of the database (generally 100 times smaller). Thus, the context
is fairly different from classification problems where both classes have a
close size.

(4) Few training data. At the beginning of a retrieval session, the system
must return results with very few labels. Furthermore, users will not give
more than some hundreds of labels. As a result, the size of the training
set is usually at most 1% of the database size.

(5) Interactive learning. The training set is built step by step, and each result
depends on the previous ones.

(6) Ranking vs error of classification. System performances depend on the
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Fig. 6. Mean Average Precision(%) according to the size of the training set.

users satisfaction, which can be modeled by the Mean Average Precision.
Thus, we aim at optimizing the ranking of images, instead of the usual
classification error.

(7) Computation time and scalability. Our aim is to propose a system which
can be used for real applications. Thus, we need fast methods, as we
can not ask a non-expert user to wait for several minutes between each
feedback step. A common way to define a fast and scalable method is to
bound its computational complexity to O(n), where n is the size of the
database.

4.2 A comparison of classification methods for CBIR

The following methods have been evaluated :

• Similarity Refinement [32];
• Bayes classification [33];
• k-Nearest Neighbors [34];
• Support Vector Machines [12];
• Transductive Support Vector Machines [39];
• Kernel Fisher Discriminant [40].

The results in terms of Mean Average Precision are shown on Fig. 6, except for
the TSVM and KFD which give results very close to inductive SVMs. One can
see that the statistical methods give the best results, showing their interest
towards geometric methods, like the similarity refinement. This also shows the
interest of kernel based methods in order to deal with the high dimensions (1)
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(a) First iteration (b) Second iteration

Fig. 7. RETIN User Interface. Main part: ranked retrieved images; Right part:
miscellaneous information about one image; Bottom part: images selected by active
learning.

and the complex classes (2), since each of these methods (except the geometric
one) are able to build efficient classifiers. In the sequel, we will use the SVM
as the best method in this context, and because of its simple mathematical
framework (hyperplan classifiers).

4.3 RETIN Active Learning Method

In order to deal with the imbalance of classes (3), the few training data (4) and
the interaction with a user (5), we have opted for an active learning strategy.
This strategy, which is already used in text [41] and image [42] retrieval,
addresses the problem of the selection of the most interesting images the user
should label. In first retrieval systems, a common strategy was to label the
most relevant images. However, it has been shown that a different selection
can lead to significantly better results [43].

We propose an active learning scheme to interact with a user searching for an
image concept in the database. The process selects at each feedback step a set
I⋆ of q images, displayed to the user for labeling.

Let X = {x1, . . . ,xn} be the image signatures, and y = {y1, . . . , yn} the user
labels (yi = 1 if relevant, yi = −1 if irrelevant, yi = 0 if unlabeled). The
examples are the images i ∈ I with a non-zero label, i.e. couples (xi, yi) where
yi 6= 0,

Initialization. A retrieval session is initialized from one image given by the
user. The top similar pictures are then displayed to the user.

Classification. A binary classifier is trained with the examples the user has
given. We use a SVM with a Gaussian χ2 kernel (cf. section 3). The result is
a function fy(x) which returns the relevance of each image x, after a training
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with examples (xi, yi), i ∈ I.

Correction. We have shown in a previous paper that the classifier boundary
is usually noisy during the first feedback step, because of scarcity of training
samples (4) and the imbalance of classes (5) [38]. We propose to add an active
correction of the boundary, which aims at translating the classifier boundary
to an area of the feature space where the labels are the most uncertain. Details
about this method can be found in [38].

Selection. When the user is not satisfied with the current classification, the
system selects a set of images the user should label. The selection will be such
as the labeling of those images will give the best performances. We divide the
selection into three steps.

The first step aims at reducing the computational time (7), by pre-selecting
some hundreds of pictures which may be in the optimal selection set. We pro-
pose to pre-select a set indexed by J of the closest pictures to the (corrected)
boundary. This process is computed very fast, and the uncertainly-based se-
lection method has proved its interest in CBIR context.

