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The identification of the dynamic parameters of robot is based on the use of the inverse dynamic identification model which is linear with respect to the parameters. This model is sampled while the robot is tracking "exciting" trajectories, in order to get an over determined linear system. The linear least squares solution of this system calculates the estimated parameters. The efficiency of this method has been proved through the experimental identification of a lot of prototypes and industrial robots. However, this method needs joint torque and position measurements and the estimation of the joint velocities and accelerations through the bandpass filtering of the joint position at high sample rate. So, the observation matrix is noisy. Moreover identification process takes place when the robot is controlled by feedback. These violations of assumption imply that the LS estimator is not consistent. This paper focuses on the Refined Instrumental Variable (RIV) approach to overcome this problem of noisy observation matrix. This technique is applied to a 2 degrees of freedom (DOF) prototype developed by the IRCCyN Robotic team.

Introduction

The usual identification method based on the inverse dynamic model (IDM) and LS technique has been successfully applied to identify inertial and friction parameters of a lot of prototypes, industrial robots and has been extended to cars, worksite engine, human being and haptic interfaces [START_REF] Atkeson | Estimation of Inertial Parameters of Manipulator Loads and Links[END_REF] [START_REF] Swevers | Optimal Robot Excitation and Identification[END_REF]) [START_REF] Khosla | Parameter Identification of Robot Dynamics[END_REF]) [START_REF] Kozłowski | Modelling and identification in robotics[END_REF]) [START_REF] Raucent | Identification of Barycentric Parameters of Robotic Manipulators from External Measurements[END_REF] [START_REF] Gautier | Identification of Robot Dynamics[END_REF]) [START_REF] Restrepo | Calibration of drive chain of robot joints[END_REF] (Gautier 1997) [START_REF] Venture | Modeling and identification of passenger car dynamics using robotics formalism[END_REF]) (C-E [START_REF] Lemaire | Dynamic identification of a vibratory asphalt compactor for contact efforts estimation[END_REF]) [START_REF] Janot | Modeling and Identification of a 3 DOF Haptic Interface[END_REF]) among others. At any case, a derivative bandpass data filtering is required to calculate the joint velocities and accelerations. Moreover identification process is carried out with a feedback controlled robot. These conditions may lead to a violation of statistical independence between the residual and the observation matrix which implies that the LS solution is not consistent. To overcome this problem of noisy observation matrix, several methods have been proposed in the past: Extended Kalman Filtering, total least-squares, Instrumental Variable method .

We show in [START_REF] Gautier | Extended Kalman Filtering and Weighted Least Squares Dynamic Identification of Robot[END_REF] that Extended Kalman Filtering is more complicated without improvements of results.

As far as total least squares are concerned, we used them in order to identify simultaneously dynamic and drive gain parameters [START_REF] Gautier | Identifi-cation of inertial and drive gain parameters of robots[END_REF]. However, we did not succeed in applying this method to take into account the feedback which correlates the noise.

Instrumental Variable method was already applied in robotics [START_REF] Puthenpura | Identifica-22 September 2010 tion of Continuous-Time Systems Using Instrumental Variables with Application to an Industrial Robot[END_REF]. This method was used in order to identify a SISO system linear with respect to the state in an open loop configuration for each axis of an industrial robot. In this paper, the IV is applied for a dynamic model of a robot non linear with respect to the state and in closed loop configuration.

Recently, the Instrumental Variable (IV) approach was renewed in the context of closed loop linear continuous system.

This method is particularly interesting because of its simplicity. Indeed, no noise model identification is needed and the IV estimator is consistent even if the noise is colored [START_REF] Young | Refined instrumental variable methods of time-series analysis: Part 1, SISO systems[END_REF], [START_REF] Söderström | System identification[END_REF]. However, this technique was generally applied to discrete system linear with respect to the state which is not the case in robotics. The choice of the instrument variable depends on the context. Moreover, the method was designed in open loop system. Progressively, algorithms suitable to our context, i.e. continuous time and closed loop system, have emerged. In particular, the so-called SRIVC algorithm (Simplified Refined Instrumental Variable Continuous-time) for open loop system, based on an auxiliary model as instrument variable, is a good candidate to our problem [START_REF] Young | An instrumental variable approach to ARMA model identification and estimation[END_REF]. Very recently, this last algorithm was modified in order to take into account closed loop system [START_REF] Gilson | A refined IV method of closed-loop system identification[END_REF] [START_REF] Young | Simple Refined IV Methods of Closed-Loop System Identification[END_REF] but still in the frame of system linear with respect to the state. This technique is implemented in the MATLAB CONTSID toolbox developed by the CRAN team [START_REF] Garnier | Latest developments for the matlab contsid toolbox[END_REF].

A derivation of this IV method was first successfully applied on a 1 DOF haptic device (P-O. [START_REF] Vandanjon | Comparison of two identification techniques: Theory and application[END_REF]). This derivation is based on the use of both the inverse dynamic model (IDM) and the direct dynamic model (DDM). The robustness to data filtering and to the initialization as the calculation of the optimal solution were presented in [START_REF] Janot | Identification of robots dynamics with the Instrumental Variable method[END_REF]. However, the consistence of the estimation (like statistical rules), the convergence of the purposed algorithm and the robustness to control laws were not introduced. This paper deals with these issues and the IV method is carried out on a 2 DOF prototype robot developed by the IRCCyN robotic team. This direct drive prototype is very well suited to our purpose because it emphasizes non linear coupling contrary to industrial robots with high gear ratio.

