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Abstract—Off-line robot dynamic identification methods are mostly based on the use of the inverse dynamic model, which is 
linear with respect to the dynamic parameters. This model is sampled while the robot is tracking reference trajectories that excite 
the system dynamics. This allows using linear least-squares techniques to estimate the parameters. The efficiency of this method 
has been proved through the experimental identification of many prototypes and industrial robots. However, this method requires 
the joint force/torque and position measurements and the estimate of the joint velocity and acceleration, through the bandpass 
filtering of the joint position at high sampling rates. The proposed new method requires only the joint force/torque measurement. It 
is a closed-loop output error  method where the usual joint position output  is replaced by the joint force/torque. It is based on a 
closed-loop simulation of the robot using the direct dynamic model, the same structure of the control law, and the same reference 
trajectory for both the actual and the simulated robot. The optimal parameters minimize the 2-norm of the error between the 
actual force/torque and the simulated force/torque. This is a non-linear least-squares problem which is dramatically simplified 
using the inverse dynamic model to obtain an analytical expression of the simulated force/torque, linear in the parameters. A 
validation experiment on a 2 degree-of-freedom direct drive robot shows that the new method is efficient. 
 

Keywords — Identification, closed-loop output error, least-squares methods, , robot dynamics. 

I. INTRODUCTION 

HE usual identification method based on the inverse dynamic identification model (IDIM) and least-

squares (LS) technique has been successfully applied to identify inertial and friction parameters of 

several robotic prototypes and industrial robots [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], 

[13], [14], [15],  amongst others. Good results can be obtained provided a well-tuned derivative 

bandpass filtering of joint position to calculate the joint velocities and accelerations is used. 

Another approach is to minimize a quadratic error between an actual output and a simulated output of 

the system, assuming both the actual and simulated systems have the same input. This is known as an 

output error (OE) identification method [16], [17]. The optimal values of the parameters are calculated 

using non-linear programming algorithms to solve a non-linear least-squares problem. The output is 

given by a state-space model output equation, which is typically the joint position for mechanical 

systems. Difficulties arise from the choice of initial conditions, resulting in multiple, local solutions 

[18]. The OE method has been used to identify electrical parameters of a synchronous machine, and a 
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comparison with the IDIM-LS method showed very similar results [19].  

Both  IDIM and OE methods require the joint position and the joint force/torque measurements. 

The proposed new identification method needs only the joint force/torque measurements. It is based on 

a closed-loop simulation using the direct dynamic model while the optimal parameters minimize the 2-

norm of the error between the actual force/torque and the simulated force/torque, assuming the same 

control law and the same reference trajectory. This non-linear least-squares problem is dramatically 

simplified using the inverse dynamic model to formulate the simulated force/torque as an algebraic 

function linear in relation to the parameters. This paper describes the new identification method and 

experimental results obtained using a 2 DOF robot. 

A condensed version of this work has been presented in [20]. This paper contains detailed proofs to 

enlighten the theoretical understanding of the method and gives additional experimental results to show 

the practical efficiency of the method. 

The paper is organized as follows: section II reviews the usual identification technique of the dynamic 

parameters of the robot. Section III presents the output error method. The new identification method is 

presented in section IV. The modeling of the SCARA prototype robot is presented in section V. This 

direct drive prototype is very well suitable for the study  of the method because it emphasizes non linear 

coupling while it is divided by the squared high gear ratio for industrial robots. The experimental results 

are given in section VI. Finally, section VII is the conclusion. 

II.  IDIM:  INVERSE DYNAMIC IDENTIFICATION MODEL TECHNIQUE 

The inverse dynamic model (IDM) of a rigid robot composed of n  moving links calculates the motor 

torque vector idmτ , as a function of the generalized coordinates and their derivatives. It can be obtained 

from the Newton-Euler or the Lagrangian equations [13], [21]. It is given by the following relation: 

= ( )  + ( , )idmτ M q q N q q&& &   (1) 

Where q , q&  and q&&  are respectively the ( )xn 1 vectors of generalized joint positions, velocities and 

accelerations, ( )M q  is the ( )xn n  robot inertia matrix, and ( , )N q q&  is the ( )xn 1  vector of centrifugal, 

Coriolis, gravitational and friction forces/torques. 

The choice of the modified Denavit and Hartenberg frames attached to each link allows a dynamic 

model that is linear in relation to a set of standard dynamic parameters, stχ  [3], [22]: 

( )idm st stτ IDM q,q,q χ= & &&  (2) 

Where ( )stIDM q,q,q& &&  is the ( )x sn N  jacobian matrix of idmτ , with respect to the ( )x1sN  vector stχ  of the 
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standard parameters given by: 

TT T T  ... 1 2 n
st st st stχ χ χ χ =    

with: 

T

j

j
st j j j j j j j j j j j j j off XX XY XZ YY YZ ZZ MX MY MZ M Ia Fv Fc  χ τ =    (3) 

where: 
•      j j j j j jXX , XY , XZ , YY , YZ , ZZ are the six components of the inertia matrix, j

jJ ,  of link j at the 

origin of frame j, 
•   j j jMX , MY , MZ   are the components of the first moments,j

jMS , of link j, 

• jM  is the mass of link  j, 

• jIa  is a total inertia moment for rotor and gears of actuator j. 

• jFv , jFc  are the viscous and Coulomb friction parameters of joint j. 

• 
joff Fsj tjτ Of Of= +  is an offset parameter where FsjOf  is the dissymmetry of the Coulomb friction 

with respect to the sign of the velocity and tjOf  is due to the current amplifier offset which supplies 

the motor. 
• 14sN * n=  is the number of standard parameters. 

The base parameters are the minimum number of dynamic parameters from which the dynamic model 

can be calculated. They are obtained from the standard inertial parameters by eliminating those which 

have no effect on the dynamic model, and by regrouping some others by means of linear relations. They 

can be determined using simple closed-form rules [22] or a numerical method based on the QR 

decomposition [23]. 

The minimal inverse dynamic model can be written as: 

( )idmτ IDM q,q,q χ= & &&  (4) 

Where: 

( )IDM q,q,q& &&  is the ( )xn b  matrix of the minimal set of basis functions of the rigid body dynamics, (5) 

χ   is the ( )xb 1  vector of the b base parameters. (6) 

Because of perturbations due to noise measurement and modeling errors, the actual force/torque τ  

differs from idmτ  by an error, e, such that: 

( )idmτ e IDM q,q,q χ eτ = + = +& &&  (7) 

Equation (7) represents the Inverse Dynamic Identification Model (IDIM).  

We consider the off-line identification of the base dynamic parameters χ , given measured or 

estimated off-line data for τ  and ( )  q, q, q& && , collected while the robot is tracking some planned 
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trajectories. 

Usually, the signals available from the robot controller are the joint position measurement and the 

( )xn 1  control signal vector vτ , calculated according to the control law. 

Then ( )  q, q, q& &&  in (7) are estimated with ( )  ˆ ˆq̂, q, q& && , respectively, obtained by bandpass filtering the 

measure of q  [9]. The derivatives are calculated off-line without phase shift, using a central difference 

algorithm of the lowpass filtered position q̂ . The filtered position ̂q  is calculated off-line with a non 

causal zero-phase digital filter by processing the input data, q , through a lowpass Butterworth filter in 

both the forward and reverse direction using the filtfilt  procedure from Matlab. 

The control signal, vτ , is connected to the input current reference of the current closed-loop of the 

amplifiers which supplies the motors. Assuming that the current closed-loop has a bandwidth greater 

than 500Hz, then its transfer function is equal to its static gain, cK , in the frequency range (less than 

10Hz) of the rigid robot dynamics. Then, the actual force/torque, τ , is calculated with the relation: 

g vτ ττ =  (8) 

where: 

gτ , is the ( )xnn  diagonal matrix of the drive gains, 

with: 

  r cg K K Kτ τ=  (9) 

where: 

rK , is the ( )xnn  gear ratios diagonal matrix of the joint drive chains ( m rq K q=& & , with mq& , the velocity 

on the motor side), 

cK , is the ( )xnn  static gains diagonal matrix of the current amplifiers, 

Kτ , is the ( )xnn  diagonal matrix of the electromagnetic motor torque constants. 