The second step is the computation of the selection criterion. In active classifi-
cation, the criterion is the minimization of the error of classification (or risk).
In these cases, the risk is computed for each classification function fy,t(xi),
which is trained with the label t(xi) of an unlabeled image i /∈ I added to cur-
rent training set y. Finally, the selected image i⋆ is the one which minimizes
the risk:

i⋆ = argmin
i/∈I

risk(fy,t(xi))

The main difficulty of this task is the fact that the label t(xi) is unknown,
and an estimation is required. This estimation is replaced by a cost function
denoted gy(xi), and including the pre-selection, the problem can be written
as:

i⋆ = argmin
i∈J

gy(xi)

Pure active classification techniques aim at minimizing the classification error.
However, in our context, our aim is to optimize the image ranking, which can
be modeled by the Mean Average Precision. Although decreasing classification
error also increases the MAP, we have shown that the direct maximization of
the MAP is more efficient [44]. Thus, we propose a precision-oriented cost
function, which selects the images around the boundary that will increase the
most this criterion. Details about this method can be found in [44].

The third step of active selection computes the batch selection. As we focus
on real-time applications, we use a fast method close to the angle diversity
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[45]. The method selects q images using the previously computed cost gy(xi),
and returns the set I⋆ of image indexes proposed for labeling:

I⋆ = {}
for l ∈ 1, ..., q

i⋆ = argmin
i∈J−I⋆

(
gy(xi) + max

j∈I∪I⋆
s(Φ(xi), Φ(xj))

)

I⋆ = I⋆ ∪ {i⋆}
endfor

where s(Φ(xi), Φ(xj)) is the similarity between images xi and xj .

Feedback. The user labels the selected images, and a new classification and
correction are performed.

The process is repeated as many times as necessary.

4.4 Experiments

An example of retrieval session is presented on Fig. 7. The interface is com-
pound of three sub-parts. The main one at the top left displays the current
ranking of the database. For instance on Fig. 7, we can see the closest pic-
tures to the one brought by the user (top left, with a small green square). The
sub-part at the bottom displays the current selection of the active learner.
The user can give new labels by clicking the left or right mouse button. Once
new labels are given, the user can ask for an update, and the new ranking is
displayed in the main part. The right sub-part displays information about one
image.

We show on Fig. 8 the 50 most relevant pictures after 3 and 5 iterations
of 5 labels for the concept ”roses”, starting with the query of Fig. 7. One
can see that the system is able to retrieve the images of the concept, while
discriminating pictures with close visual characteristics. For instance, several
non-rose pictures with very close colors and textures returned at the beginning
of the search (cf. Fig. 7) are no more high-ranked 5 iterations later, while the
relevant ones are still present (cf. Fig. 8).

4.5 Statistical evaluation

The RETIN active method introduced in this paper is compared to uncertainty-
based methods : Tong SVMactive [42], and Roy & McCallum method that aims
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(a) 3 feedbacks (b) 5 feedbacks

Fig. 8. The 75 most relevant pictures for the concept “roses”. A small green square
indicates an image labeled as relevant, and a red one an image labeled as irrelevant.
(a) Top rank after 3 iterations of 5 labels. (b) Top rank after 5 iterations of 5 labels.

at minimizing the error of generalization [41]. A non active method, which ran-
domly selects the images, is also considered for comparison.

The performances are evaluated by simulating the use of the system. For
each simulation, an image category is randomly chosen and 100 images of
the category are selected using one of the learning methods. After each SVM
classification of the database, the Mean Average Precision is computed. These
simulations are repeated many times in order to compute the mean and the
standard deviation of the MAP (see appendix for details). The results of the
experiments are shown in Fig. 9.

First, one can see the benefit of active learning in our context. In these experi-
ments, the gain goes from 11% to 15%. The method which aims at minimizing
the error of generalization is the less efficient active learning method. The most
efficient method is RETIN active learning method, especially in the first it-
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Fig. 9. Mean Average Precision(%) for different active learners.

erations, where the number of samples is the smallest. About computational
time per feedback, the SVMactive method needs at most 22ms, the method of
Roy & McCallum several minutes, and the RETIN method at most 45ms.

We ran simulations with the same protocol that in the previous section, but
changed the number of labels per feedback. In order to get comparable results,
we ensure that the size of the training set at the end of a retrieval session is
always the same:

• 30 feedbacks of 4 labels;
• 15 feedbacks of 8 labels;
• 8 feedbacks of 15 labels;
• 4 feedbacks of 30 labels;

We compute the precision/recall curves for all the concepts of the database.
Results for the “savanna” concept are shown in Fig. 10; let us note that all
concepts gave similar results modulo a scaling factor. As one can see on this
figure, the more there is feedback steps, the more performances are increased.
Increasing feedback steps leads to more classification updates, which allows a
better correction and selection.
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5 Semantic Kernel Learning

Relevance feedback and active learning increase the system performances, but
only during the current retrieval session. Once the session is over, labels are
discarded. The purpose of this section is to present how the RETIN learning
system uses all the labels accumulated during previous interactive sessions
to improve the feature representation of the images. With such an optimized
representation, we attempt to get a better match with semantic concepts. The
labels are sampled from a hidden concept that the user has in mind during
his retrieval session. Thus, if a large number of labels are available thanks to
several retrieval sessions, their combinations should make the hidden concepts
stand out.