The paper is organized as follows: section 2 reviews the usual identification technique of the dynamic parameters of the robot. Section 3 presents the Instrumental Variable techniques. The experimental results are given in section 4. Finally, section 5 is the conclusion

IDIM

The inverse dynamic model (IDM) of a rigid robot composed of n moving links calculates the motor torque vector idm τ , as a function of the generalized coordinates and their derivatives. It can be obtained from the Newton-Euler or the Lagrangian equations, (W. [START_REF] Khalil | Modeling identification and control of robots[END_REF], [START_REF] Featherstone | [END_REF]. It is given by the following relation:

= ( ) + ( , )

idm τ M q q N q q && & (1)
Where, q , q & and q && are respectively the ( )

x n 1 vectors of generalized joint positions, velocities and accelerations, ( ) M q is the ( )

x n n robot inertia matrix, and ( , )

N q q & is the ( )

x n 1 vector of centrifugal, Coriolis, gravitational and friction forces/torques. The choice of the modified Denavit and Hartenberg frames attached to each link allows to obtain a dynamic model linear in relation to a set of standard dynamic parameters, st χ [START_REF] Gautier | Identification of Robot Dynamics[END_REF], [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF]:

( ) idm st st τ IDM q,q,q χ = & && (2)
Where ( ) st IDM q,q,q & && , is the ( )

x s n N jacobian matrix of idm τ , with respect to the ( )

x1 s N
vector st χ , of the standard parameters given by: T T T T ...

1 2 n st st st st χ χ χ χ   =   (3) 
With: χ sj = [XX j XY j XZ j YY j YZ j ZZ j MX j MY j MZ j M j Ia j Fv j Fc j τ offj ] T , where:

o j j j j j j
XX , XY , XZ , YY , YZ , ZZ , are the six components of the inertia matrix, j j J , of link j at the origin of frame j, o The base parameters are the minimum number of dynamic parameters from which the dynamic model can be calculated. They are obtained from the standard inertial parameters by eliminating those which have no effect on the dynamic model, and by regrouping some others by means of linear relations. They can be determined using simple closed-form rules [START_REF] Gautier | Direct calculation of minimum set of inertial parameters of serial robots[END_REF] or using a numerical method based on the QR decomposition (Gautier 1991).

The minimal inverse dynamic model can be written as:

( ) idm τ IDM q,q,q χ = & && (4) Where:

( ) IDM q,q,q & && , is the ( )

x n b matrix of the minimal set of basis functions of the rigid body dynamics, (5) χ , is the ( )

x b 1 vector of the b base parameters. ( 6 
)
Because of perturbations due to noise measurement and modeling errors, the actual force/torque τ differs from idm τ , by an error e , such that:

( ) idm τ e IDM q,q,q χ e τ =

+ = +

& && (7) Equation ( 7) gives the Inverse Dynamic Identification Model (IDIM).

We consider the off-line identification of the base dynamic parameters χ , given measured or estimated off-line data for τ and ( )

q, q, q
& && , collected while the robot is tracking some planned trajectories. Usually, the signals available from the robot controller are the joint position measurement and the ( )

x n 1 control signal vector v τ , calculated according to the control law.
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Then ( )

q, q, q
& && in (7) are estimated with ( )

ˆq, q, q
& && respec- tively, obtained by bandpass filtering the measure of q (Gautier 1997). The derivatives are off-line calculated without phase shift, using a central difference algorithm of the lowpass filtered position q . The filtered position q is off-line calculated with a non causal zero-phase digital filter by processing the input data q , through a lowpass Butterworth filter in both the forward and reverse direction, using the filtfilt procedure from Matlab.

The control signal v τ , is connected to the input current reference of the current closed-loop of the amplifiers which supplies the motors. Assuming that the current closed-loop has a large bandwidth, greater than 500Hz, its transfer function is equal to its static gain, c K , in the frequency range (less than 10Hz) of the rigid robot dynamics.

Then, the actual force/torque τ , is calculated with the relation: [START_REF] Restrepo | Calibration of drive chain of robot joints[END_REF].

g v τ τ τ = ( 
The inverse dynamic identification model (IDIM) ( 7) is calculated at a frequency measurement m f , using samples of ( ) q ,q ,q & && , during the time length obs T , of the trajectory.

ˆq, q, q & && to calculate ( ) ˆÎDM q,q,q & &&
The equations of each joint are regrouped together on all the trajectory to get an over-determined linear system such that:

( ) ( ) fm fm fm ˆŶ τ W q,q,q χ ρ = + & && (10) 
With:

( )

m 1 fm j 1 j fm fm n fm j n Y ( t ) Y τ ... , Y ... Y ( t ) τ τ         = =             (11) ( ) ( ( ) ( ) ( )) ( ( ) ( ) ( ) m m m 1 j fm 1 1 1 j fm fm n j fm n n n
ˆŴ IDM q t ,q t ,q t ˆŴ q,q,q ... , W ... ˆŴ ÎDM q t ,q t ,q t

        = =               & && & && & && (12) 
where: ( ( ) ( ) ( ))

j k k k ˆÎDM q t ,q t ,q t & &&
, is the jth row of the ( ) fm fm ˆˆˆŴ IDM q,q,q W q,q,q = & && & && will be used also to recall that fm W , is calculated with a sampling of ( ) ˆÎDM q,q,q & && .

x n b re- gressor matrix ( ( ) ( ) ( )) k k k ˆÎDM q t ,q t ,q t & && , (5). 
In 

m d f n × × .
After the data acquisition procedure and the parallel decimation of (10), we obtain the over determined linear system:

( ) ( ) ˆŶ τ W q,q,q χ ρ = + & && (13) 
where:

o ( ) Y τ , is the x1 ( r ) vector of measurements, built from the actual force/torque τ , o ( ) ˆŴ q,q,q & && , is the x ( r b ) observation matrix, built from the estimated values ( )

ˆq,q,q & && of ( ) q, q, q & && . o ρ , is the x1 ( r ) vector of errors. o m d r n* n / n =
, is the number of rows in (13).

