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Abstract. This paper deals with content-based image retrieval. When the user is looking for large categories,
statistical classification techniques are efficient as soonas the training set is large enough. We introduce a two-step
– exploration, classification – interactive strategy designed for category retrieval. The first step aims at getting a
useful initial training set for the classification step. A stochastic image selection process is used instead of the
usual strategy based on a similarity score ranking. This process is dedicated to explore the database in order
to collect examples as various as possible of the searched category. The second step aims at providing the best
classification between relevant and irrelevant images. Based on SVM, the classification applies an active learning
strategy through user interaction. A quality assessment iscarried out on the ANN and COREL databases in order
to compare and validate our approach.

1 Introduction

Content-Based Image Retrieval (CBIR) has attracted a lot
of research interest in recent years. This paper addresses the
problem of category search, which aims at retrieving all im-
ages belonging to a given category from an image database.

Traditional techniques in CBIR are limited by the se-
mantic gap, which separates the low-level information ex-
tracted from images and the semantic user request [26, 25]:
the user is looking for one image or an image set with se-
mantics, for instance a type of landscape, whereas current
processing deals with color or texture features. The prob-
lem is even more complicated when the user is looking for
a particular building, or a person, or for an abstract concept
such as unemployment. These different levels of abstrac-
tion have been reported in [9]. Moreover, the increasing
database sizes and the diversity of search types contribute
to increase the semantic gap. Various strategies have been
used to reduce the semantic gap.

Some off-line methods focus on the feature extraction
or on the similarity function definition. Thanks to psycho-
visual experiments, Mojsilovic and Rogowitz [19] propose
to identify image features and similarity functions which
are directly connected to semantic categories. Experiments
have also been carried out with user interaction to integrate
a user model in a Bayesian similarity function [8]. The aim
is to define a similarity between images as close as possible
to the human similarity interpretation. In computer vision

community, some works deal with local descriptor extrac-
tion [27] [33] and are concerned with creating indexes rota-
tionally invariant, and robust to object deformations.

Other strategies focus on the on-line retrieval step
to reduce the semantic gap. These approaches introduce
human-computer interaction into CBIR [37, 36]. Inter-
active systems ask the user to conduct search within the
database. Starting with a coarse query, the interactive pro-
cess allows the user to refine the query as much as neces-
sary. Many kinds of interaction between the user and the
system have been proposed [3], but most of the times, user
interaction consists of binary labels indicating whether or
not the image belongs to the desired category. The sys-
tem integrates these labels through relevance feedback. The
main idea of relevance feedback is to use information pro-
vided by the user to improve system effectiveness.

In category search, each image has to be classified as
belonging or not to the category. Retrieval techniques are
mainly of two types: statistical and geometrical [36]. The
geometrical methods refer to search-by-similarity systems,
based on calculation of similarity between a query1 and the
images of the database [16] [24]. The objective of the sta-
tistical methods is to update a relevance function or a bi-
nary classification of images using the user labels. The
approach by relevance function estimation aims at associ-
ating a score to each image of the database, expressing the

1Generally, one image is used as the query.



relevance of the image to the query. A Bayesian context
is often used, and the probability density function is up-
dated considering the user labels. The probability function
may be uniformly initialized and iteratively refined in order
to emphasize relevant images [2][8]. Recently, statistical
learning approaches have been introduced in CBIR context
and have been very successful [30]. Discrimination meth-
ods (from statistical learning) may significantly improve the
effectiveness of visual information retrieval tasks. Thisap-
proach treats the relevance feedback problem as a super-
vised learning problem. A binary classifier is learnt by us-
ing all relevant and irrelevant labeled images as input train-
ing data [5].

In this paper, we focus on statistical learning tech-
niques for image category retrieval. We propose a binary
classification method, but adapted to image retrieval. In-
deed, the classification in CBIR context has some specifici-
ties : the input space dimension is usually very high, the
training set is very small in comparison with the test set
(the whole database), unlabeled data are available,etc. To
take into account these properties, our strategy is based on
Support Vector Machines (SVM) classification and on an
active learning strategy [6].