Let us note semantics the whole information (users’ annotations) accumu-
lated during many retrieval sessions. Different strategies may be used to learn
information about the database from this semantics:

- Some approaches deal with feature selection or competition [46]. The La-
tent Semantic Index and its kernel version have been proposed to model the
correlation between feature variables [47].

- Other approaches compute and store a similarity matrix. A lot of approaches
are based on the Kernel Alignment [48]. The idea is to adapt a kernel matrix
(which is a particular similarity matrix) considering user labeling. This prob-
lem can be solved using semi-definite programming 1 [49]. However, it has been
designed mostly for transduction and clustering, i.e., two-class problems. For
general database searches, there are many concepts or categories, overlapping
each other. Some methods, building and updating a similarity matrix, have
been experimented [50]. Usually, there is no assumption about the properties
of the similarity matrix. For instance, the updated matrix may lost the in-
duced metric properties. Moreover, these similarity matrix-based approaches
have also a high computational cost. The memory complexity is at least O(n2),
where n is the number of images in the database.

Our semantic learning RETIN strategy is based on a kernel matrix adaptation,
and is designed to model mixed categories. We also manage the complexity
constraint using efficient eigenvalue matrix decomposition; the method has a
O(n) complexity and memory need, and so it is applicable to large databases.

1 Semi-definite programming allows efficient algorithms.
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5.1 Adaptive approach

Let us note Kt the kernel matrix after t − 1 retrieval sessions. Matrix Kt

is symmetric and semi-definite positive sdp (cf. 3.2) . We propose algebraic
transformations always keeping the sdp property of the kernel matrix.

The labels provided at session t are stored in vector yt of size n, with 1 for
relevant images, −1 for irrelevant images, and 0 for unlabeled images. After
several uses of the system, the label sets can be gathered in a matrix such as
the following one where each column represents a retrieval session:

y1 y2 y3 y4 y5 y6 y7 . . .

x1 1 1 0 0 −1 1 0 . . .

x2 1 1 1 1 −1 0 1 . . .

x3 1 0 1 −1 0 0 0 . . .

x4 0 −1 1 0 0 −1 0 . . .

x5 −1 0 0 1 1 −1 0 . . .

x6 0 0 −1 0 1 0 −1 . . .
...

...
...

...
...

...
...

...

Labels give partial information about the category the user has in mind, a
large majority of images is unlabeled for a given yt.

After retrieval process t, the current kernel matrix Kt is updated using the
following expression:

Kt+1 = (1 − ρ)Kt + ρ × merge(Kt,yt) (4)

where ρ ∈ [0, 1] is the system attentiveness, and merge(Kt,yt) is an operator
that returns a matrix containing the semantics from the previous sessions (Kt)
and the current session yt. This matrix must be sdp so that Kt+1 keeps the
sdp property.

5.2 Merging semantics of the previous and current sessions

Our first aim is both to increase the similarity between positive labeled images,
and to decrease the similarity between negative and positive labeled images.
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For this, we add the following kernel to the current one:

Kut
= ut(ut)

⊤ with uti =





1 if yti > 0

−γ if yti < 0

0 otherwise

Parameter γ ∈ [0, 1] handles the increasing of similarity between negative
labeled images 2 . Kut

is a sdp matrix because of rank 1 with one positive
eigenvalue (||ut||2).

Our second aims is to average the similarities between all the positive labeled
images. For that, we add the matrix TKtT

⊤ to the current kernel matrix,
with Tt a n × n matrix. To simplify the notation, let us consider that the q+

first values of yt are the positive ones. The matrix Tt is expressed as:

Tt =




1
q+

. . . 1
q+

...
...

1
q+

. . . 1
q+

1
. . .

1




It is also easy to prove the sdp property of TtKtT
⊤
t , if Kt is sdp, using the

following property: M is sdp ⇐⇒ ∀x ∈ R
n, x⊤Mx ≥ 0.