In Y and W , the equations of each joint are grouped together such that:

,

1 1 n n Y W Y ... W ... Y W         = =             (14) 
where j Y and Using the base parameters and tracking "exciting" reference trajectories (Gautier et W. Khalil 1992) allow to get a full rank and well conditioned matrix W . The LS solution χ is given by: ( ) ( )

1 T T χ W W W Y W Y - + = = (15) 
It is computed using the QR factorization of W . Standard deviations i χ σ , are estimated using classical results from statistics under the assumptions that W is a deterministic matrix, thanks to the data filtering procedure described above, and ρ , is a zero-mean additive independent Gaussian noise, with a covariance matrix ρρ C , such that:

T 2 ρρ ρ r ( ) σ C E ρρ I = = ( 16 
)
where E is the expectation operator and r I , the ( )

x r r identity matrix.
An unbiased estimation of the standard deviation ρ σ is:

2 2 ρ σ (r b ) ˆŶ Wχ = - - (17) 
The covariance matrix of the estimation error is given by:

T 2 T 1 χχ ρ [( )( ) ] σ ( ) ˆˆĈ E χ χ χ χ W W - = - - = (18) 
i 2 χ χχ σ C ( ) ˆˆˆi ,i = is the i th diagonal coefficient of χχ ˆĈ . The relative standard deviation ri χ
%σ ˆ is given by: ri i

χ χ i %σ 100 σ χ ˆˆ= , for i χ ˆ≠ 0 (19)
The OLS can be improved by taking into account different standard deviations on joint j equations errors (Gautier 1997). Each equation of joint j in ( 13), ( 14), is weighted with the inverse of the standard deviation of the error calculated from OLS solution of the equations of joint j , given by:

( ) ( ) ( ) j j j j j ˆŶ τ W IDM q,q,q χ ρ = + & && (20) 
This weighting operation normalizes the errors in (13) and gives the weighted LS (WLS) estimation of the parameters.

This identification method is illustrated in Fig. 1. The calculation of the velocities and accelerations are required using well tuned bandpass filtering of the joint position (Gautier 1997). One of the numerous validations of the identification is to simulate, a posteriori, the direct dynamic model (DDM) given by ( 10) and to compare the simulated trajectories with real trajectories when the torques are the same. These comparisons have to be done on trajectories which were not used for the identification process.

( ) 

1 q M ( q ) -N( q, q ) τ - = && & (21) Robot ( ) In v erse D yn a m ic Id e n tifica tio n M o d e l ID IM ˆÎD M q ,q ,q & && ˆ, , & && q q q ( ) ( ) fm ˆŴ IDM q ,q ,q & && Linear LS 2 ˆm in - Y W χ χ χ = ( ) ( ) ˆ( ), , , Y W IDM q q q τ & && ( ) q t ( ) t τ Control law χ ( ) r r r q ,q ,q & &&

Instrumental variable technique

Theoretical approach

From a theoretical point of view, the statistical assumptions for efficient LS estimation are violated in practical applications. In the equation ( 13), the observation matrix W is built from the measured joint positions q and from , which are numerically computed from q ,q ,q & && . Therefore the observation matrix is noisy. Moreover identification is carried out in closed-loop control. These violations of assumption imply that the LS estimator, χ , may be non consistent. Indeed, from (13) , it comes:

T T T T ev Ŵ Y W W W ρ W W χ χ = + = (22)
With ev ρ is the vector of errors (errors in variable) when

W is corrupted by noise nf W W W ∆ = - ev ρ W ρ ∆ χ = + ( 
23) Thanks to the Slutsky's theorem, it is obtained:

1 T T 1 1 plim plim plim m m m evm m m m χ χ W W W ρ m m - →∞ →∞ →∞     = +         (24) 
With:

m plim →∞ is the convergence in probability, m is the number of repetition of W and ev ρ , m W (resp. evm ρ ) is the concatenation of W (resp. ev ρ ).
Under the classical assumptions:

( ) T plim E T m m m 1 W W W W m →∞   =     is positive definite (25) plim E T T m evm ev m 1 W ρ (W ρ ) m →∞   =     exists (26)
As ev ρ depends on the observation matrix W according to ( 23), E T (W ρ ) 0 ≠ . Therefore, the estimator is not consistent. 22 September 2010

Instrumental Variable method deals with this problem of noisy observation matrix (called error in variable in the statistical frame) and can be statistically optimal [START_REF] Davidson | Estimation and Inference in Econometrics[END_REF]) [START_REF] Young | Refined instrumental variable methods of time-series analysis: Part 1, SISO systems[END_REF]. The Instrumental Variable Method proposes a consistent estimator by building the instrument matrix V such as ( 22) becomes:

T T T T V ev V Y V Wχ V ρ V Wχ = + = (27) The instrumental variable solution, V
χ , is the solution of ( 27):

( ) T T V 1 χ V W V Y - = (28) 
In the following V is calculated as a function of V χ . That defines an iterative procedure such as:

( ) T T Vk 1 k k 1 χ V W V Y - + = (29) 
where :

( )

Vk k V V χ = This needs for ( ) T k
V W to be a regular matrix. Assuming:

T k,m plim m m 1 V W m →∞       is non singular and, ( 30 
) T T k,m k plim E evm ev m 1 V ρ (V ρ ) 0 m →∞   = =     (31) With k ,m V is the concatenation of k V for any k, Vk χ
converges to χ with m. Indeed, with the Slutsky's theorem, we obtain:

1 T T Vk k,m k,m 1 1 plim plim plim m evm m m m χ χ V W V ρ m m - →∞ →∞ →∞     = +         (32) 
And with ( 30) and (31), it comes:

Vk plim m χ χ →∞ = (33)
Then the IV estimator is consistent.