In addition, learning algorithms need enough initial
training data in order to get correct classification [30]. We
introduce in this paper a first step based on a database ex-
ploration scheme to initialize the classification of the sec-
ond step. A discrete probability law is proposed to express
the relevance of images. A sampling is then applied to dis-
play new images to the user.

The main originality of our work can be summarized
in two points:
-Stochastic exploration strategy to get useful initial training
set;
-Active learning scheme to boost the classification step.

After an overview of the learning architecture (sec-
tion 2), the main components of our strategy will be de-
tailed (sections 3, 4 and 5). Experiments are provided in
section 6 to validate and compare the strategy with up-to-
date concurrent methods.

2 Retrieval system architecture

As explained in introduction, our image retrieval strategy,
called RETIN, is organized in a two-stage sequential pro-
cess: – 1) database exploration – 2) active learning classifi-
cation. The RETIN algorithm starts a category search with
the exploration strategy step before automatically switching
to the classification step. The whole scheme of our retrieval
strategy is reported on fig. 1.

For the exploration step (detailed in section 4), a dis-
crete probability law expresses the relevance of images. A
stochastic sampling of this law is applied to present new im-

Figure 1: RETIN architecture



ages to the user. After user’s labeling, new relevant images
are added to the initial query and the process is iterated.
The set of relevant images accumulated during this stage is
called thesemantic query(SQ).

The exploration process stops when the cardinal|SQ|
of the semantic query is higher than a thresholdK, and the
active classification process starts.K = 20 has been used
for all our experiments to keep the same values than the
ones used by other methods with which we make compar-
isons.

For the active classification process (detailed in sec-
tion 5), we use a SVM binary classifier with specific kernel
function, and a specific active learning process to sample
new images to display for labeling. After user’s labeling,
the user decides whether to stop or to continue the learn-
ing process. If it continues, the new examples are added
to the training set and the classification process is iterated.
Else, the learning process is over, and the final top similar-
ity ranking is presented to the user.

An example of the RETIN interface is reported on
Fig. 2. The lower window displays the images to label dur-
ing the learning scheme. The upper one is the final window,
where images are displayed using top relevance ranking.

Figure 2: Example of RETIN results

Both steps need a similarity function to compare im-
ages. We introduce in section 3 statistical tools to deal with
similarity and classification functions.

3 Statistical tools for CBIR

Similarity functions are usually employed to compare two
images. When dealing with a more complex query (for ex-
ample, a set of images), the similarity concept has to be
extended. In a previous work [10], we proposed a merg-
ing scheme to combine two-by-two measures between the
current image and all the relevant labeled images. Another
way to estimate this similarity is to consider the problem as

a probability density function estimation problem. By this
way, it is easier to deal with multi-modal distributions.

Besides, when dealing with a query set having relevant
and irrelevant images, a decision function used for discrim-
ination has to be computed. Statistical learning techniques
such as nearest neighbors [15], Support Vector Machines
[31, 5], bayes classifiers [36], have been used.

SVM has demonstrated capacity in pattern recogni-
tion, and more recently in CBIR [31, 38]. We have shown
that the SVM classification method is highly adapted to the
image retrieval context [13]. This classification method can
deal with high dimensionality using thekernel trick, and
does not require a too large training set. Thus, we use SVM
as our default classification method for CBIR.

In the following section, we outline the SVM algo-
rithm, which provides a decision function [34]. For the
density estimation, we also present an adaptation of SVM
two-class formalism to one-class formalism [28]. This one-
class SVM will be used in our exploration process.

3.1 Support Vector Machines

The Support Vector Machines (SVM) are a type of learn-
ing algorithms developed in the 1990s. They are based on
results of statistical learning theory introduced by Vapnik
[34]. These learning machines use kernels, which are a cen-
tral concept for a number of learning tasks.

First, we assume that both classes are linearly sepa-
rable. Let(xi)i∈{1,...,N}, xi ∈ R

p be the feature vec-
tors representing the training data, and(yi)i∈{1,...,N}, yi ∈
{−1, 1} be their respective class labels. Let us define a hy-
perplane by< w,x > +b = 0 wherew ∈ R

p andb ∈ R.
Since the classes are linearly separable, we can find a func-
tion f , f(x) =< w,x > +b with:

yif(xi) = yi(< w,xi > +b) > 0, ∀i ∈ {1, ..., N} (1)

The decision function may be expressed asfd(x) =
sign(< w,x > +b) with fd(xi) = sign(yi), ∀i.