Those parameters have a priori values, given by manufacturers, which can be checked with special 

tests [24]. 

The inverse dynamic identification model (IDIM) (7) is calculated at a frequency measurement mf , 

using samples of ( )  ˆ ˆq̂, q, q& &&  to calculate ( )ˆ ˆˆIDM q,q,q& &&  and samples of vτ  to calculate τ  with (8), at 

different times kt , mk 1,...,n= , while the robot is tracking a reference trajectory ( )r r rq ,q ,q& && , during the 

time length obsT , of the trajectory. 
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The equations of each joint are regrouped together on all the trajectory to get an over-determined 

linear system such that: 

( ) ( )fm fm fm
ˆ ˆˆY τ W q,q,q χ ρ= +& &&  (10) 

With: 

( )  

m

1
fm j 1

j
fm fm

n
fm j n

Y ( t )

Y τ ... , Y ...

Y ( t )

τ

τ

  
  = =   
  

   

 (11) 

( )
( ( ) ( ) ( ))

 

( ( ) ( ) ( )
m m m

1 j
fm 1 1 1

j
fm fm

n j
fm n n n

ˆ ˆˆW IDM q t ,q t ,q t
ˆ ˆˆW q,q,q ... , W ...

ˆ ˆW ˆIDM q t ,q t ,q t

  
  = =   
  

   

& &&

& &&

& &&

 (12) 

where: 

( ( ) ( ) ( ))j
k k k

ˆ ˆˆIDM q t ,q t ,q t& &&  is the  jth row of  the ( )xn b  matrix of the basis functions, 

( ( ) ( ) ( ))k k k
ˆ ˆˆIDM q t ,q t ,q t& && , (5), 

j
fmY  and j

fmW  represent the mn equations of jointj , 

* m obs mn T f=  is the number of sample measurements. 

The notation ( )( ) ( )fm fm
ˆ ˆ ˆ ˆˆ ˆW IDM q,q,q W q,q,q=& && & && , will be used to recall that fmW , is calculated with a 

sampling of ( )ˆ ˆˆIDM q,q,q& && . 

In order to eliminate high frequency force/torque ripple in τ , and to window the identification 

frequency range into the model dynamics, a parallel decimation procedure lowpass filters in parallel fmY  

and each column of  fmW  and resamples them at a lower rate, keeping one sample over dn . This parallel 

decimation can be carried out with the Matlab decimate function, where the lowpass filter cut-off 

frequency is equal to 0.8* /(2* )m df n . 

After the data acquisition procedure and the parallel decimation of (10), we obtain the over-

determined linear system: 

 ( ) ( )ˆ ˆˆY τ W q,q,q χ ρ= +& &&  (13) 

where: 

• ( )Y τ   is the x1( r )  vector of  measurements, built from the actual force/torque τ , 

• ( )ˆ ˆˆW q,q,q& &&  is the x( r b )  observation matrix, built from the estimated values ( )ˆ ˆq̂,q,q& &&  of ( )  q, q, q& && . 
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• ρ  is the x1( r )  vector of errors. 

• m dr n* n / n=   is the number of rows in (13). 

In  Y  and W , the equations of each joint are grouped together such that: 

,   

1 1

n n

Y W

Y ... W ...

Y W

   
   = =   
   
   

    (14) 

where jY and jW  represent the m dn / n  equations of joint j . 

The ordinary LS (OLS) solution χ̂  minimizes the squared 2-norm 
2

ρ  of the vector of errors. 

 Using the base parameters and tracking “exciting” reference trajectories [25], we get a full rank and 

well conditioned  matrix W . The LS solution ̂χ  is given by: 

( )( )1T Tχ̂ W W W Y W Y
− += =  (15) 

It is computed using the QR factorization of W . Standard deviations 
iχ̂σ , are estimated using classical 

results from statistics under the assumptions that W  is a deterministic matrix, according to the data 

filtering procedure described above, and ρ , is a zero-mean additive independent Gaussian noise, with a 

covariance matrix ρρC , such that: 

T 2
ρρ ρ r( ) σC E ρρ I= =  (16) 

where E  is the expectation operator and rI , the ( )xr r  identity matrix.  

An unbiased estimation of the standard deviation ρσ  is: 

22
ρσ (r b)ˆ ˆY Wχ= − −  (17) 

The covariance matrix of the estimation error is given by: 

T 2 T 1
χχ ρ[( )( ) ] σ ( )ˆ ˆ ˆˆ ˆC E χ χ χ χ W W −= − − =  (18) 

i

2
χ χχσ C ( )ˆ ˆ ˆ i ,i=  is the ith diagonal coefficient of 

χχˆˆC . The relative standard deviation 
riχ

%σˆ  is given by: 

ri iχ χ i%σ 100σ χˆ ˆ ˆ= , for iχ̂ ≠ 0 (19) 

The OLS can be improved by taking into account different standard deviations on joint j  equations 

errors [9]. Each equation of joint j  in (13), (14), is weighted with the inverse of the standard deviation 

of the error calculated from OLS solution of  the equations of joint j  , given by: 

( ) ( )( )j j j j
j

ˆ ˆˆY τ W IDM q,q,q χ ρ= +& &&  (20) 
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This weighting operation normalises the errors in (13) and gives the weighted LS (WLS) estimation of 

the parameters. 

This identification method is illustrated in Fig. 1. 

Compared with the OE method described in the following section III, the use of IDIM, which is an 

analytical function of ( )q,q,q& && , is particularly interesting because it does not require the integration of the 

direct dynamic model (21). Moreover, χ̂  is a one step linear LS solution which does not need initial 

conditions. However, the calculation of the velocities and accelerations are required using well-tuned 

bandpass filtering of the joint position [9]. 

Robot

( )

Inverse D ynam ic 

Identif ication M odel

ID IM

ˆ ˆˆID M q ,q ,q& &&
ˆ ˆˆ, ,& &&q q q( )( )fm

ˆ ˆˆW IDM q,q ,q& &&

Linear LS

2ˆ m in -Y W
χ

χ χ=( )( )ˆ ˆˆ( ),  , ,  Y W IDM q q qτ & &&

( )q t( )tτ
Control law

χ̂

( )r r rq ,q ,q& &&

obsT

sampling ( )

 bandpass 

filtering

fm

+

lowpass filtering 

+ downsampling

sampling(fm )

( )fmY τ

 

Fig. 1. IDIM LS identification scheme. 

III.  THE OUTPUT ERROR METHOD (OE) 

The OE identification methods minimize a quadratic error between an actual output y , and a 

simulated output sy , of the system, assuming both the actual and the simulated systems have the same 

input. This approach can be implemented in an open-loop form, [17], [26], or in a closed-loop form, 

[27], [28]. Considering a closed-loop controlled robot, the input, in the open loop scheme shown in Fig. 

2, is the actual force/torque τ , and the input, in the closed-loop scheme shown in Fig. 3, is the reference 

trajectory ( )r r rq ,q ,q& && . Because the open loop simulation of unstable robotic systems is very sensitive to 

the initial state conditions and to the errors in numerical algorithms which solve the differential 

equations, it is more suitable to choose the closed-loop form. 

In both cases, the output is given by a state-space model output equation. Considering a robot and 
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taking the measured joint position as the output, the actual output is, y q= , and the simulated output is, 

s ddmy q= , as shown in Fig. 2 and Fig. 3, where ddmq ( t ), is the solution of the differential equation given 

by the Direct Dynamic Model (DDM). 

