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Abstract—Off-line robot dynamic identification methods are mostly based on the use of the inverse dyn& model, which is
linear with respect to the dynamic parameters. Thisnodel is sampled while the robot is tracking refeznce trajectories that excite
the system dynamics. This allows using linear leasfjuares techniques to estimate the parameters. Thedficiency of this method
has been proved through the experimental identificdon of many prototypes and industrial robots. Howeer, this method requires
the joint force/torque and position measurements agh the estimate of the joint velocity and accelerabn, through the bandpass
filtering of the joint position at high sampling rates. The proposed new method requires only the joifiorce/torque measurement. It
is a closed-loop output error method where the usgl joint position output is replaced by the jointforce/torque. It is based on a
closed-loop simulation of the robot using the diredcdynamic model, the same structure of the controlaw, and the same reference
trajectory for both the actual and the simulated rdbot. The optimal parameters minimize the 2-norm ofthe error between the
actual force/torque and the simulated force/torqueThis is a non-linear least-squares problem whichsi dramatically simplified

using the inverse dynamic model to obtain an analigal expression of the simulated force/torque, lirer in the parameters. A
validation experiment on a 2 degree-of-freedom die drive robot shows that the new method is effici&.

Keywords— ldentification, closed-loop output error, least-gluares methods, , robot dynamics.
|. INTRODUCTION

HE usual identification method based on the invessenic identification model (IDIM) and least-

squares (LS) technique has been successfully apgiedentify inertial and friction parameters of
several robotic prototypes and industrial robots [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], amongst others. Good results da obtained provided a well-tuned derivative
bandpass filtering of joint position to calculdbe foint velocities and accelerations is used.

Another approach is to minimize a quadratic eretmeen an actual output and a simulated output of
the system, assuming both the actual and simulatsi@ms have the same input. This is known as an
output error (OE) identification method [16], [17]he optimal values of the parameters are calallate
using non-linear programming algorithms to solvaca-linear least-squares problem. The output is
given by a state-space model output equation, wisctypically the joint position for mechanical
systems. Difficulties arise from the choice of iglitconditions, resulting in multiple, local solois

[18]. The OE method has been used to identify eattparameters of a synchronous machine, and a
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comparison with the IDIM-LS method showed very $amresults [19].

Both IDIM and OE methods require the joint positend the joint force/torque measurements.

The proposed new identification method needs drdyjaint force/torque measurements. It is based on
a closed-loop simulation using the direct dynamadei while the optimal parameters minimize the 2-
norm of the error between the actual force/torqueé #he simulated force/torque, assuming the same
control law and the same reference trajectory. Taus-linear least-squares problem is dramatically
simplified using the inverse dynamic model to folate the simulated force/torque as an algebraic
function linear in relation to the parameters. Theper describes the new identification method and
experimental results obtained using a 2 DOF robot.

A condensed version of this work has been preseantg20]. This paper contains detailed proofs to
enlighten the theoretical understanding of the wethnd gives additional experimental results taasho
the practical efficiency of the method.

The paper is organized as follows: section Il regi¢he usual identification technique of the dymami
parameters of the robot. Section Il presents thtpwd error method. The new identification methsed i
presented in section IV. The modeling of the SCARAtotype robot is presented in section V. This
direct drive prototype is very well suitable foethtudy of the method because it emphasizes nearli
coupling while it is divided by the squared highageatio for industrial robots. The experimentaulés

are given in section VI. Finally, section VIl isetltonclusion.