Since many functions realize the correct separation be-
tween training data, additional constraints are used. SVM
classification method aims at finding theoptimal hyper-
plane based on the maximization of themargin2 between
the training data for both classes.

Because the distance between pointx and the hyper-
plane isyf(x)

||w|| , the optimization problem may be expressed
as the following minimization:

min
1

2
||w||2 subject to yi(< w,xi > +b) ≥ 1, ∀i (2)

Thesupport vectorsare the training points for which
we have an equality in Eq. 2. All of them are equally close

2The margin is defined as the distance from the hyperplane of the clos-
est points, on either side.



to the optimal hyperplane. One can prove that they are suf-
ficient to compute the separating hyperplane.

This is a convex optimization problem (quadratic cri-
terion, linear inequality constraints). Usually, the dualfor-
mulation is favored for its easy solving with standard tech-
niques. Withα

? the dual solution of the quadratic opti-
mization, the hyperplane decision function can be written
as:

fd(x) = sign(

N∑

i=1

yiα
?
i < x,xi > +b)

The linear SVM classifier previously described finds
linear boundaries in the input feature space. To get much
more general decision surfaces, the feature space may be
mapped into a larger space before achieving linear classifi-
cation. Linear boundaries in the enlarged space are equiv-
alent to nonlinear boundaries in the original space. Every-
thing about the linear case also applies to nonlinear cases,
using a suitable kernelk instead of the Euclidean dot prod-
uct. The decision function is:

fd(x) = sign(

N∑

i=1

yiα
?
i k(x,xi) + b)

To get a relevance function useful in CBIR, the dis-
tance to the boundary is used:

f(x) =

n∑

i=1

yiα
?
i k(x,xi) + b (3)

Various kernel functionsk(, ) have been proposed.
The most popular ones are the Gaussian and polynomial
kernels. Because we have no prior assumption on input data
configuration, we selected a Gaussian kernel:

k(xi,xj) = exp(−
d2(xi,xj)

2σ2
) (4)

3.2 One-class SVM

When only relevant images are considered, a classification
can not be carried on, but a density function may be esti-
mated. The one-class SVM method [28] estimates the den-
sity support of a vector setX = (xi, yi = 1)i∈{1,...,N} rep-
resenting an image class. As SVM, this leads to a quadratic
optimisation problem, and can be used with a kernel func-
tion. The same functionf (Eq. 3) is computed in the one-
class context, providing a density function.

4 Exploration process

Statistical learning approaches perform binary classifica-
tion. They need enough training data to give acceptable
results.

In our learning scheme, we propose an exploration
process in order to get an initial training set for the classifi-
cation process. These images have to be carefully selected
because when the user is looking for large and complex cat-
egories, relevant images are usually scattered in the feature
space. The system needs an exploration strategy able to
efficiently catch complex categories with multi-modal dis-
tributions.

In Bayesian framework as proposed by [8] or [12],
some kind of exploration is implicitly performed, but the
goal is not to retrieve large categories, and exploration is
not explicitly settled. We introduce in this article a stochas-
tic scheme to manage database exploration. A probability
function is defined to express the relevance of each image.
The tuning of the probability law is the key point of such a
strategy. It has to change from a tolerating law (large explo-
ration) to a selective law. The proposed scheme is working
with discrete probabilities to handle the law parameters.

In the next section, the image sampling principle is
explained, and the parameter tuning is presented in the fol-
lowing one.

4.1 Sampling process

Thanks to the relevance functionf (we use the proba-
bility density function estimated with the one-class SVM
method), all the images may be sorted. In interactive re-
trieval, the basic approach selects and presents to the user
the m first images according to relevance ranking. This
strategy is efficient to refine similarity around positives ex-
amples ofSQ, but there is no consideration about the con-
fidence that we can have onf during the process.

The introduction of a random scheme may be useful
to explore the database and to dynamically express the con-
fidence that we have in the semantic query modelSQ and
consequently inf (computed fromSQ).