Calculation of the instrumental matrix

The main problem is to find an instrument matrix V. A usual solution is to build an observation matrix from simulated data instead of measured data. These simulated data (called also instruments) are the outputs of an auxiliary model [START_REF] Young | Refined instrumental variable methods of time-series analysis: Part 1, SISO systems[END_REF] which is an approximation of the noise-free model of the process to be identified. We chose the Direct Dynamic Model of the robot (DDM) given by ( 21) to be this auxiliary model.

The IV method adapted for dynamic identification of robots can be resumed by the following algorithm illustrated Fig.

2:

• The algorithm is initialized with any the values according to the subsection 3.4.

• At each step of the iterative algorithm, S S S q ,q ,q & && are calculated by simulation of the closed loop robot tracking exciting trajectories using the DDM with the parameters identified at the previous step. S W is obtained as a sam-pling of IDIM, ( )

S S S S ID q ,q ,q & &&
, and we choose the instrument matrix as:

( ) ( ) Vk S S S Vk k S ˆV χ W q ,q ,q , χ = & && (22) ( )
Y τ is calculated from the sampling and filtering of the measurements of τ , and ( ) W q,q,q & && is calculated through IDIM using the sampling and filtering of q .

• Vk+1 χ is given by ( 29) which is the LS solution of ( 27),

• The algorithm stops when the relative error decreases under a tolerance, ideally chosen to be a small number):

with the estimation error:

k S Vk ε Y W χ = -
Fig. 2 : IV identification procedure

Calculation of the solution

Suitable solutions consist in using orthogonal projection such as QR decomposition. In this case, we have:

W W W Q R = , V V V Q R =
.

With:

V Q and W Q are orthogonal matrices which are projectors on the vectorial subspace spanned by the columns of V and W. V R and W R are upper triangular matrices.

Considering only the b base parameters to be identified, we check we have at each iteration:

rank(R W ) = rank(Q W ) = rank(R V ) = rank(Q V ) = b.
This relation guarantees that the matrix V T W is invertible. Then, equation ( 27) becomes:

k 1 k k ε ε ε α + - ≤ robot S S S q , q , q & & & τ q Control Law Control Law S τ ( ) ( ) ( ) V Vk k ˆ DDM( ) S S S S S M q q τ N q ,q χ χ χ χ = - && & Band pass filter ˆq,q,q & && ( ) ˆÎDM q,q,q & && ( ) s a m p lin g + //f ilte rin g ˆÎD M W q ,q ,q → & && ( ) Vk IDIM τ =ID q ,q ,q χ S S S S S & && ( ) S S S S S sampling IDM W q ,q ,q =V k → & && obs T sampling+filtering τ Y → obs T T k k Vk+1 T V Y V Wχ = obs T r r r q q q           & && Actual closed loop robot Simulated closed loop robot T T T T V V V W W V ev V W W Q Y Q Q R χ Q ρ Q Q R χ = + = (34) 
V χ is the LS solution of the last equations.

Compared with LS regressions, the IV method needs two QR decompositions.

Initialization of the algorithm

Another problem is to choose the initial values 0 χ . We can use CAD values, or identified values with the IDIM method, but we show that there is no need at all of a priori values. We propose an algorithm not sensitive to the initial conditions, which assumes that the condition ( ) ( )

ddm k ddm k ddm k ˆˆq ( χ ),q ( χ ),q ( χ ) q,q,q & && & && (35)
is satisfied at any iteration k , and especially for k =0. This is possible by taking the same control law structure for the actual robot and for the simulated one with the same performances given by the bandwidth, the stability margin or the closed-loop poles. Because the simulated robot parameters k χ , change at each iteration k , the gains of the simulated control law must be updated according to k χ .

For example, let us consider a PD control law for each joint j . The inverse dynamic model IDM (1) for the joint j , can be written as a decoupled double integrator perturbed by a coupling force/torque, such that:

= ( ) + ( , ) = ( ) ( ) + ( , )= ( ) j n j idm j ,i i j i 1 n j , j j j ,i i j j , j j j i j τ τ M q q N q q M q q M q q N q q M q q p = ≠ = + - ∑ ∑ && & && && & && (36)
where j p is considered as a perturbation given by: ( ) ( , )

n j j ,i i j i j p M q q N q q ≠ = - - ∑ && & (37) ( ) j ,i
M q , which depends on q , is approximated by a constant inertia moment j J , given by: ( )

( ) j j j j a j , j j a q J ZZ I max M q ZZ I = + + - - (38) 
j J , is the maximum value, with respect to q , of the inertia moment around joint j z axis. This gives the smallest damping value and the smallest stability margin of the closed-loop second order transfer function (42), while q varies. It can be calculated from a priori CAD values of inertial parameters and must be taken at least as j j a ZZ I + .

The joint j dynamic model is approximated by a double integrator, where j p , is a perturbation, as following:

( ) ( ) ( ) j j j j j j , j j 1 1 q τ p τ p M q J = + + && (39)
Let us consider the joint j PD control of the actual robot which is illustrated Fig. 3:

+ - + - j a g τ j r q j a v k 1 a j J 1 s 1 s + + j a p k j p j v τ j q & j q j τ j q &&
Fig. 3: Joint PD control of the actual robot.