Il. IDIM: INVERSEDYNAMIC IDENTIFICATION MODEL TECHNIQUE

The inverse dynamic model (IDM) of a rigid robotngaosed ofn moving links calculates the motor

torque vectorr ., as a function of the generalized coordinatesthait derivatives. It can be obtained

idm
from the Newton-Euler or the Lagrangian equatidr$y,[[21]. It is given by the following relation:
Tiam=M (@) G + N(q, 9) (1)
Where q, ¢ and ¢ are respectively thénxl) vectors of generalized joint positions, velocitesd
accelerationsM (q) is the (nxn) robot inertia matrix, andN(g, ¢) is the (nx1) vector of centrifugal,

Coriolis, gravitational and friction forces/torques
The choice of the modified Denavit and Hartenbeggmes attached to each link allows a dynamic

model that is linear in relation to a set of stadd#ynamic parameterg,, [3], [22]:

Tidm = lDM st(q!qu)Xst (2)

Where IDM(q,9,9) is the(nxN,) jacobian matrix oz, with respect to théN x1) vector y,, of the

idm?
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standard parameters given by:
n T

Xo=[ X XD XY ]

with:

XL XX)OXY Xz XY YZ ZZ MX O MY MZ M la FvoFeg [T @)

J J

where:
XX XY, XZ ,YY ,XYZ , Z are the six components of the inertia matljii,. , of link j at the
origin of frame |,
MX;, MY, , MZ are the components of the first momems$, , of linkj,
M, is the mass of link,
la; is a total inertia moment for rotor and gearsctbiator;.
Fv,, Fc, are the viscous and Coulomb friction parametegsiof j.
75, = Ofgg + Ofy is an offset parameter whef@f. is the dissymmetry of the Coulomb friction

with respect to the sign of the velocity a@d; is due to the current amplifier offset which suegl
the motor.
N, =14*n is the number of standard parameters.

The base parameters are the minimum number of dgr@amameters from which the dynamic model
can be calculated. They are obtained from the stanihertial parameters by eliminating those which
have no effect on the dynamic model, and by regngupome others by means of linear relations. They
can be determined using simple closed-form rul€q [& a numerical method based on the QR
decomposition [23].

The minimal inverse dynamic model can be written as
Tgm = IDM (0,6,8) x (4)

Where:

IDM (0,4,d) is the (nxb) matrix of the minimal set of basis functions of thigid body dynamics,  (5)

x is the(bx1) vector of theb base parameters. (6)
Because of perturbations due to noise measurenmentmadeling errors, the actual force/torqoe

differs from z,,, by an errore, such that:

I=14,+e=IDM(q,8,9+e (7)
Equation (7) represents the Inverse Dynamic Idieatibn Model (IDIM).

We consider the off-line identification of the badgnamic parameters,, given measured or

estimated off-line data for and (q, qq) collected while the robot is tracking some plahne
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trajectories.

Usually, the signals available from the robot colér are the joint position measurement and the

(nx1) control signal vectow, , calculated according to the control law.

Then (q, d, q) in (7) are estimated witrﬁa, E}h) respectively, obtained by bandpass filtering the
measure ofg [9]. The derivatives are calculated off-line withghase shift, using a central difference
algorithm of the lowpass filtered positiai. The filtered positiong is calculated off-line with a non
causal zero-phase digital filter by processingitipet data,q, through a lowpass Butterworth filter in

both the forward and reverse direction usingdfiitfdt procedure from Matlab.

The control signaly,, is connected to the input current reference efdarrent closed-loop of the

amplifiers which supplies the motors. Assuming ttheg current closed-loop has a bandwidth greater

than 500Hz, then its transfer function is equaitsostatic gain,K_, in the frequency range (less than
10Hz) of the rigid robot dynamics. Then, the actoate/torque,r, is calculated with the relation:
=9,V (8)
where:
g,, is the (nxn) diagonal matrix of the drive gains,
with:
g, =K, K K, ©9)
where:
K,.,is the(nxn) gear ratios diagonal matrix of the joint drive itisa(¢},, = K, q, with g,,, the velocity
on the motor side),
K., Is the(nxn) static gains diagonal matrix of the current anngis,
K,.is the(nxn) diagonal matrix of the electromagnetic motor tergonstants.

Those parameters have a priori values, given byufaaturers, which can be checked with special
tests [24].