We introduce an exploration process by using each
fk = f(xk) as a weight, and find new imagesxi such asfi

is sampled from the multinomial lawM():

fi ∼ M(f1, · · · , fn)

By this way, any image from the database may be se-
lected, even an image far from the currentSQ.

Actually, the strategy for computing the weights asso-
ciated to each image may be changed in order to take into
account the confidence inSQ. It can be done using the
following probability on weightsfk:

pk = P (fk) =
1

ZT

× exp(
fk

T
)

whereZT is the sum of the exponential values over
all the images of the database andT , the parameter which
tunes the confidence that we have inSQ.



At each iteration of the interactive search, the system
samples and displays images according to these probabili-
ties :M(p1, · · · , pn). All the images that the user labels as
relevant are added to setSQ.

Let us explain the idea of this stochastic strategy:
when parameterT is high, the influence off is weak, and
thus, all weightspk are almost equal. The sampling is then
a pure random sampling. The confidence inf (andSQ) is
very low and the exploration is favored. When parameter
T decreases, the influence off increases in the probability
computation. The search space cuts down aroundSQ, and
the confidence inSQ increases.

The crucial point is the tuning ofT . In a previous work
[7], we proposed to handle the exploration by using relation
inspired by simulated annealing techniques and calculation
by approximations in the continuous domain. We propose
here a new formalism established on discrete probabilities.
Simple assumptions allow us to make the tuning fully auto-
matic.

4.2 Exploration tuning

First, we propose to measure the confidencec in SQ by
using the number of images in the set:|SQ|. Indeed, as
SQ is composed of relevant images, the confidencec in-
creases as the cardinal number|SQ|. When|SQ| is small,
the semantic query is poor and the confidence is low. When
|SQ| is large, the set contains many images and should be
rich enough to stop the exploration; the confidence inSQ
is high. c may be expressed asc = g(|SQ|) whereg()
is an increasing monotonous function. We adopt the basic
relation

c = |SQ| (5)

Besides, the confidencec has to be linked to probabil-
ity P . Let us consider the mathematical expectation of the
fk values, estimated by:fexpe = 1

N

∑N
k=1 fk andfmax

the greatest value offk on the database. Using exponential
laws, it is possible to tune the decreasing of the probability
law thanks to bothP (fmax) andP (fexpe) values. Our as-
sumption is that the ratio between these probabilities may
be linked toc. Indeed, whenc is low, P (fmax)

P (fexpe) should be
low too (around1) to explore a lot, and whenc is high,
P (fmax)
P (fexpe) should be very large to tighten up around the rele-
vant images ofSQ. The relation is then as follows:

c =
P (fmax)

P (fexpe)
=

exp(fmax

T
)

exp(
fexpe

T
)

(6)

From equations 5 and 6 (for|SQ| > 1), it follows3:

T =
fmax − fexpe

ln(c)
=

fmax − fexpe

ln(|SQ|)

3This condition is always true except at the beginning, wherea partic-
ular condition (c = 2) may be used.

One step of the exploration process may be summa-
rized as follows:

1. User’s labeling; add relevant images toSQ

2. Compute|SQ| andfk = f(xk) ∀xk

3. Compute fexpe = 1
N

∑N

k=1 fk and fmax =
maxk {fk}

4. ComputeT =
fmax−fexpe

ln(|SQ|)

5. Compute∀xk (unlabeled)pk = 1
ZT

× exp(fk

T
)

6. Sample and display new images withM(p1, p2, · · · )

This approach allows us to have a straight control of
the exploration with simple and intuitive assumptions to au-
tomatically tune the parameters.

5 Active classification process

The classification process is the second step of our two-step
sequential process for category retrieval (cf. fig. 1). All the
images inSQ are used with the irrelevant labeled images4

in a classification framework.
The CBIR context defines a very specific classification

problem. In this article, we are dealing with the following
characteristics:

1. High dimensionality. Database images are usually rep-
resented by vectors of high dimensionality.

2. Few training data. As the user cannot be asked for
labeling thousands of images, the system has to sort
out a very small percentage of labeled data.

3. Interactive learning. Usually, in classification frame-
work the training set is fixed. In interactive retrieval
context, the training set grows step by step. All the im-
ages labeled during the current interaction are added to
the training set for the next classification step. In sta-
tistical learning, this property defines the active learn-
ing framework [6].