The control input calculated by the robot controller is given by: ( )

j j j j j a a a p v r j v j v k k q q k q τ = - - & (40) j v τ ,
is the current reference of the current amplifiers which supplies the motor. The joint j , force/torque is given by:

j j a j g v τ τ τ = (41)
where: j a g τ , is the actual drive gain, calculated with the actual parameters in (9). a j J , is the actual value of j J .

•

In order to tune the tracking performances of the reference position j r q , the transfer function j r j q q is calculated with =0

j p : =0 =0 j j j j j j j j j j a 2 r j p a a a a v p p j j a 2 r j p a 2 a nj nj q 1 H q J s 1 s 1 g k k k q 1 H q 2 s s 1 τ ζ ω ω     = =     + +     = =     + + (42) 
where:

a nj ω , is the actual natural frequency which characterizes the closed-loop bandwidth, a j

ζ , is the actual damping coefficient which characterizes the closed-loop stability margin, with:

j i i a a a a nj p v a j g k k J τ ω = , 1 j i i a a v a j a a p j g k 2 k J τ ζ = (43) 
Then it comes: The variables ( )

, j j j j j ddm ddm ddm ddm ddm v , q , q , q τ τ & &&
, in Fig.

3, are computed by numerical integration of k DDM ( χ ) , according to (21).

The control law of the simulated robot has the same structure as the actual one, Fig. 3, where we take:

j a i g = j ap i
, the a priori value of 

j a i g , a j J = k j Ĵ ,
ddm k ddm k ddm k ˆˆq ( χ ),q ( χ ),q ( χ ) q,q,q & && & && , at each iteration k.
We propose to take a regular inertia matrix 0 ( , ) ddm M q χ , in order to have a good initialization for the numerical integration of the DDM given by ( 21). This is named the "regular initialization".

It can be obtained with:

0 0 χ = , except for, 0 1, j Ia j 1,n = = (48)
The inertia of the rotor and gear of actuator j is generally taken into account in the IDM model (1) as: τ j r j j Ia q = && (49) Then, the initial inertia matrix becomes the identity matrix, which is the best regular matrix: 0 ( , ) = ddm n M q I χ (50) Another simple regular initialization is to take:

0 0 χ = , except for, 0 1, j ZZ j 1,n = = (51) 
The initial inertia matrix, 0 ( , ) ddm M q χ , is no more the identity matrix, but remains regular. Another point is to choose the state initial condition of the state vector, ( )

(0) (0) ddm ddm q ,q &
, in order to integrate the DDM. The actual values ( )

(0) (0) q ,q &
, are supposed to be not perfectly known because of noises. Then, we choose, ( ) ( ) 

(0) (0) (0) (0) ddm ddm r r q ,q q ,q = & & , which is close to ( ) (0) (0) q ,q & . Because

Discussion on the assumptions

The IV method is based on two assumptions. The instruments matrix has to be not correlated with the noise (see ( 31)) and the matrices product between the instrument matrix and the noisy observation matrix has to be full rank (see ( 30)). These two assumptions imply that the IV estimator is consistent.

As seen in the previous section, the instrument matrix is built from a deterministic simulation. The only link between the instrument and the noise could be provided indirectly from the parameters identified at the previous step. This correlation is much lower than the noise on the system. Assuming that ev ρ is a zero-mean additive independent noise, we have:

T T k k E E E ev ev (V ρ ) (V ) ( ρ ) 0 =
Which guarantees the assumption (31).

In this paper, it is assumed that the trajectory is enough exciting in order to identify the base parameters. This means that :

( ) nf W q,q,q & && which is the noise free observation ma- trix built from the real trajectory, is full rank. According to the last section:

( ) ( ) ddm k ddm k ddm k ˆˆq ( χ ),q ( χ ),q ( χ ) q,q,q & && & && so k nf V W . As nf W W W ∆ - , it comes T T T k nf nf nf V W W W W W ∆ = -
It is not very probable that the noise on the observation matrix W

∆ gives the assumed full rank matrix T k V W singular. Indeed, we collect a very high number of samplings (at least 500 x b). So, the noises tend to be zero-mean additive independent noises. It means the columns of ∆W are independent. ∆W is also a full rank matrix. In addition, we check we obtain rank(R

W ) = rank(R V ) = rank(Q W ) = rank(Q V ) = b
at each step of the algorithm. Therefore, the assumption (30) is always true.

Experimental Validation

Case study: modeling of the SCARA robot

The identification method is carried out on a 2 degrees of freedom planar direct drive prototype robot without gravity effect, shown on Fig. 5. This direct drive prototype is very well suited to our purpose because it emphasizes non linear coupling when classical industrial robots with gear ratio above 50, divides this non-linear phenomenon by at least 2500. Moreover, the dynamic model of this robot includes eight parameters which allows us to present several conditions for the identification. At last, this robot and its real parameters, called the nominal parameters, are well known. Thus, we can check the physical meaning of the identified parameters.

The description of the geometry of the robot uses the modified Denavit and Hartenberg (DHM) notations (W. [START_REF] Khalil | A new geometric notation for open and closed loop robots[END_REF] which are illustrated on Fig. 6. The robot is direct driven by 2 DC permanent magnet motors supplied by PWM amplifiers. The dynamic model depends on 8 minimal dynamic parameters, considering 4 friction parameters:

[ ] T 1R 1 1 2 R 2 2 2 2 ZZ Fv Fc ZZ LMX LMY Fv Fc χ = (52) 2 1R 1 1 2 ZZ ZZ Ia M L = + + 2 R 2 2 ZZ ZZ Ia = + L =0.5m
, is the length of the first link.