The inverse dynamic identification model (IDIM) (i8) calculated at a frequency measuremént
using samples o(q, E}Aq) to calculate IDM (Q&ﬁ) and samples of/, to calculater with (8), at

different timest,, k=1,...,i,, while the robot is tracking a reference trajegtf, ,¢ ,¢), during the

time lengthT,_,, of the trajectory.
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The equations of each joint are regrouped togetheall the trajectory to get an over-determined
linear system such that:

Yim(7) :me(a:q}))( * P fm (10)
With:
Yf]r.n 7, ()
Y () =] o [L Y= (11)
Yim 7;(t, )
o wil | oM@ o) oY)
Wi, (9.0:9=| .|, W= (12)
Wi, IDMJ @(t, ).0(t, ) &(t,)
where:

IDM ' @(t,).a(t) . &t)) is the jth row of the (nxb) matrix of the basis functions,
IDM @(t,).a(t) &(t), (5),

Y/, andW, represent the_ equations of joinf,

n, =T,~ f.is the number of sample measurements.

The notatioanm( IDM (ch1 Ac)): V\(m(AqA;q?; , Will be used to recall thatV,,, is calculated with a
sampling of IDM (qafq)

In order to eliminate high frequency force/torqupeple in z, and to window the identification
frequency range into the model dynamics, a pardéelmation procedure lowpass filters in para¥g|

and each column oWV, and resamples them at a lower rate, keeping anplsaovern, . This parallel

decimation can be carried out with the Matlddcimatefunction, where the lowpass filter cut-off

frequency is equal t0.8*f _/(2*n,) .

After the data acquisition procedure and the parallecimation of (10), we obtain the over-
determined linear system:

Y(e) =W (5 1+ (13
where:

Y(r) is the(rx1) vector of measurements, built from the actuatd@iorquer ,

W(AquAc) is the(rxb) observation matrix, built from the estimated val(lé,afa) of (0,9, 9.
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p is the(rx1) vector of errors.
r=n*n.,/ny isthe number of rows in (13).
In Y andW, the equations of each joint are grouped togethein that:

Y W!
Y=| .|, w=| .. (14)
Y W

whereY!andW/ represent the_ / n, equations of jointj .

The ordinary LS (OLS) solutiofy minimizes the squared 2-notfp| of the vector of errors,

Using the base parameters and tracking “excitnefgrence trajectories [25], we get a full rank and
well conditioned matriXV . The LS solutiony is given by:
)}=((WTW)_1\NT ) Y= W (15)

It is computed using the QR factorizationwf. Standard deviations;, , are estimated using classical

results from statistics under the assumptions Wats a deterministic matrix, according to the data

filtering procedure described above, andis a zero-mean additive independent Gaussiae naigh a

covariance matriXC__, such that:

pp?
— Ty — 2
C, =E(p )=0cl, (16)
where E is the expectation operator ahd the (rxr) identity matrix.

An unbiased estimation of the standard deviaa'gris:

52 =|v - /ir-b) a7
The covariance matrix of the estimation error iggiby:
C; =EHO -0 -20"=6,(W'W)™ (18)

G; =C, (i) is the i diagonal coefficient o, . The relative standard deviati®io, is given by:

%o, =100c;, /|x|, for [3,#0 (19)
The OLS can be improved by taking into accounted#ht standard deviations on joiptequations
errors [9]. Each equation of joint in (13), (14), is weighted with the inverse of #$tandard deviation

of the error calculated from OLS solution of tlgiations of jointj , given by:

Y (e;) =W (1IDM! (8,8.9) £ + 9 (20)

p 6



This weighting operation normalises the errorsli8) @nd gives the weighted LS (WLS) estimation of
the parameters.

This identification method is illustrated in Fig. 1

Compared with the OE method described in the fahgwsection Ill, the use of IDIM, which is an
analytical function ol(q,q,'q) , Is particularly interesting because it does Bquire the integration of the
direct dynamic model (21). Moreovey, is a one step linear LS solution which does nedniaitial

conditions. However, the calculation of the velestand accelerations are required using well-tuned

bandpass filtering of the joint position [9].

(9,9 .9) r(t) q(t) |sampling {m)
——Control law Robot + bandpass
filtering

| samplingfm) ‘
l/Yfm(r)

lowpass filtering

+ downsampling Inverse Dynamic

Identification Model

me('DM (a3 fq)) IDNIID(ltiN,la,ﬁ) G

O
0>
o

T

obs

Y(r), w(1DM(557) F=min|y -wxlf

[~

Linear LS

Fig. 1. IDIM LS identification scheme.