After an introduction to active learning strategies and
CBIR learning context, we explain our classification strat-
egy exploiting the above mentioned specificities.

5.1 Statistical learning strategies for CBIR

Due to the first characteristic, that is to say vectors of high
dimensionality (for instance, 50 or more), artifacts appear,
known as the curse of dimensionality [15]. However, with

4All examples that the user had labeled as irrelevant during the explo-
ration were also stored to be exploited during this second step.



the theory of kernel functions, one can reduce this problem
[29], especially if kernel functions can be adapted to a spe-
cific application. For instance, when distributions are used
as feature vectors, a gaussian kernel gives excellent results
in comparison to distance-based techniques [13]. We use
this kernel associated to SVM (see section 3) to compare
images and compute classification.

Concerning the second characteristic, although there
are few training data, all the unlabeled images of the
database are available. Semi-supervised techniques use la-
beled and unlabeled images to compute the classification
function, as for instance, the Transductive SVM method
[17], the semi-supervised Gaussian mixtures [20], and
semi-supervised Gaussian fields [39]. However, TSVM and
SSGM do not lead to significant improvements [4, 14]. Fur-
thermore, these techniques have high computational needs
in comparison to inductive techniques. For now, semi-
supervised learning techniques do not seem to be adapted
to the context we are focusing on.

Active learning is another solution to deal with the lack
of training data. The principle is that the training data set
is no more fixed but new samples are phased in thanks to
user interaction. Active learning strategies aim at selecting
samples that, once added to the training set, will allow to
optimize the classification, as for instance by minimizing
the expected error of the learner [23].

Of course, the expected error is not accessible and ap-
proximation schemes have been proposed [23]. The idea is
to restrict the computing of the error to the set of unlabeled
data available, and to train as many classifiers as there are
unlabeled data and labels. As the label of each candidate
is unknown. Roy and McCallum compute the expectation
for each possible label. This kind of approach is very time
consuming and has never been successfully used in CBIR.

Uncertainly-based sampling is another way to perform
active learning principle. The method selects the docu-
ments for which the classification function is the most un-
certain. A first solution consists in selecting the unlabeled
documents with the probabilities closest to 0.5 [18]. Simi-
lar strategies have been also proposed with SVM classifier
[21], with a theoretical justification [31]. This strategy rests
on a strong assumption: a reliable estimation of the bound-
ary between classes. In classification framework, the train-
ing data set approximatively represents50% of the whole
data set. In CBIR, the training set stays very small (even af-
ter interaction) in comparison to the database size. In such
a context, to get a reliable estimation of the boundary is a
major problem. In this particular context, statistical tech-
niques are not always the best ones, and we propose in the
next section an heuristic-based correction to the estimation
of f close to the boundary.

5.2 Active RETIN method for image set selection

Let (xi)i∈{1,...,n}, xi ∈ R
p be the feature vectors represent-

ing images from the whole database, andx(i) the permuted
vectors after a sort according to the functionf (Eq. 3). At
feedback iterationj, SV Mactive proposes to labelm im-
ages from ranksj to sj+m−1:

x(1),j
︸ ︷︷ ︸

most relevant

,x(2),j , ...,x(sj),j , ...,x(sj+m−1),j
︸ ︷︷ ︸

images to label

, ..., x(n),j
︸ ︷︷ ︸

less relevant

In SV Mactive strategy, sj is selected so that
x(sj),j , ...,x(sj+m−1),j are the closest images to the SVM
boundary. The closer to the margin an image is, the less its
classification is reliable.

We introduce a method based on the same principle
thanSV Mactive, but without using the SVM boundary to
find the values. Indeed, we notice that, although the bound-
ary changes a lot during the first iterations, the ranking op-
eration is quite stable. Actually, we just suppose that the
bests (corresponding to the searched boundary) allows to
present as many relevant images as irrelevant ones. Thus,
if and only if the set of the selected images is well bal-
anced (between relevant and irrelevant images), thensj is
good. We exploit this property to adapts during the feed-
back steps.