The DDM can be obtained by writing the IDM equation (1), as following: 

( , )  =  - ( , , )ddm ddm ddm ddm ddmM q q τ N q qχ χ&& &  (21) 

where: 

( , )ddmM q χ  and ( , , )ddm ddmN q q χ&  depend on an estimation of the base parameters χ , 

ddmτ , is the force/torque input of the DDM. 

The function ( )ddmq t ,χ , is the result of the integration of the linear implicit differential equation (21) 

which can be written as a non-linear state-space model: 

s s s sG( x )x f ( x ,u )=&  (22) 

where: 

ddm
s

ddm

q
x

q

 
=  
 &

, is the ( )2 x1* n state-space vector, 

s ddmu τ= , is the ( x1)n control input, 

x

x

G  
( , )  - ( , , )

n n n ddm
s s s

n n ddm ddm ddm ddm

I 0 q
( x ) , f ( x ,u )

0 M q τ N q qχ χ
   

= =   
   

&

&
 (23) 

where, xn n0 , is a ( x )n n , matrix of zeros. 

The linear output equation is given by: 

s s s s sy C x D u= +  (24) 

Taking the measure of joint position as the output, s ddmy q= , we get: 

[ ]x2s n n *nC I 0= , is the, ( x2* )n n , output matrix, (25) 

xs n nD 0= , is the, ( x )n n , direct feedthrough matrix. (26) 

Hence, for robotic systems, an OE identification method is based on the integration of the Direct 

Dynamic Model. 

The optimal solution ̂χ , minimizes the quadratic criterion ( )J χ , given by: 

( ) ( ) ( )T2

s s sJ Y Y Y Y Y Yχ = − = − −  (27) 

where: 
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Y  and sY , are vectors obtained by filtering the vectors of samples fmY  and SfmY , respectively, where 

the equations of each joint are grouped together, with: 

 

m

1
fm j 1

j
fm fm

n
fm j n

Y q ( t )

Y ... , Y ...

Y q ( t )

  
  = =   
   =   

,  

1
Sfm ddm 1

j
Sfm Sfm

n
Sfm ddm k

Y q ( t )

Y ... , Y ...

Y q ( t )

   
   = =   
     

 (28) 

The minimization of ( )J χ , (27), is a non-linear least-squares problem. The estimation of the 

parameters can be computed using algorithms such as the gradient method, the Newton methods or the 

Levenberg Marquardt method. These methods are based on a first or second order Taylor’s expansion of 

( )J χ . 

Actual Robot

Direct Dynamic Model (DDM)

   ddm ddm ddm ddm ddmM(q ) q N(q , q )τ= −&& &

Non Linear LS

1
min

2
2

sˆ Y Y
χ

χ = −

( )tτ
Control law

r

r

r

q

q

q





 
 

&

&&

χ̂

Sampling 
and filtering

( ),  ( )s ddmY q Y q

( )s ddmy q t=

obsT

( )y q t=

( )tτ

 

Fig. 2. Open-loop OE identification scheme. 

Actual Robot

Direct Dynamic Model (DDM)

   ddm ddm ddm ddm ddmM( q ) q N(q , q )τ= −&& &

Non Linear LS

1
min

2
2

sˆ Y Y
χ

χ = −

( )tτ
Control law

r

r

r

q

q

q





 
 

&

&&

χ̂

Sampling 
and filtering

( ),  ( )s ddmY q Y q

( )s ddmy q t=

obsT

ddmτ

( )y q t=

Control law
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Fig. 3. Closed-loop OE identification scheme. 

 

In [20], we used the Gauss-Newton method to calculate the optimal solution. It is a Newton method 

where approximations of the gradient and the hessian of ( )J χ  are calculated with the jacobian matrix 

of sy  with respect to χ . The Gauss-Newton regression is a simpler way to calculate the optimal solution 

[29]. It is based on a Taylor series expansion of sy , at a current estimate kχ̂ , of the parameters at 

iteration k : 

( ) ( )+1 +1

k

k k k kS
S S

χ̂

y ( χ )
ˆ ˆy ( χ ) y ( χ ) χ χ o

χ

∂
= + − + ∂ 

 (29) 

where: 

( )
sy /

k

S
χ

χ̂

y ( χ )
δ

χ

∂
= ∂ 

 (30) 

sy /χδ  is the ( )xn b , jacobian matrix of sy , with respect to χ , evaluated at kχ̂ . 

Each coefficient of 
sy /χδ , defines a sensitivity function. 

These sensitivity functions characterize the variation of the output function Sy , with respect to a 

variation of the parameter χ . The sensitivity functions are the solutions of a differential system 

calculated from (21). However, this technique is more time-consuming compared to the IDIM method. 

Indeed, the DDM and the sensitivity functions must be integrated many times at each step of the 

iterative non-linear optimization method. Moreover, it is necessary to have good initial conditions in 

order to avoid multiple and local solutions. 

Let us define: 

+1y  y  k
S( χ ) e= +  (31) 

From (29), it becomes: 

( ) ( )+1
/s

k k k
s y χ

ˆ ˆy y ( χ ) δ χ χ o e− = − + +  (32) 

An over-determined linear system is obtained by filtering and sampling (32) over the time window obsT : 

+1k
δY W χ∆ ∆ ρ= +  (33) 

with: 

( )+1 +1k k kˆχ χ χ∆ = −  
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Y∆ , δW , and ρ  are, respectively, the sampling and filtering of ( )k
s ˆy y ( χ )− , /sy χδ  , and of ( )o e+ . 

+1kχ̂∆  is the LS solution of (33). This process is iterated with a new estimate, +1 +1k k kˆ ˆ ˆχ χ χ∆= + , until: 

k 1 k

k
1tol

ρ ρ
ρ

+ −
≤ , and, 

+1k k
i i

2ki 1,...,b
i

ˆ ˆχ χ
max tol

χ̂=

− ≤  (34) 

where, 1tol  and 2tol , are values ideally chosen to be small numbers to get fast convergence with good 

accuracy. 

IV.   DIDIM:  DIRECT AND INVERSE DYNAMIC IDENTIFICATION MODEL TECHNIQUE 

A. Theoretical approach 

In the OE method as shown in Fig. 3, the actual output is the measured joint position, y q= .  

We propose to change the output, y , from the actual joint position q , to the actual joint force/torque 

τ , and the simulated output sy , from the simulated joint position, ddmq , to the simulated joint 

force/torque, ddmτ . Then, we take y τ= , and s ddmy τ= , according to Fig. 4. 

Actual 
Robot

Direct Dynamic Model

 

  
ddm ddm

ddm ddm ddm

M( q , ) q

N(q , q , )

χ
τ χ

=
−

&&

&
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2

sˆ Y Y
χ

χ = −

( )tτ
Control law

r

r

r

q

q

q





 
 

&

&&

χ̂

Sampling 
and filtering

( ),  ( )s ddmY Yτ τ

obsT

ddmτ

( )q t

Control law

ddm syτ =

( )t yτ =

ddmq

Actual closed loop robot

Simulated closed loop robot

 

Fig. 4. DIDIM identification scheme. 

This means that the output equation (24) of the state-space model (22) reduces to a direct feedthrough 

equation such as, s s ddmy u τ= = . 

Then we have x2*s n nC 0= , and s nD I= , in the output equation (24). 
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The optimal solution, ̂χ , minimizes the quadratic criterion, ( )J χ , (27), where, Y , and sY , are 

vectors obtained by filtering the vectors of samples, fmY  and SfmY , respectively, where the equations of 

each joint are grouped, with: 

( )  

m

1
fm j 1

j
fm fm

n
fm j n

Y ( t )

Y τ ... , Y ...

Y ( t )

τ

τ

  
  = =   
  

   

,  
j

j m

1
ddm 1Sfm

j
Sfm Sfm

n
Sfm ddm n

( t )Y

Y ... , Y ...

Y ( t )

τ

τ

  
  = =   
  

   

 (35) 

This non-linear  LS problem is solved by the Gauss-Newton regression as explained in section III.  