In the case of the SCARA robot, the parameters, The 8 columns, , 1,8 7), are the following:

:,k IDM k = , of ( ) IDM q,q,q & && , in IDIM (
0 0 0 1 R 1 1 2 R 2 1 1 :,1 ZZ :,2 Fv 1 2 1 :,3 Fc :,4 ZZ 1 2 ) 1 2 2 2 1 2 2 :,5 LMX 2 1 2 1 q q IDM IDM , IDM IDM ,
q q sign( q ) IDM IDM , IDM IDM , q q ( 2q q ) cos q -q ( 2q q sin q IDM IDM q cos q q sin

+     = = = =         +     = = = =     +     + = = + 0 0 2 2 2 2 ) 1 2 2 2 1 2 2 :,6 LMY 2 1 2 1 2 :,7 Fv :,8 Fc 2 2
, q ( 2q q ) sin q q ( 2q q cos q IDM IDM , q cos q q sin q IDM IDM , IDM IDM q sign( q )

+       - + -   = =   -       = = = =        
(53) The closed-loop control is a PD control law (40) , according to Fig. 3,with: 2 . The new identification process is performed in different cases in order to compare the previous IDIM technique to the new IV technique and to investigate the robustness of IV with respect to the initialization, to the data filtering and to the closed-loop tuning. All the results are given in SI units, on the joint side.

1 1R 2 R 2 J ZZ ZZ LMX = + + ,

Comparison of IDIM and IV with good initial

values, 0

IV ˆˆ χ χ = .
At first, the algorithm is initialized with, IDIM χ , the vector of parameters identified with the IDIM LS estimator.

The IDIM LS off-line estimation is carried out with a filtered position q , calculated with a 20Hz cut-off frequency forward and reverse Butterworth filter, and with the velocities q & , and the accelerations, q && , calculated with a central difference algorithm of q . The parallel decima- Fv , have no significant estimations because of their large relative standard deviation (>30%). They have no significant contribution in the joint torques and they can be cancelled to keep a set of essential parameters of a simplified dynamic model, without loss of accuracy (W. [START_REF] Khalil | Identification of the payload inertial parameters of industrial manipulators[END_REF].

However, we prefer to keep all the parameters in the following, for a better comparison of IDIM and IV identification methods. 

( , )= ddm M q I χ .
The robustness of IV with respect to a wrong initialization, such as the regular initialization (50), is investigated. The initial values of the dynamic parameters are given by (48), with:

[ ] T 1 0 0 1 0 0 0 0 0 ˆ χ =
The identified values given in Table 3, are very close to those given in Table 1. This result validates the regular initialization procedure. Moreover the algorithm converges in only 3 steps and is not time consuming. The relative norm errors on joint position, velocity and acceleration are plotted on Fig. 8 ,with the following legend:

• norm error relative to the actual filtered joint position, j ddm j j ˆq q / q -, velocity j ddm j j ˆq q / q -& & & , and accel- eration, j ddm j j ˆq q / q -&& && && , where ( )

ˆq,q,q
& && , are calculated as given in section 4.2. * norm error relative to the reference joint position, j j j ddm r r q q / q -, velocity,

j j j ddm r r q q / q - & & &
, and accel- eration, j j j ddm r r q q / q -&& && && .

The assumption (35), ( ) ( )

ddm k ddm k ddm k ˆq ( χ ),q ( χ ),q ( χ ) q,q,q & &&
& && , at each iteration k, is confirmed Fig. 8, with a constant relative norm error close to 0.5% for the position, 5%, for the velocity and 10%, for the acceleration. These results validate the updating procedure (46), of the simulated PD control law gains.

It can be seen also on Fig 8 that the simulated trajectory, ( )

ddm k ddm k ddm k ˆˆq ( χ ),q ( χ ),q ( χ ) & &&
, is 3 to 5 times closer to the actual one, ( ) ˆq,q,q & && , than to the reference one, ( ) r r r q ,q ,q & && , with a relative norm error close to 1.5% for the position, 15%, for the velocity and 30%, for the acceleration. Moreover, this error depends on the closed-loop bandwidth. It means that computing the observation matrix in (13) with the reference trajectory, ( ) r r r q ,q ,q & && , leads to a bad identification of the dynamic parameters. Then, the assumption , (

) ( ) The fast convergence of each parameter is shown in Table 4 , and is plotted on Fig 10. 

ddm k ddm k ddm k ˆq ( χ ),q ( χ ),q ( χ ) q,q,q & && & && , is valid.
ddm k ddm k ddm k ˆq ( χ ),q ( χ ),q ( χ ) q,q,q & &&
& && , at each iteration k, with a constant small error. On the contrary, the relative torque norm error, given in All the actual and simulated data are sampled at m f = 200Hz. The IDIM LS estimation is carried out with the measured joint position q , and with ( ) ˆq,q & && , calculated by a central difference algorithm of q , without lowpass Butterworth filtering. There is no parallel decimation. IDIM Results are given in Table 5 IV starts with the regular initialization. IV Results are given in Table 6. 

Ŷ W / Y χ - =0.08
The identified values with IDIM are not good while the identified values with IV are still good.

IDIM fails because of the too large noise in the observation matrix, ( ) fm ˆŴ q,q,q & && , coming from the derivation of q , without lowpass filtering. Then the LS estimation is biased.