At the jth feedback step, the user gives new labels
for imagesx(sj),j , ...x(sj+m−1),j . Let us noterrel(j) and
rirr(j) the numbers of relevant and irrelevant labels. To ob-
tain balanced training sets,s has to be increased ifrrel(j) >

rirr(j), and decreased otherwise. We adopt the following
upgrade rule forsj+1: sj+1 = sj + k × (rrel(j)− rirr(j))
For now, we have used this relation withk = 2 in all our
experiments.

Once sj+1 is computed, the system should pro-
pose to the user them images from x(sj+1),j+1 to
x(sj+1+m−1),j+1. Actually, we also want to increase the
sparseness of the training data. Indeed, nothing prevents an
image close to another (already labeled or selected) to be
selected. To overcome this problem, we consider exactly
the same strategy but working no more on images but on
clusters of images: we computem clusters of images from
x(sj),j to x(sj+M−1),j (whereM = 10 × m for instance),
using an enhanced version of LBG algorithm [22]. Next,
the system selects for labeling the most relevant image in
each cluster. Thus, images close to each other in the feature
space will not be selected together for labeling.

6 Experiments

6.1 RETIN features and parameters

RETIN is a new version of the CBIR system developed in
ETIS laboratory [11].

Color and texture information are exploited. As none
of the numerous color spaces has proved its superiority



over the others for image coding, we have chosen the HSV
space. For texture analysis, Gabor filters are used, with
twelve different scales and orientations.

Signatures are statistical distributions of colors and
textures resulting from a dynamic quantization of the fea-
ture spaces. That means we use color and texture space
clustering to compute the image histograms. Both spaces
are clustered using an enhanced version of LBG algorithm
[22]. The main problem is to choose the number of clusters,
which gives the number of bins in the histograms.

Some theoretical rules may be used to set the num-
ber of histogram bins. Sturges’s or Scott’s rules cited in
[1] allow to avoid over or under-quantization. In image re-
trieval context, Brunelli and Mich have evaluated many fea-
ture histograms and they concluded that low-resolution his-
tograms (with small bin numbers) are reliable [1]. For color
histograms, Tran and Lenz suggest to use around 30 bins
[32]. In a previous paper [11], we made a lot of compar-
isons using different numbers of clusters for dynamic and
static quantizations of the feature space, which all confirm
these propositions. A major advantage of the dynamic ap-
proach is the reduction of the size of the signature without
performance degradation. For a generalist database (around
10, 000 images), a small number of classes obtained by a
dynamic clustering of the database is sufficient to build ef-
ficient signatures. We have adopted this dynamic quanti-
zation in the RETIN system with25 classes (as the default
value).

Image signature consists of one vector representing the
image color and texture distributions. The input sizep is
then50 in our experiments.

The kernel function used in the SVM algorithm (one-
class and two-class) is a Gaussian kernel (Section 3). More-
over, the distance in Gaussian kernel may be chosen accord-
ing to feature vector type. We use aχ2 distance which is
well suited for vectors representing distributions, and inthat
case,σ = 1 (Eq. 4).

6.2 Evaluation and comparison protocol

6.2.1 Databases

The tests are carried out on two generalist databases: the
ANN 5 image database and the COREL photo database.
ANNcontains around 500 images divided into11 categories
from 25 to 50 images.

The COREL database contains more than50, 000 pic-
tures organized in categories. Each category has about
100 images. To get tractable computation for the statisti-
cal evaluation, we randomly selected10% of the COREL
categories. We obtained about50 categories and the cor-

5“Labeled ground-truth database”, Department of Com-
puter Science and Engineering, University of Washington,
http://www.cs.washington.edu/research/imagedatabase/.

responding database is composed of6, 000 images. We
present here results for5 categories directly extracted from
the initial 50 categories or obtained by merging some of
them (to get sets with different sizes and complexities). The
important point is to show results from small and mono-
modal categories to large and multi-modal categories. They
are reported in table 1 from the simplest one to the most
complicated one.

category size description
caverns 121 simple, mono modal
doors 199 simple, rather mono modal

flowers 506 very large, few modes
savanna 399 large, few modes

landscape 451 complicated, many modes

Table 1: COREL categories for evaluation

6.2.2 Statistical performance measurements

The CBIR system performances are measured using preci-
sion(P), recall(R) and statistics computed on P and R for
each category. Let us noteA the set of images belonging to
the category, andB the set of images returned to the user,
then: P= |A∩B|

|B| and R= |A∩B|
|A| . Usually, the cardinality

of B varies from1 to database size, providing many points
(P,R). We present P/R curves which may be displayed using
interpolation of the (P,R) points.