As a result, the merging operator is:

merge(Kt,yt) = TtKtT
⊤
t + bKut

(5)

with b ∈ R
+ so that diagonal terms of TtKtT

⊤
t + bKut equal 1.

5.3 Final operator

From eq. (4) and (5), the RETIN matrix kernel updating the semantic learning
is:

Kt+1 = (1 − ρ)Kt + ρa(TtKtT
⊤
t + bKut

) (6)

2 In a multiple category context, negative labeled images are usually not in the
same category. Thus in this case a small value (0.1) of γ is preferable.
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Parameters a and b control the matrix progression during iterations.

5.4 Semantic kernel computation

We use a low-rank approximation matrix K̂t, in order to have a storage linear
to the size of the database. As the kernel matrix is real and symmetric, we
are able to compute its eigendecomposition. The approximation consists in
keeping the p largest eigenvalues. Thus, assuming that p ≪ n, the storage
of Kt is O(n). Note that using this approximation, the kernel matrix can be
seen as a linear kernel on the vectors of X = V

√
Λ, where K = VΛV⊤ is the

eigendecomposition of K.

The direct computation of Kt+1 is O(n2). We use a factorization technique for
the computation of the eigenspectrum of Kt+1. The factorization is followed
by a QR decomposition and the computation of the eigenspectrum of a very
small matrix (compared to n). This method has a O(n) complexity.

5.5 Experiments

We compared the method proposed in this paper to a distance learning method
[51] on the Corel Photo database (see appendix for details),

The semantic kernel matrix is initialized using the color and Gabor signatures
previously introduced:

Kt=0 = X⊤X

with X = (xi)i∈[1,n] the p× n distribution matrix, for which each column xi is
a vector representation of the ith image of the database.

In the following simulations, and for each semantic learning method, we opti-
mize the kernel matrix using from 100 to 500 label sets of 100 non-zeros values.
For each kernel, system performances are evaluated with the Mean Average
Precision (cf. Appendix). Note that here we used a Gaussian L2 instead of
the χ2, since the resulting new feature vectors have negative values.

Parameter ρ. The method has been evaluated with ρ values 0.01, 0.05, 0.1,
0.5 and 1. As a rule, when ρ increases, the system learns faster. However,
over 0.5 the learning becomes unstable: the MAP may increase a lot for some
categories, whereas it decreases for other ones.

Parameter γ. The method has been evaluated with γ values 0.01, 0.05, 0.1,
0.5 and 1. The system has the best learning performances when γ = 0.1. Below
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this value, the system learns slowly, and above, the learning is inefficient: with
a value of 1, the MAP decreases.

Number m of non-zero eigenvalues. The method has been evaluated with
m values 10, 25, 50, 100 and 200. Globally, the higher will result in the bet-
ter the performances. However, starting from a given value (here 50), per-
formances do not increase much. Furthermore, it seems that the number of
eigenvalues is mainly linked to the number of categories users are looking for,
not to the number of images in the database. We experimented the system
with 5 categories covering the whole database, and in this case 25 eigenvalues
were enough.

In the following experiments, the default values are ρ = 0.1, γ = 0.1, and
m = 50. Two scenarios are presented.

5.5.1 Online optimization

We first evaluate the kernel matrix optimization during the use of the retrieval
system. The retrieval system is normally used during 100 sessions, and labels
are stored. Then, we inject these 100 label sets into the semantic learning
method, and get a new kernel matrix and/or feature vectors. The new feature
vectors are then immediately used in next retrieval sessions. This process is
then repeated every 100 retrieval sessions. Using this protocol for our method
and the Xing distance learning method[51], the system has been evaluated
every 100 retrieval sessions.

The results are shown in Fig. 11. The performances increase with our method,
but not for the distance learning method of Xing. This is certainly because
a distance learning method can not make high changes in the similarities
between images. Furthermore, the categories in these experiments are mixed 3 ,
contrary to Xing experiments [51].

5.5.2 Offline optimization

We have also experimented the method when a partial knowledge on the
database is available. For instance, one can have some keywords on sub-parts
of the database. In order to simulate this partial knowledge, we randomly built
500 label sets of 50 positive and 50 negative values. Then we injected from
100 to 500 of these label sets in the semantic learner. The performances were
evaluated for each size.