The input force/torque of the DDM, ddmτ , can be calculated with the analytical expression of the 

inverse dynamic model (4), such as: 

( ) ( ) ( ) ( ) ( ) ( )( )s ddm idm ddm ddm ddmy χ τ χ τ χ IDM q χ ,q χ ,q χ χ= = = & &&  (36) 

The Taylor series expansion (29), with s ddmy τ= , at a current estimate, kχ̂ , of the parameters χ , at 

iteration k , is calculated with the jacobian matrix of ( )ddmτ χ , given by: 

( ) ( ) ( )( )
sy /

k k

k k k kddm idm
χ ddm ddm ddm

ˆ ˆχ χ

ˆ ˆ ˆ ˆδ IDM q ( χ ),q ( χ ),q ( χ ) χ
χ χ χ

τ τ ∂ ∂  ∂= = =  ∂ ∂ ∂  
& &&  (37) 

Then, it becomes: 

( )( ) ( )

( )( )

k k k k k k k
ddm ddm ddm ddm ddm ddm

k k k k
ddm ddm ddm

ˆ ˆ ˆ ˆ ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) χ IDM q ( χ ),q ( χ ),q ( χ ) ...
χ

ˆ ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) χ
χ

∂ = +
∂

∂
∂

& && & &&

& &&

 (38) 

The calculation of the second term on the right side of (38) needs to calculate the expression: 

( )( ) ( )( )
( )( )
( )( )

k k k k k k ddm
ddm ddm ddm ddm ddm ddm

ddm

k k k ddm
ddm ddm ddm

ddm

k k k ddm
ddm ddm ddm

ddm

q
ˆ ˆ ˆ ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) IDM q ( χ ),q ( χ ),q ( χ ) ...

χ q χ

q
ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) ...

q χ

q
ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ )

q χ

∂ ∂ ∂= +
∂ ∂ ∂

∂ ∂ +
∂ ∂

∂ ∂
∂ ∂

& && & &&

&
& &&

&

&&
& &&

&&

 (39)  

Let us recall that the joint force/torque y τ= , is obtained while the robot is tracking a reference 

trajectory, ( )r r rq ,q ,q& && , with a closed-loop control law. The closed-loop simulation uses the direct 

dynamic model, the same control law and the same reference trajectory ( )r r rq ,q ,q& && , as the actual one, to 

calculate Sy . 

In the following section IV.B, we show how to tune the control law of the closed-loop simulation in 
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order to keep the same bandwidth and stability margin as the actual closed-loop for any kχ̂ , obtained at 

iteration k. This assumes for the simulated tracking error to keep close to the actual one for any kχ̂ , that 

is to say: 

( ) ( )k k k
ddm ddm ddmˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&�  , for any kχ̂  (40) 

This means that ( )ddm ddm ddmq ( χ ),q ( χ ),q ( χ )& && , have little dependence on χ , such that: 

ddm ddm ddmq q q
0

χ χ χ

∂ ∂ ∂
∂ ∂ ∂

& &&
� � �  

Then (39) is simplified as: 

( )( ) 0k k k
ddm ddm ddmˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ )

χ

∂
∂

& && �  

Taking into account this simplification, we have in (38): 

( )( ) ( )k k k k k k
ddm ddm ddm k ddm ddm ddmˆ ˆ ˆ ˆ ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) χ IDM q ( χ ),q ( χ ),q ( χ )

χ

∂
∂

& && & &&�  

As a result, the jacobian matrix (37) can be approximated by: 

( )( ) ( )
sy /

k k k k k k k
χ ddm ddm ddm ddm ddm ddmˆ ˆ ˆ ˆ ˆ ˆ ˆδ IDM q ( χ ),q ( χ ),q ( χ ) χ IDM q ( χ ),q ( χ ),q ( χ )

χ

∂=
∂

& && & &&�  (41) 

Each sensitivity function in the jacobian matrix is approximated by an algebraic equation. This is 

much more simpler than for usual OE method where the sensitivity functions are the solutions of 

complicated differential equations. This is the reason why it is much more simpler to minimize the error 

between the measured force/torque and the simulated force/torque than to minimize the error between 

the actual position and the simulated position. 

Taking the approximation (41) of the jacobian matrix into the Taylor series expansion (32), it 

becomes: 

( )( ) ( )+1k k k k k k
s ddm ddm ddmˆ ˆ ˆ ˆ ˆy y ( χ ) IDM q ( χ ),q ( χ ),q ( χ ) χ χ o eτ= = + − + +& &&  (42) 

From (36), it becomes: 

( )k k k k k k
s idm ddm ddm ddmˆ ˆ ˆ ˆ ˆ ˆy ( χ ) ( χ ) IDM q ( χ ),q ( χ ),q ( χ ) χτ= = & &&  (43) 

Taking (43) in (42), it becomes: 

( ) ( )+1k k k k
ddm ddm ddmˆ ˆ ˆy IDM q ( χ ),q ( χ ),q ( χ ) χ o eτ= = + +& &&  (44) 

This is the Inverse Dynamic Identification Model, IDIM, (7), where ( )  q, q, q& &&  are estimated with 

( )ddm ddm ddmq ,q ,q& && , simulated with kˆDDM( χ ) (21). At each iteration k , the IDIM method is applied as 
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described in section II. 

The sampling of (44) at a sampling rate mf , gives an over-determined linear system such as: 

( ) ( ), k
fm fm ddm ddm ddm fm

ˆY τ W q ,q ,q χ ρδ χ= +& &&  (45) 

With: 

( )       

m

1
fm j 1

j
fm fm

n
fm j n

Y ( t )

Y τ ... , Y ...

Y ( t )

τ

τ

  
  = =   
  

   

 (46) 

( )
( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1 ,

,  

,
m m m

j k1
ddm ddm ddmfm

k j
fm ddm ddm ddm fm

n j k
fm ddm n ddm n ddm n

ˆIDM q t ,q t ,q t χW

ˆW q ,q ,q χ ... , W ...

W ˆIDM q t ,q t ,q t χ

δ

δ δ

δ

  
  
 = = 
  
    

& &&

& &&

& &&

 (47) 

The parallel decimation of (45) gives: 

( ) ( ), k
ddm ddm ddm̂Y τ W q ,q ,q χ χ ρδ= +& &&  (48) 

The LS solution of  (48) gives k 1χ̂ +  , at iteration +k 1. 

This process is iterated until: 

k 1 k

k

tol1
ρ ρ

ρ
+ −

≤ , and, 
+1k k

i i
2ki 1,...,b

i

ˆ ˆχ χ
max tol

χ̂=

− ≤ , 

where, 1tol  and 2tol  are values ideally chosen to be small numbers to get fast convergence with good 

accuracy. 

This new identification method is based on a closed-loop simulation using the direct dynamic model  

(DDM) while the optimal parameters minimize the 2-norm of the error between the actual force/torque 

τ , and the simulated force/torque ddmτ , over an observation window time obsT . This new technique 

overcomes the problems of non-linear optimization in OE method, section III, using the IDIM to 

calculate the simulated force/torque vector, s ddm idmy τ τ= = . Because this method uses both models 

DDM and IDIM, it is named the DIDIM method: Direct and Inverse Dynamic Identification Models 

technique. 

The DIDIM method with the Gauss-Newton regression is illustrated Fig. 5. 

This approach is particularly interesting thanks to the following reasons: 

• It needs only the actuator force/torque measurement or estimation, 

• It avoids tuning the bandpass filter in the IDIM method by using the integration of the DDM in a 

closed-loop simulation where the tuning of the bandwidth automatically defines the same frequency 
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range for the dynamics of the actual and of the model to be identified. 

• It combines the inverse and the direct dynamic model and validates, in the same identification 

procedure, both models for computed torque control and for simulation. 