To carry out quantitative evaluation, we use the
breakeven pointbp metric. The breakeven point is defined
as the point on a precision-recall curve that has the same
value for precision and recall. There is an obvious rela-
tion between a breakeven point and the performance of a
classification or retrieval system:|A| = |B|. It is a very
interesting measure for comparison purposes when looking
for large categories. We also use the Mean Average Preci-
sion (MAP ) which represents the value of the P/R integral
function. This metric is used in the TREC VIDEO confer-
ence6, and gives a global evaluation of the system (over all
the (P,R) values).

Each simulation is initialized with one image ran-
domly selected within the desired category. For each feed-
back step,m images are automatically labeled using the
ground truth. The training stops afteri = 10 iterations in
these experiments.100 simulations are done for each cate-
gory, and P and R average values are computed.

6.2.3 Comparative methods

For the quality assessment, our strategy RETIN has been
compared with three methods:

6http://www-nlpir.nist.gov/projects/trecvid/



M1: a SVM classification algorithm without exploration or
active strategy. It means that we use a learning data set
where images are randomly selected in the database.
Of course, the same number of training data is used.

M2: a reference classification-based strategy for relevance
feedback. We use a Bayesian classifier with a Parzen
window density estimation according to the frame-
work of Vasconcelos [35].

M3: a reference active strategy learning, theSV Mactive

strategy [31].

All the methods follow the same interactive protocol
and do not require any manual tuning before the process.

6.3 Results

6.3.1 ANN

Because of the small size of the database, the numberm

of images labeled at each interactive feedback step is set
to m = 5. The number of feedbacks is set to10. The
training set contains50 images at the end of the interactive
process. The classification performances are then provided
for learning systems trained with only10% of the database.
In that case, the relative performances are more interesting
than the absolute ones.

Quantitative evaluation for all the categories of ANN
are summarized in table 2 and table 3, where thebp and
MAP measures have been respectively reported.

category M1 M2 M3 RETIN
arborgreens 58 73 72 79
campusinfall 56 65 70 80
cannonbeach 71 86 72 79

cherries 65 84 73 86
yellowstone 51 60 62 63

football 95 96 95 100
geneva 68 84 94 91

greenlake 56 63 67 71
sanjuans 66 79 71 72

springflowers 74 78 81 86
swissmountain 85 91 89 95

Table 2: ANN evaluation: system performances estimated
with the breakeven metricbp (%), at the end of the interac-
tive learning process.

The RETIN strategy gives the best results for8 cate-
gories out of11 according to thebp measure, for7 cate-
gories out of11 according to theMAP measure, but the
Bayesian M2 method is sometimes better, often close. The
active M3 strategy provides poor results. The active learn-
ing seems to be very dependent on the number of training

category M1 M2 M3 RETIN
arborgreens 63 81 79 84
campusinfall 65 72 81 87
cannonbeach 79 91 79 84

cherries 72 94 82 92
yellowstone 56 66 70 73

football 99 99 99 100
geneva 74 86 98 96

greenlake 60 66 75 78
sanjuans 74 85 79 80

springflowers 80 83 84 91
swissmountain 91 92 95 98

Table 3: ANN evaluation: system performances estimated
with the MAP metric (%), at the end of the interactive
learning process.

data; when this number is very small (only50 here), the
performances are poor. This observation joins the Tong’s
conclusion [30] about his technique. Our active strategy
coupled with exploration steps is less sensitive and can suc-
ceed in task retrieval even when the training data set is very
small.

6.3.2 COREL

Experiments on COREL are very interesting because the
database is quite large, with many kinds of categories. In
this context, comparison between systems to retrieve large
and complex sets of images is meaningful.