Fig. 12 shows the results. One can see that, with such semantic training sets,

3 Mixed categories means that one image belongs to more than one category.
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Fig. 11. Mean Average Precision (%) using an optimized kernel matrix, from 0 to
500 retrieval sessions, each retrieval session is initialized with 1 relevant image, a
user performs 10 feedback step, and labels 10 images per feedback steps. Every 100
retrieval sessions, the 100 last label sets are injected into the semantic learner to
optimize the kernel matrix.
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Fig. 12. Mean Average Precision(%) using an optimized kernel matrix, from 0 to 500
label sets. This protocol assumes that a partial knowledge (for instance, keywords)
has been used to generate the label sets. Each label sets has 50 positive labels, and
50 negative labels.

the performances of our method widely increase with the training set size.
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Fig. 13. Top rank before semantic learning. The most relevant pictures for the
concept ”mountains”.

5.5.3 Other experiments

We have also compared our method with the distance learning method of
Schultz and Joachim [52], that uses label sets with exclusively 2 positives and
1 negative values. Our method is still efficient with such a training set, but the
distance learning does not improve the results, certainly for the same reason
than for the Xing one.

Finally, an example of retrieval is reported on Fig. 13 (before semantic learn-
ing) and on Fig. 14 (after semantic learning). In both cases, the user is looking
for mountains, and the query is composed of two positive examples (the images
with a small green square in figures). Before optimization, there are irrelevant
pictures amongst pictures the closest to the query. After optimization, since
users have labeled mountains as being in the same concept during the previous
sessions, the closest images all are mountains.
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Fig. 14. Top rank after semantic learning. Most relevant pictures for the concept
”mountains”.
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6 Conclusion

In this paper, a complete data mining system dedicated to image retrieval in
large databases has been presented. It includes new solutions to the image
indexing and to the database mining, both parts being improved throughout
system use sessions.

Concerning image representation, we have opted for a dynamic quantization
of the feature space and have proposed an adaptive quantization in two stages,
which is both fast and efficient. The resulting color and texture-based code-
books perfectly match the content of the database. A nice trade-off between
compactness and exhaustiveness of the image signatures is thus performed.

The core of the retrieval system is the similarity measure. We used kernel
functions to represent similarity. This framework allows us to well separate
the image coding from the latter processing such as classification, ranking,
learning. We have compared various kernel functions and various classifiers.
In our context of semantic category retrieval in large databases of general
photographs, with very few training data, a SVM with a Gaussian kernel is
the best choice.

Another contribution of the paper is our active learning scheme, that exploits
the Mean Average Precision statistic in the generalization error criterion to
boost the retrieval process. Adding to a specific SVM boundary correction,
the RETIN active learning strategy outperforms the state-of-the-art methods
proposed by Tong & Chang and Roy & Mc Callum.

Finally, we have also proposed a method to keep the semantic categories build
by the various users over the sessions, even if categories are mixed. The kernel
matrix framework is extended to learn new similarity matrices as soon as
additional user information is available. It is an efficient way to improve the
retrieval quality within large databases, since the MAP is multiplied by two
after 500 retrieval sessions compared to a single session. This performance
can be much more improved by injecting prior knowledge such as a partial
classification of the database.

A perspective of this work is to translate this active learning scheme to prim-
itives extracted from the images such as regions or points of interest in order
to be able to answer other requests such as partial queries.
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Appendix

CBIR tests are carried out on the generalist Corel Photo database, which
contains more than 50, 000 pictures. To get tractable computation for the
statistical evaluation, we randomly selected 77 of the Corel folders, to obtain
a database of 6, 000 images. To perform interesting evaluation, we built from
this database 50 categories of different sizes and complexities like birds (219),
castles (191), doors (199), Europe (627), food (315), mountains (265) ...

The CBIR system performances are measured using precision(P), recall(R)
and statistics computed on P and R for each category. We use the mean average
precision (MAP) which represents the value of the P/R integral function. This
metric is used in the TREC VIDEO conference 4 , and gives a global evaluation
of the system (over all the (P,R) values).

The performances are evaluated by simulating the use of the system. For
each simulation, an image category is randomly chosen and 100 images of the
category, drawn at random or with active learning, constitute the learning
set for the SVM. After each classification of the database, the Mean Average
Precision (MAP) is computed. These simulations are repeated 1000 times, and
all values of MAP are averaged. Next, we repeat ten times these simulations
to get the mean and the standard deviation of the MAP.
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