• It dramatically simplifies the computation of the matrix of the sensitivity functions which is given 

by an algebraic equation (the inverse dynamic identification model) whereas it is given by the 

resolution of a complicated system of differential equations in the usual OE method. 

The drawback is that the structure and the tuning of the actual closed-loop control law must be known 

to be implemented in the closed-loop simulation of the robot. Most often, this is not a real problem, 

because working on identification for simulation or control of the robot, needs a minimal knowledge on 

the robot controller. 

  

r

r

r

q

q

q





 
 

&

&&

Actual 
Robot

Direct Dynamic Model

 

  

k
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k
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ˆM(q , ) q

ˆN(q , q , )

χ
τ χ

=

−

&&

&
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+1 min
2kˆ Y Wδχ

χ χ= −

( )tτ
Control law

χ̂

( )( )ˆ( ),  W , , , k
ddm ddm ddmY IDM q q qδτ χ& &&

obsT

ddmτ

( )q t

Control law
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k

ddm ddm ddm
ˆIDM q ,q ,q ,χ& &&

( )k
ddm ddm ddm

ˆIDM q ,q ,q ,χ& &&

( )t yτ =

ddmq
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sampling ( )
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downsampling

fm

 

Fig. 5. DIDIM with the Gauss-Newton regression, identification scheme. 

B. Initialization of the algorithm 

A problem is how to choose the initial values 0χ̂ . 

We can use CAD values, or identified values with the IDIM method, but we show that there is no need 

at all of a priori values. 

We propose an algorithm not sensitive to the initial conditions, which assumes that the condition 

( ) ( )ddm k ddm k ddm kˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , is satisfied at any iteration k , and especially for  k =0. 

This is possible by taking the same control law structure for the actual robot and for the simulated one 

with the same performances given by the bandwidth, the stability margin or the closed-loop poles. 
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Because the simulated robot parameters kχ̂ , change at each iteration k , the gains of the simulated 

control law must be updated according to kχ̂ . 

For example, let us consider a PD control law for each joint j . The inverse dynamic model IDM (1) 

for the joint j , can be written as a decoupled double integrator perturbed by a coupling force/torque, 

such that: 

= ( )  + ( , )= ( ) ( ) + ( , )= ( ) 
j

n n

j idm j ,i i j j , j j j ,i i j j , j j j
i 1 i j

τ τ M q q N q q M q q M q q N q q M q q p
= ≠

= + −∑ ∑&& & && && & &&  (49) 

where jp  is considered as a perturbation given by: 

( )  ( , )
n

j j ,i i j
i j

p M q q N q q
≠

= − −∑ && &  (50) 

( )j ,iM q  which depends on q  , is approximated by a constant inertia moment jJ , given by: 

( )( )
j jj j a j , j j a

q
J ZZ I max M q ZZ I= + + − −  (51) 

jJ , is the maximum value, with respect to q , of the inertia moment around joint jz  axis. This gives 

the smallest damping value and the smallest stability margin of the closed-loop second order transfer 

function (55), while q  varies. 

It can be calculated from a priori CAD values of inertial parameters and must be taken at least as 

jj aZZ I+ . 

The joint j  dynamic model is approximated by a double integrator, where jp , is a perturbation,  as 

following: 

( ) ( )
( )j j j j j

j , j j

1 1
q τ p τ p

M q J
= + +&& �  (52) 

Let us consider the joint j  PD control of the actual robot which is illustrated Fig. 6: 

+
-

+
- j

agτ

jr
q

j

a
vk

1
a

jJ
1

s
1

s
+

+

j

a
pk

jp

j
vτ jq& jqjτ jq&&

 

Fig. 6. Joint PD control of the actual robot. 

The control input calculated by the robot controller is given by: 
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( )
j j j j j

a a a
p v r j v jv k k q q k qτ = − − &  (53) 

j
vτ  is the current reference of the current amplifiers which supplies the motor. 

The joint j  , force/torque is given by: 

j j

a
j g vτ ττ =  (54) 

where: 

j

agτ  is the actual drive gain, calculated with the actual parameters in (9). 

a
jJ  is the actual value of jJ . 

In order to tune the tracking performances of the reference position 
jrq , the transfer function jr

j

q

q
 is 

calculated with =0jp : 

=0
 

j
j

j j j j

j
j a 2 a2

j jr
p

a a a a a 2 a
v p p nj nj

q 1 1
H

J s 2q 1 s
s 1 s 1

g k k kτ

ζ
ω ω


= = =

 
  + + + +

 (55) 

where: 

a
njω  is the actual natural frequency which characterizes the closed-loop bandwidth, 

a
jζ  is the  actual damping coefficient which characterizes the closed-loop stability margin, with: 

j

i i

a

a a a
nj p v a

j

g
k k

J
τω =  ,        

1 ji

i

aa
va

j a a
p j

gk

2 k J
τζ =  (56) 

Then it becomes: 

2 j

a
nja

p a
j

k
ω

ζ
=        ,        

j

j

a
ja a a

v j nj a

J
k 2

gτ
ζ ω=  (57) 

The closed-loop performances are chosen with the desired 2 poles of a second order transfer function 

characterized by,  d
njω , d

jζ , where: 

d
njω  is the desired natural frequency, 

d
jζ  is the  desired damping coefficient. 

Because the actual values are unknown, the gains are calculated from (57), where the unknown actual 

values, a njω , a
jζ , a

jJ , 
j

a
ig , 

 
are replaced respectively by their  desired values, d

njω , d
jζ , and by their a 

priori values, ap
jJ ,

j

apgτ : 
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2 j

d
nja

p d
j

k
ω

ζ
=   ,      

j

j

ap
ja d d

v j nj ap

J
k 2

gτ
ζ ω=  (58) 

where: 

 and 
j

ap ap
jJ gτ are a priori values of  the actual unknown values  and 

j

a a
jJ gτ , respectively. 

Now, let us consider the joint j  PD control of the simulated robot which is illustrated Fig. 7.

 

+
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+
- j
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jr
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j
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1
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1
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+

+
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pk
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Fig. 7. Joint PD control of the simulated robot. 

The variables ( ) ,   
j j j j jddm ddm ddm ddm ddmv , q , q , qτ τ & && , in Fig. 7, are computed by numerical integration of  

kˆDDM( χ ) ,  (21).  

The control law of the simulated robot has the same structure as the actual one, Fig. 6, where we take: 

j

a
ig =

j

ap
ig , the a priori value of 

j

a
ig , 

a
jJ = k

jĴ , the value of jJ , (51), calculated with the estimation kχ̂ , at iteration k. 

j

s
pk , 

j

s
vk  are the gains of the simulated control law. 

They are calculated in order to keep the same performances for the simulated closed-loop and for the 

actual closed-loop, that is to say to keep the same desired values, d njω  and  d jζ , for the closed-loop 

poles. Then, it becomes: 

    ,         2  
2 j j j

j

d k
nj js a s d d

p p v j njd ap
j

Ĵ
k k k

gτ

ω
ζ ω

ζ
= = =  (59) 

The proportional gain, 
j

s
pk , does not depend at all on the parameters values, but the derivative gain in 

the simulator , 
j

s
vk , must be updated with kjĴ , at each iteration k . 

It is important to note that only the gain in the simulated closed-loop, 
j

s
vk , is modified during the 

iterative procedure. The actual gain of the robot control law, 
j

a
vk ,  is not modified. 

The simulated closed-loop tuning given by, d
njω , d

jζ ,
 
differs from the actual one, a

njω , a
jζ , with the 



 

This work has been submitted to the IEEE for possible publication. Copyright may be transferred 
without notice, after which this version may no longer be accessible  p 19 

 

 

following ratio, calculated by taking (58) into (56): 

j

j

aa a ap
nj j j

d d a ap
nj j j

gJ

J g
τ

τ

ω ζ
ω ζ

= =  (60) 

Usually this ratio is between 0.8 and 1.2. The actual values, a njω , a
jζ , can be estimated from step 

response or frequency analysis of the actual closed-loop. But this is not necessary, because there is little 

effect on the identification accuracy, assuming, d
njω , is regularly chosen more than 10 times greater than 

the frequency range of the robot dynamics.  