IV succeeds because the observation matrix, ( )

, k fm ddm ddm ddm Ŵ q ,q ,q δ χ & &&
, is calculated without noise with the simulated values ( )

ddm ddm ddm q ,q ,q & && .
This validation shows that IV cancels the bias of IDIM estimation, coming from a noisy estimation of ( ) ˆq,q,q & && , which gives a too noisy observation matrix ( ) fm ˆŴ q,q,q & && . 

) ( )

ddm k ddm k ddm k ˆq ( χ ),q ( χ ),q ( χ ) q,q,q & &&
& && , at each iteration k, with a constant norm error larger but close to the value obtained with the full bandwidth, Fig. 11, close to, 0.5% for the position, 5%, for the velocity and 10%, for the acceleration.

Preprint submitted to Automatica The relative torque norm error, given in Table 9, and plotted on Fig 12, decreases in 6 steps, only twice more than with the full bandwidth (see Table 3). This shows that IV is not very sensitive to error in the simulated closedloop bandwidth, provided the control law structure is known. However, IV fails beyond 1/3 of the full bandwidth, with 3

d d f n n / ω ω ≤ .

Discussion and conclusion

One of the improvements of our algorithm is to avoid the acceleration calculation. It is one of the major difficult points of the LS identification technique. In the general case, this problem is solved by a suitable data filtering. But, the choice of the cut-off frequency is crucial. If the cut-off frequency is too low the system is ill-conditioned and the main parameters are badly identified. On the other hand, if the cut-off frequency is too large, the observation matrix is strongly noisy and the LS estimator is biased. It is the reason why some techniques have been developed to overcome this problem: by integrating the dynamic model [START_REF] Slotine | Adaptive manipulator control a case study[END_REF] [START_REF] Middleton | Adaptative computed torque control control for rigid link manipulator[END_REF] or by using the power (Gautier 1997). The drawback of the method integrating the dynamic model is the complex expression of the model. The drawback of the power model is the loss of information due to the mix of torques. Indeed, the dynamic effect of the wrist is negligible compared to the effect of the first three axes.

The IV method is not affected by these problems because we keep all dynamic equations. In addition, the IV is less sensitive to the choice of cut-off frequency compared with the LS technique. From our point of view, our algorithm acts implicitly as an adaptative filter. Indeed, the high frequency noises are eliminated thanks to the integration of the MDD while the frequency bandwidth of our interest is determined by the bandwidth of the closed loop. Finally, experimental results have proven that the prefiltering is not necessary.

Another major improvement of our approach is to ensure the bandwidth of the closed loop in the simulator scheme. By this way, we have always S S S q ,q ,q & && close to q,q ,q & && . The correlation between the instrument matrix and the observation matrix is still high because V is still close to W nf . That means we ensure the crucial assumptions T E(V ρ ) 0 = and T V W invertible, and this explains why our algorithm works very well.

Our approach can be seen as an extension of the socalled SRIVC algorithm (Simplified Refined Instrumental Variable Continuous-time) adapted recently for closed loop system [START_REF] Gilson | A refined IV method of closed-loop system identification[END_REF] [START_REF] Young | Simple Refined IV Methods of Closed-Loop System Identification[END_REF]. However, these algorithms are quite complicated and need prefiltering. They do not adapt the gain of the simulated feedback as it is proposed in this paper. Therefore, our method is not only an application of the IV to robotics but enrich the IV methodology by providing insights from robotics.

With our algorithm, the inverse and direct dynamic models are both validated at the same time. Up to now, the DDM was validated a posteriori in simulation. This is interesting for industrial applications because this algorithm saves time. In addition, if something goes wrong, that means the dynamic model is not valid since the IV method is robust to data filtering. This paper has presented an extension and an application of the IV method. This technique was successfully applied on a 2 DOF prototype robot. From these experiments, it comes that our IV algorithm is not sensitive to data filter-22 September 2010 ing, gives additional improvements and can be helpful for practice. In addition, the convergence of the purposed algorithm is granted. Indeed, the bandwidth of the closed loop implemented to control the robot is ensured in the simulation. This is done by adapting the gains. Finally, it is also robust to the initialization.

However, to apply our algorithm properly, the structure of the control law applied to control the robot must be known.

Future works concern the use of this technique to identify flexibilities.

  the Coulomb friction with respect to the sign of the velocity and tj Of is due to the current amplifier offset which supplies the motor. o 14 s N n = × , is the number of standard parameters.

jW

  represent the m d n / n equations of joint j . The ordinary LS (OLS) solution χ minimizes the 22 September 2010 squared 2-norm 2 ρ of the vector of errors.

Fig. 1 :

 1 Fig. 1: IDIM LS identification scheme.

Fig. 4 :

 4 Fig. 4: Joint PD control of the simulated robot.

  the closed-loop transient response due to different initial conditions differs between the actual and the simulated signals during a transient period of approximately, 5 d n / ω , the corresponding joint force/torque samples are eliminated from the identification data.

FigFig. 6 :

 6 Fig. 5: The scara robot prototype.

  are calculated with (45), taking a desired damping, d j ζ =1, for joint 1 and joint 2.The desired natural frequency, d nj ω , is chosen according to the driving capacity without saturation of the joint drive. For this robot we obtain a full bandwidth with, of the control and of the measurement are equal to, m f =200Hz. Torque data are obtained from (41), and from the current reference data v τ .The simulation of the robot is carried out with the same reference trajectory and with the same control law structure as the actual robot.The gains in the simulator are calculated with (46) and with the same values,

Fig

  Fig. 7.IV validation

Fig. 8 :Fig. 9 :

 89 Fig. 8: • norm error relative to the filtered actual position, velocity, acceleration. * norm error relative to the reference position, velocity, acceleration.