The numberm of images labeled at each feedback step
is m = 20 and the number of feedbacks is10. The training
set contains200 images at the end of the interactive learning
process. The classification performances are then provided
for systems trained with only3% of the whole database.

First, we provide P/R curves on (respectively) doors
(Fig. 3), flowers (Fig. 4) and landscape (Fig. 5) categories
to illustrate the behavior of the methods on (respectively)
an easy, a medium and a difficult category.

Most of the time, The RETIN strategy provides the
best curves. Active learning strategies improve perfor-
mances on the difficult retrieval task (Fig. 5), but RETIN
is better than the other active strategy (SV Mactive M3) on
the 3 tested categories.

The bp values are reported in table 4, andMAP in
table 5 for all the configurations.

Performances deeply depend on the complexity of the
searched category. RETIN provides the best results for
both bp and MAP statistics for all the categories. The
number of exploration steps depends on the number of re-
trieved images but we noticed that it is quite stable. Active
learning strategies improve performances, even if RETIN
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Figure 3: P/R curve for the doors category (COREL
database).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Retin
M3
M2
M1

Figure 4: P/R curve for the flowers category (COREL
database).
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Figure 5: P/R curve for the landscape category (COREL
database).

category M1 M2 M3 RETIN
caverns 42 61 70 70
doors 60 73 75 88

flowers 51 49 52 62
savanna 34 32 39 42

landscape 36 30 43 44

Mean 45 49 56 61

Table 4: COREL evaluation: system performances esti-
mated with the breakeven metricbp (%), at the end of the
interactive learning process.

category M1 M2 M3 RETIN
caverns 40 62 75 75
doors 63 81 82 93

flowers 53 55 58 67
savanna 32 31 43 45

landscape 34 29 47 47
Mean 44 52 61 66

Table 5: COREL evaluation: system performances esti-
mated with theMAP metric (%), at the end of the inter-
active learning process.

always gives the best scores,SV Mactive M3 strategy pro-
vides good results. For the most difficult category, the land-
scape category, both active techniques, M3 and RETIN,
have the same performances. The exploration step seems to
be helpless to boost the retrieval in that case. Last rows in
tables 4 and 5 provide average performances. The RETIN
strategy outperforms other techniques from5% to 20%,
which is a significant improvement in image retrieval con-
text.

One can notice that the M1 method without active
learning gives, most of the time, the worst results.

6.4 Computational aspects

The main computational needs is theO(n) computation of
membership to the relevant class (functionf ) on the whole
database. Other requirements are negligible againstn. In
particular, the SVM optimization is not time consuming as
soon as the number of training data (user labels) is small
regardingn. In our experiments, all methods need about
one second to be computed with a Pentium 3 GHz. With a
one million image database, a similar configuration would
require about 10 minutes to be computed.



7 Conclusion

In this article, we have presented an efficient interactive
strategy for content-based image retrieval. The method is
based on a two-step sequential algorithm with an explo-
ration step followed by an active classification step.

The exploration step aims at providing a useful initial
training data set for the next step of classification. This
process is based on a stochastic sampling scheme. A multi-
nomial law with simple and powerful settings of parameters
is introduced in order to efficiently sample new images to
display. In a few interaction iterations, the method provides
a semantic query composed of all the images labeled as rel-
evant by the user. Our strategy catches all the aspects of
the semantic category in order to build a learning set of the
searched category as various as possible.

For the classification task, we adapted a SVM classi-
fier to CBIR context. We also introduced an active learn-
ing strategy to select for labeling new images close to the
boundary between relevant and irrelevant images. This
method allows to get good performances of classification
with few training sets. This is definitively a major advan-
tage in CBIR context where the user interaction has to be
as weak as possible.

The method has been validated through experiments
on large databases with specific grouping of images to get
complex categories. We implemented leader active learning
methods and a Bayesian classification for comparison. Our
two-step strategy outperforms other techniques from5% to
20% on the COREL database. In image category retrieval,
the two steps complement very well each other: the first
step aims at retrieving images from several modes scattered
in the feature space, while the second step efficiently deter-
mines the boundary of the category.

Our currently works deal with the evaluation of the
scalability of theses techniques when huge databases are
considered. We are convinced that, for category search in
very large databases, efficient exploration process before
classification process will become crucial.
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