This allows to keep ( ) ( )ddm k ddm k ddm kˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration k. 

We propose to take a regular inertia matrix 0( , ) ddm ˆM q χ , in order to have a good initialization for the 

numerical integration of the DDM (21) . This is named the "regular initialization".  

It can be obtained with: 

0 0χ̂ = , except for, 0 1, jIa j 1,n= =  (61) 

The inertia of the rotor and gear of actuator j  is generally taken into account in the IDM model (1) as: 

τ  
jr j j Ia q= &&  

Then, the initial inertia matrix becomes the identity matrix, which is the best regular matrix: 

0( , ) =ddm nˆM q Iχ  (62) 

Another simple regular initialization is to take: 

 0 0χ̂ = , except for, 0 1, jZZ j 1,n= =  (63)
 
 

The initial inertia matrix, 0( , )ddm ˆM q χ , is no more the identity matrix, but remains regular. 

Another point is to choose the state initial condition of the state vector, ( )(0) (0)ddm ddmq ,q& , in order to 

integrate the DDM (21). Because DIDIM doesn't need the joint position measurement, the actual values 

( )(0) (0)q ,q& , are supposed to be unknown and we choose, ( ) ( )(0) (0) (0) (0)ddm ddm r rq ,q q ,q=& & , which is 

close to
 ( )(0) (0)q ,q& . Because the closed-loop transient response due to different initial conditions differs 

between the actual and the simulated signals during a transient period of approximately, 5d n/ ω , the 

corresponding joint force/torque samples are eliminated from the identification data in (45).
 

V. CASE STUDY: MODELING OF THE SCARA ROBOT 

The identification method is carried out on a 2 degree-of-freedom planar direct drive prototype robot 
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without gravity effect, shown in Fig. 8. This direct drive prototype is very suitable for the study of 

DIDIM because it emphasizes non linear coupling torques while this non-linear effect is divided by at 

least 2500 for industrial robots with gear ratio greater than 50. Moreover, the dynamic model of this 

robot depends on eight parameters only, which facilitates the study of the identification efficiency with 

respect to several conditions. At last, this robot and its real parameters, called the nominal parameters, 

are well known. Thus, we can check the physical meaning of the identified parameters. 

The description of the geometry of the robot uses the modified Denavit and Hartenberg (DHM) 

notations [30] which are illustrated in Fig.9. The robot is direct driven by 2 DC permanent magnet 

motors supplied by PWM amplifiers. 
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q 2

 

Fig. 8. The scara robot prototype.  Fig. 9. DHM frames of the scara robot. 

The dynamic model depends on 8 minimal dynamic parameters, considering 4 friction parameters: 

[ ]T
1R 1 1 2R 2 2 2 2 ZZ Fv Fc ZZ LMX LMY Fv Fc  χ =  (64) 

2
1R 1 1 2ZZ ZZ Ia M L= + +   

2R 2 2ZZ ZZ Ia= +  

L=0.5m, is the length of the first link. 

In the case of the SCARA robot, the parameters, 2LMX , and 2LMY , are identified instead of,  2MX  , 

and 2MY , respectively. 

The 8 columns, , 1,8:,kIDM k = , of ( )IDM q,q,q& && , in IDIM (7), are the following: 
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0 0

 
0

   

  

1R 1

1 2 R

2

1 1
:,1 ZZ :,2 Fv

1 21
:,3 Fc :,4 ZZ

1 2

)1 2 2 2 1 2 2
:,5 LMX 2

1 2 1

q q
IDM IDM , IDM IDM ,

q qsign( q )
IDM IDM , IDM IDM ,

q q

( 2q q ) cosq - q ( 2q q sinq
IDM IDM

q cosq q sin

+

   
= = = =   

   

+  
= = = =    +   

+
= =

+

&& &

&& &&&

&& &&

&& && & & &

&& &

 

 

  

  

0 0
 

2

2 2

2

)1 2 2 2 1 2 2
:,6 LMY 2

1 2 1 2

:,7 Fv :,8 Fc
2 2

,
q

( 2q q ) sinq q ( 2q q cosq
IDM IDM ,

q cosq q sinq

IDM IDM , IDM IDM
q sign( q )

+

 
 
 

− + − 
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The closed-loop control is a PD control law (53) , according to Fig. 6, with: 

2 1 1R 2R 2J ZZ ZZ LMX= + + , and 2 2RJ ZZ= . 

The actual gains are calculated with (58), taking a desired damping, d
jζ =1, for joint 1 and joint 2. 

The desired natural frequency, d
njω , is chosen according to the driving capacity without saturation of 

the joint drive. For this robot we obtain a full bandwidth with, 1 /
1

d f
n rd sω = , and 10 /

2

d f
n rd sω = . 

The sample rates of the control and of the measurement are equal to, mf =200Hz.  

Torque data are obtained from (54), and from the current reference data vτ . 

The simulation of the robot is carried out with the same reference trajectory and with the same control 

law structure as the actual robot. 

The gains in the simulator are calculated with (59) and with the same values,  d
jζ =1, 1 /

1

d
n rd sω = , 

and 10 /
2

d
n rd sω = . 

VI.  EXPERIMENTAL IDENTIFICATION RESULTS 

The new identification process is performed in different cases in order to compare the previous IDIM 

technique to the new DIDIM technique and to investigate the robustness of DIDIM with respect to the 

initialization, to the acquisition sampling rate, to the data filtering and to the closed-loop tuning. 

All the results are given in SI units, on the joint side. 

A. Comparison of  IDIM and DIDIM with good initial values, 0 IDIMˆ ˆ χ χ= . 

At first, the algorithm is initialized with, IDIMχ̂ , the vector of parameters identified with the IDIM LS 

estimator. 
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The IDIM LS off-line estimation is carried out with a filtered position ̂q , calculated with a 20Hz cut-

off frequency forward and reverse Butterworth filter, and with the velocities q̂& , and the accelerations, q̂&& , 

calculated with a central difference algorithm of q̂ .  The parallel decimation of fmY
 
and fmW , in (10), is 

carried out with a sample rate divided by a factor, dn =20, and a lowpass filter cut-off frequency equal 

to, 0.8* /(2* )=4Hzm df n . 

The results are given in Table 1. It needs only 2 steps to obtain the optimal solution which is very 

close to the IDIM solution. Hence, the DIDIM method does not improve the IDIM solution calculated 

with good bandpass filtered data. 

A validation is plotted on Fig. 10, at the frequency measurement, mf =200Hz. It shows that the actual 

joint torques, ( )fmY τ , and the torques estimated with the identified model, 

( )2, 2
e fm ddm ddm ddmˆ ˆY W q ,q ,qδ χ χ= & && , as defined in (45), (46), (47), are very close.  

Both methods give a small relative norm error, ˆY W / Yχ− <3%, which shows a good accuracy for 

the model and for the identified values. 

It can be seen that the parameters, 
1Fv , and 2Fv , have no significant estimations because of their 

large relative standard deviation (>30%). They have no significant contribution in the joint torques and 

they can be cancelled to keep a set of essential parameters of a simplified dynamic model, without loss 

of accuracy [31]. 