  Fig. 10: IV parameters convergence

4. 5 .ω

 5 IV robustness with respect to error in the simulated closed-loop tuning, d n This section investigates the effect of an error between the actual value, a n ω , and the simulated value d n ω , of the natural frequency which represents the closed-loop bandwidth.The IV identification is performed taking half the values of procedure used to obtain results shown in

  Fig. 12: • norm error relative to the filtered actual position, velocity, acceleration. * norm error relative to the reference position, velocity, acceleration.

  and samples of v τ

	to calculate τ with (8), at different times k t ,	m k 1,...,n =	,
	while the robot is tracking a reference trajectory ( ) r r r

Table 1 :

 1 IDIM identification

		Parameter 1R ZZ	IDIM 3.44 χ	χ 2 σ ˆ 0.034	χ %σ ˆ 0.50	r
		Fv 1 1 Fc		0.03 0.82	0.031 0.1	52. 0 6.0
		ZZ	2		0.062 0.0006 0.51
		LMX	2	0.121 0.0014 0.56
		2 LMY	0.007 0.0007 5.0
		2 Fv		0.013 0.006	23.0
		2 Fc -	W	IDIM Ŷ χ	0.137 0.006 / Y =0.024	2.30
							Table 2: IV identification
	Parameter 1R ZZ	3.44	2 3.45 χ	χ 2 σ ˆ 0.036	χ %σ ˆ 0.52	r
	Fv 1 1 Fc					0.03 0.82	0.04 0.82	0.032 0.05	40. 0 3.0
	ZZ	2					0.062 0.061 0.0006 0.49
	LMX	2			0.121 0.124 0.0013 0.52
	2 LMY			0.007 0.007 0.0005 3.5
	2 Fv					0.013 0.013 0.0084 30.0
	2 Fc -	W	0.137 0.137 0.008 / Y Ŷ IV χ =0.021	3.0
	4.3. IV, validation of the regular initialization,
							0
							2

Table 3 :

 3 IV identification with regular initialization

	Parameter 1R ZZ	0 1.0 3.45 χ 3 χ	χ 2 σ ˆ 0.036	χ %σ ˆ 0.52 r
	Fv 1 1 Fc	0.0 0.04 0.0 0.82	0.032 0.05	40. 0 3.0
	ZZ	2	1.0 0.061 0.0006 0.49

Table 4 :

 4 Parameters convergence with IV identification

	Parameter	χ	0	χ	1	χ	2	χ	3
	ZZ	1R		1.0 3.46	3.45	3.45
	Fv 1 1 Fc		0.0 0.04 0.0 0.82	0.02 0.85	0.02 0.85
	ZZ	2		1.0 0.06	0.061 0.061
	LMX	2	0.0 0.122 0.124 0.124
	2 LMY	0.0 0.05	0.07	0.07
	2 Fv		0.0 0.005 0.01	0.01
	2 Fc		0.0 0.130 0.132 0.132

  Table 3, and plotted on Fig 12, dramatically decreases in only 3 steps. This shows the fast algorithm convergence.

	4.4. Comparison of IDIM and IV, without data
	filtering.

Table 5 :

 5 IDIM identification results without data filtering

	Parameter 1R ZZ	IDIM 1.5 χ	χ 2 σ ˆ 0.05	χ %σ ˆ 1.6	r
		Fv 1 1 Fc		0.095 0.15 0.55 0.26	80.0 23.3
		ZZ	2		0.14	0.018 6.7
		LMX	2	0.63	0.035 2.7
		2 LMY	0.1	0.023 11.8
		2 Fv		0.001 0.143 700.0
		2 Fc -	W	IDIM Ŷ χ	0.19 / Y	0.244 68.40 =0.8
	Table 6: IV identification results without data filtering
	Parameter 1R ZZ	0 1.0 3.45 χ 2 χ	χ 2 σ ˆ 0.007	χ %σ ˆ 0.1	r
	Fv 1 1 Fc				0.0 0.05 0.0 0.81	0.023 0.004	21.0 0.24
	ZZ	2				1.0 0.061 0.0004 0.3
	LMX	2			0.0 0.124 0.0015 0.3
	2 LMY			0.0 0.008 0.0009 5.6
	2 Fv				0.0 0.023 0.0022 48.0
	Fc 2				IDIM	0.0 0.13	0.0038 1.5

Table 2 ,

 2 that is to say a frequency measurement, =20, and a lowpass filter cut-off frequency equal to 4Hz . The parameters, given in Table7, converge in only 6 steps to values which are very close to those obtained in Table2, with a full closed-loop bandwidth.

m f =200Hz, and a parallel decimation with a factor, d n

Table 7 :

 7 IV with half full bandwidth

	Parameter 1R ZZ	0 1.0 3.44 χ 6 χ	χ 2 σ ˆ 0.014	χ %σ ˆ 0.2	r
	Fv 1 1 Fc		0.0 0.02 0.0 0.86	0.012 0.016	15.0 1.0
	ZZ	2		1.0 0.060 0.0001 0.1
	LMX	2	0.0 0.124 0.0002 0.1
	2 LMY	0.0 0.007 0.0003 2.0
	2 Fv		0.0 0.01	0.003	10.0
	2 Fc		0.0 0.13	0.0008 0.3
	The relative norm errors on joint position, velocity and
	acceleration are plotted on Fig 11, with the same legend as
	previously.				
	It	can	be	seen	that,
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