 However, we prefer to keep all the parameters in the following, for a better comparison of IDIM and 

DIDIM identification methods. 
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TABLE 1: COMPARISON OF IDIM  AND DIDIM  METHODS 
 IDIM DIDIM 

Parameter IDIMχ̂  χ2 σˆ  
rχ

%σˆ  0 IDIMˆ ˆ χ χ=  2ˆ  χ  χ2 σˆ  
rχ

%σˆ  

ZZ1R 3.44  0.034 0.50 3.44  3.45 0.036 0.52 

1Fv  0.03  0.031 52. 0 0.03  0.04 0.032 40.0 

1Fc  0.82  0.1 6.0 0.82  0.82 0.05 3.0  

2ZZ  0.062  0.0006 0.51 0.062  0.061 0.0006 0.49  

2LMX  0.121  0.0014 0.56 0.121  0.124 0.0013 0.52  

2LMY  0.007  0.0007 5.0 0.007  0.007 0.0005 3.5  

2Fv  0.013  0.006 23.0 0.013  0.014 0.0084 30.0 

2Fc  0.137  0.006 2.30 0.137  0.133 0.0080 3.0 
IDIMˆY W / Yχ− =0.024 2ˆY W / Yχ− =0.021 
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Fig. 10. DIDIM, validation, ( )2, 2
e fm ddm ddm ddmˆ ˆY W q ,q ,qδ χ χ= & && . 

B. DIDIM,  validation of  the regular initialization, 0
2( , )=ddm ˆM q Iχ  

The robustness of  DIDIM with respect to a wrong initialization, such as the regular initialization (62), 

is investigated. 

The initial values of the dynamic parameters are given by (61), with: 

 [ ]T1 0 0 1 0 0 0 00ˆ   χ =  

The identified values given in Table 2, are very close to those given in Table 1. This result validates 

the regular initialization procedure , described in section IV.B. 

Moreover the algorithm converges in only 3 steps and is not time consuming. 
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TABLE 2: DIDIM  WITH THE REGULAR INITIALIZATION  
Parameter 0ˆ  χ  3ˆ  χ  χ2 σˆ  

rχ
%σˆ  

ZZ1R 1 3.45 0.014 0.2 

1Fv  0 0.02 0.012 15 

1Fc  0 0.85 0.016 1.0 

2ZZ  1 0.061 0.0001 0.1 

2LMX  0 0.124 0.0002 0.1 

2LMY  0 0.007 0.0003 2.0 

2Fv  0 0.01 0.003 10 

2Fc  0 0.132 0.0008 0.3 

The relative norm errors on joint position, velocity and acceleration are plotted in Fig.11 ,with the 

following legend: 

• norm error relative to the actual filtered joint position, 
jddm j jˆ ˆq q / q− , velocity 

jddm j jˆ ˆq q / q− , 

and acceleration, 
jddm j j

ˆ ˆq q / q−&& && && , where ( )ˆ ˆq̂,q,q& && , are calculated as given in section VI.A. 

* norm error relative to the reference joint position, 
j j jddm r rq q / q− , velocity, 

j j jddm r rq q / q−& & & , and 

acceleration, 
j j jddm r rq q / q−&& && && . 

The assumption (40), made in section IV.B, ( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration 

k, is confirmed on Fig.11. , with a constant relative norm error close to 0.5% for the position, 5%, for the 

velocity and 10%, for the acceleration. 

These  results validate the updating procedure (59), of the simulated PD control law gains. 

It can be seen also on Fig.11. , that the simulated trajectory, ( )ddm k ddm k ddm kˆ ˆ ˆq ( χ ),q ( χ ),q ( χ )& && , is 3 to 5 

times closer to the actual one, ( )ˆ ˆq̂,q,q& && ,  than to the reference one, ( )r r rq ,q ,q& && , with a relative norm error 

close to 1.5% for the position, 15%, for the velocity and 30%, for the acceleration. Moreover, this error 

depends on the closed-loop bandwidth. It means that computing the observation matrix in (13) with  the 

reference trajectory, ( )r r rq ,q ,q& && , leads to a bad identification of the dynamic parameters.  

Then, the right assumption is, ( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , (40), made in section IV.B. 
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Fig.11. • norm error relative to the filtered actual position, velocity, acceleration. 

       * norm error relative to the reference position, velocity, acceleration. 

We have seen that ( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration k, with a constant small 

error. On the contrary, the relative torque norm error, given in Table 3, and plotted on Fig. 12, 

dramatically decreases in only 3 steps. This shows the fast algorithm convergence. 

TABLE 3: RELATIVE NORM ERROR OF JOINT TORQUE: j j k jˆY W / Yχ−  

Iteration k 0 1 2 3 
Joint j=1 0.42 0.036 0.02 0.018 
Joint j=2 3.20 0.110 0.02 0.022 
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Fig. 12. DIDIM, convergence of the joint torque error, j j k jˆY W / Yχ−  
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The fast convergence of each parameter is shown in Table 4 , and is plotted on Fig. 13. 

TABLE 4: PARAMETERS CONVERGENCE 
Parameters 0ˆ  χ  

1ˆ  χ  
2ˆ  χ  

3ˆ  χ  
ZZ1R 1 3.46 3.45 3.45 

1Fv  0 0.04 0.02 0.02 

1Fc  0 0.86 0.85 0.85 

2ZZ  1 0.06 0.061 0.061 

2LMX  0 0.122 0.124 0.124 

2LMY  0 0.05 0.07 0.07 

2Fv  0 0.005 0.01 0.01 

2Fc  0 0.130 0.132 0.132 
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Fig. 13. DIDIM, parameters convergence 

C. Comparison of IDIM and DIDIM robustness with respect to a low sample rate. 

The actual torque and the simulated data are resampled to obtain a low frequency measurement mf = 

0.5Hz. This is a downsample procedure without lowpass antialiasing filtering which investigates a real 

problem on industrial robots where the available sample rate measurement given by the controller may 

be much lower than the control sample rate. All the actual and simulated data are sampled at mf = 0.5Hz. 

The IDIM LS estimation is carried out with the measured joint position q , and with ( )ˆ ˆq,q& && , calculated 

by a central difference algorithm of q , without lowpass Butterworth filtering. There is no parallel 
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decimation. DIDIM starts with the regular initialization. Results are given in Table 5 . 

TABLE 5: IDIM  AND DIDIM,   LOW SAMPLING RATE, mf = 0.5HZ. 

 IDIM DIDIM 
Parameter IDIMχ̂  χ2 σˆ  

rχ
%σˆ  0ˆ  χ  3ˆ  χ  χ2 σˆ  

rχ
%σˆ  

ZZ1R 3.10 0.03 0.3 1.0 3.45 0.04 0.5 

1Fv  0.9 1.8 100 0 0.04 0.02 30 

1Fc  1.0 0.1 5 0 0.81 0.05 3 

2ZZ  0.025 0.003 5.5 1.0 0.061 0.0006 0.5 

2LMX  0.075 0.008 5.3 0 0.124 0.001 0.5 

2LMY  -0.02 0.01 250 0 0.008 0.0006 4.0 

2Fv  0.35 5.6 800 0 0.01 0.005 25 

2Fc  0.19 0.087 23 0 0.13 0.008 3.0 
IDIMˆY W / Yχ− =0.5 3ˆY W / Yχ− =0.04 

 

The identified values with IDIM are not good while the identified values with DIDIM are still good. 

This shows the robustness of DIDIM with respect to the sampling rate measurement. 

IDIM fails because there is an amplitude distortion in the estimation of ( ) ˆ ˆq, q& && , with a central 

difference of q , sampled at a too low frequency mf . This point is illustrated in Table 6, which gives the 

relative norm errors on velocity (80%) and acceleration (80%). 

( )(200Hz)  (200Hz)ˆ ˆq , q& && , is calculated from q , sampled at 200Hz and lowpass filtered at a 0.5Hz cut-

off frequency, and derived with a central difference algorithm. 

( )(0.5Hz)  (0.5Hz)ˆ ˆq , q& && , is calculated from q , sampled at 0.5Hz and derived with a central difference 

algorithm. 

DIDIM succeeds because, ( )ddm ddm ddmq ,q ,q& && , is computed with accuracy by the integration of the  DDM 

with a well-tuned variable step solver, and it can be sampled without error at any frequency mf . 

TABLE 6: IDIM,  JOINT DATA ERRORS AT 0.5Hzmf =   

(200Hz) (0.5Hz) (200Hz)1 1 1
ˆ ˆ ˆq q / q−& & &  0.39 

(200Hz) (0.5Hz) (200Hz)1 1 1
ˆ ˆ ˆq q / q−&& && &&  0.73 

(200Hz) (0.5Hz) (200Hz)2 2 2
ˆ ˆ ˆq q / q−& & &  0.80 

(200Hz) (0.5Hz) (200Hz)2 2 2
ˆ ˆ ˆq q / q−&& && &&  0.81 
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D. Comparison of  IDIM and DIDIM,  without data filtering. 

All the actual and simulated data are sampled at mf = 200Hz. 

The IDIM LS estimation is carried out with the measured joint position q , and with ( )ˆ ˆq,q& && , calculated 

by a central difference algorithm of q , without lowpass Butterworth filtering.  There is no parallel 

decimation. DIDIM starts with the regular initialization. Results are given in Table 7. 

TABLE 7: IDIM  AND DIDIM  ESTIMATION WITHOUT DATA FILTERING 
 IDIM DIDIM 
Parameter IDIMχ̂  χ2 σˆ  

rχ
%σˆ  0χ̂  2ˆ  χ  χ2 σˆ  

rχ
%σˆ  

ZZ1R 1.50 0.05 1.60 1.0 3.45 0.007 0.1 

1Fv  0.095 0.15 80. 0 0 0.05 0.023 21 

1Fc  0.55 0.26 23.3 0 0.81 0.004 0.24 

2ZZ  0.14 0.018 6.7 1.0 0.061 0.0004 0.3 

2LMX  0.63 0.035 2.7 0 0.124 0.0015 0.3 

2LMY  0.1 0.023 11.8 0 0.008 0.0009 5.6 

2Fv  0.001 0.143 700.0 0 0.023 0.0022 48 

2Fc  0.19 0.244 68.40 0 0.13 0.0038 1.5 

 IDIMˆY W / Yχ− =0.8 2ˆY W / Yχ− =0.08 

 
The identified values with IDIM are not good while the identified values with DIDIM are still good. 

IDIM fails because of the too large noise in the observation matrix, ( )fm
ˆ ˆW q,q,q& && , coming from the 

derivation of q , without lowpass filtering. Then the LS estimation is biased. 

DIDIM succeeds because the observation matrix, ( ), k
fm ddm ddm ddm

ˆW q ,q ,qδ χ& && , is calculated without noise 

with the simulated values ( )ddm ddm ddmq ,q ,q& && . 

This validation shows that DIDIM cancels the bias of IDIM estimation, coming from a noisy 

estimation of ( )ˆ ˆq̂,q,q& && , which gives a too noisy observation matrix ( )fm
ˆ ˆW q,q,q& && . 

E. DIDIM robustness with respect to error in the simulated closed-loop tuning, d
nω   

This section investigates the effect of an error between the actual value, a
nω , and the simulated value 

d
nω  , of the natural frequency which represents the closed-loop bandwidth. 

The DIDIM identification is performed taking half the values of the full ones given in section V, 

/2=1/2 (rd/s)
1 1

d d f
n nω ω=  and 10/2 (rd/s)

2 2

d d f
n n / 2ω ω= = , and the same procedure used to obtain results 
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shown in Table 2, that is to say a frequency measurement, mf =200Hz, and a parallel decimation with a 

factor, dn =20, and a lowpass filter cut-off frequency equal to 4Hz.  

The parameters, given in Table 8,  converge in only 6 steps to values which are very close to those 

obtained in Table 2, with a full closed-loop bandwidth. 

TABLE 8: DIDIM,  WITH SIMULATED HALF  FULL BANDWIDTH , /2d d f
n nω ω=  

Parameter 0ˆ  χ  6ˆ  χ  χ2 σˆ  
rχ

%σˆ  

ZZ1R 1 3.44 0.014 0.2 

1Fv  0 0.02 0.012 15 

1Fc  0 0.86 0.016 1.0 

2ZZ  1 0.060 0.0001 0.1 

2LMX  0 0.124 0.0002 0.1 

2LMY  0 0.007 0.0003 2.0 

2Fv  0 0.01 0.003 10 

2Fc  0 0.13 0.0008 0.3 

The relative norm errors on joint position, velocity and acceleration are plotted on Fig. 14, with the 

same legend as those given for Fig.11, section VI.B. 

It can be seen that, ( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration k, with a constant norm 

error larger but close to the value obtained with the full bandwidth, Fig.11, close to, 0.5% for the 

position, 5%, for the velocity and 10%, for the acceleration. 
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Fig. 14. • norm error relative to the filtered actual position, velocity, acceleration. 

     * norm error relative to the reference position, velocity, acceleration. 
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The relative torque norm error, given in Table 9, and plotted in Fig. 15, decreases in 6 steps, only 

twice more than with the full bandwidth, Table 3, Fig. 12. This shows that DIDIM is not very sensitive 

to error in the simulated closed-loop bandwidth, provided the control law structure is known. 

However, DIDIM fails beyond 1/3 of the full bandwidth, with 3d d f
n n /ω ω≤ . 

TABLE 9: RELATIVE NORM ERROR OF JOINT TORQUE, j j k jˆY W / Yχ− , FULL BANDWIDTH /2 

Iteration k 0 1 2 3 4 5 6 
Joint j=1 0.6 0.05 0.06 0.04 0.025 0.02 0.02 
Joint j=2 3.0 0.11 0.05 0.02 0.025 0.02 0.02 
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Fig. 15. DIDIM, convergence of the joint torque error, j j k jˆY W / Yχ−  

VII.  CONCLUSION 

This paper deals with a new off-line identification technique of robot dynamic parameters, called 

DIDIM for Direct and Inverse Dynamic Identification Models technique. This method is a closed-loop 

Output Error approach, but considering the output is no more the joint position but the joint force/torque. 

The optimal parameters are the solution of a non-linear least-squares problem which is solved with a 

Gauss-Newton method. Each step of the iterative procedure of the Gauss-Newton regression is 

dramatically simplified to a linear regression which is solved with the Inverse Dynamic Identification 

Model technique (IDIM). Then, DIDIM mixes the closed-loop OE technique and the IDIM technique. 

DIDIM needs a closed-loop simulation of the robot using the direct dynamic model (DDM) and 

assuming the same structure of the control law and the same reference trajectory for both the actual and 

the simulated robot. Then, it needs to initialize the parameters and the state vector of the DDM. 

The difficulties for the choice of the initial conditions for non-linear LS problem are overcome with a 

"regular initialization" of the parameters and an updating of the control law gains at each step of the 

iterative procedure. The initial state is given by the initial values of the reference trajectory. 
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An experimental validation is carried out on a 2 dof robot. The following points were checked: 

• DIDIM gives the same results as IDIM, provided well-tuned data filtering for IDIM,  adapted to the 

system dynamics, 

• DIDIM is robust to the initialization of both parameters and state, 

• DIDIM  is robust to the closed-loop performances tuning errors between the simulated and the 

actual closed-loop robot, provided the same control law structure. 

Compared to IDIM, DIDIM technique is particularly attractive thanks to the following reasons: 

• It needs only the actuator force/torque measurement or estimation, 

• It avoids tuning the bandpass filter in the IDIM method by using the integration of the DDM in a 

closed-loop simulation where the tuning of the bandwidth automatically defines the same frequency 

range for the dynamics of the actual system and of the model to be identified, 

• It cancels bias in IDIM due to errors in bandpass filtering data, or no filtering at all, or too low 

frequency measurement, 

• It combines the inverse and the direct dynamic model and validates, in the same identification 

procedure, both models for computed torque control and for simulation. Up to now, the DDM was 

validated a posteriori in simulation. 

Future work concerns the validation of DIDIM on a 6 dof industrial robot. 
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