[ll. THE OuTPUT ERRORMETHOD (OE)
The OE identification methods minimize a quadraitor between an actual outpyt, and a
simulated outputy,, of the system, assuming both the actual andithelated systems have the same

input. This approach can be implemented in an dpep-form, [17], [26], or in a closed-loop form,
[27], [28]. Considering a closed-loop controlledot, the input, in the open loop scheme shown gn Fi
2, is the actual force/torque, and the input, in the closed-loop scheme showkign3, is the reference
trajectory(qr ol q) Because the open loop simulation of unstabletrolsystems is very sensitive to
the initial state conditions and to the errors umerical algorithms which solve the differential
equations, it is more suitable to choose the cldsep form.

In both cases, the output is given by a state-spamgel output equation. Considering a robot and

p7



taking the measured joint position as the outfh,actual output isy = q, and the simulated output is,
Y. = Qg @S Shown in Fig. 2 and Fig. 3, whegg, (1), is the solution of the differential equation give

by the Direct Dynamic Model (DDM).
The DDM can be obtained by writing the IDM equat{aj, as following:

M (QamX) Goam =7 aam =N @ dom 9 g ) (21)
where:

M (CygreX) @Nd N(Qye GuareX) depend on an estimation of the base paramgters
T4ams 1S the force/torque input of the DDM.

The function qddm(t,)(), is the result of the integration of the lineapliwit differential equation (21)

which can be written as a non-linear state-spacgeino
G(x )%= fxu. (22)
where:

X, = P"dm} , is the(2* nx1) state-space vector,

Uiam

Ug = T g4 1S the (nx1) control input,

G(xs){'” O ]f(rg,us):[ o } 23)
Oun M (ygmeX) T gam™ N (A g 9 dan’)

where,0_ , is a(nxn), matrix of zeros.

The linear output equation is given by:
yS = CSXS+ DSuE (24)
Taking the measure of joint position as the outguts q,,,,, we get:

C,=[l, Opou]. is the,(nx2*1) , output matrix, (25)

x2*n

D, =0,,, is the,(nxn), direct feedthrough matrix. (26)

Hence, for robotic systems, an OE identificationthrod is based on the integration of the Direct

Dynamic Model.

The optimal solutiony , minimizes the quadratic criterioih()(), given by:

I ==Y ==Y ( ¥ Y 27)

where:
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Y andY,, are vectors obtained by filtering the vectorsamplesY,, and Y, respectively, where

the equations of each joint are grouped togethin; w

Yf]r.n q; (t) YSlfm Quam(t1)
Y =| |+ Y= s Yem=| - |+ Yom=

Yo =q ('ﬁ" ) Yeim Qaan( ti)

The minimization ofJ()(), (27), is a non-linear least-squares problem. €k&mation of the

(28)

parameters can be computed using algorithms suttreagradient method, the Newton methods or the
Levenberg Marquardt method. These methods are lmmsadirst or second order Taylor's expansion of

J(x).

¢ | = control law Actual Robot
qr j y= q(t)

Sampling
and filtering

Ys = Qaaml
Direct Dynamic Model (DDM) J “ ( )
t) — B .

M (e ) Aaem= 7 qam™ N(A e 9 ciom

X

¥ =minZly, - Y| Y(9. ()
x 2

Non Linear LS T

obs

Fig. 2. Open-loop OE identification scheme.

l

1(t) ‘
—l y=q(t)
9f Sampling
gr ] and filtering
o
l Ys = qddm(t)
Taam |  Direct Dynamic Model (DDM)
[ Control law M (Guam) Qeem= T garr N(A demr T iy
X
X:min%HYs_YHz Y(CD, !(Qdm)
X

Non Linear LS T

obs
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Fig. 3. Closed-loop OE identification scheme.

In [20], we used the Gauss-Newton method to caleulze optimal solution. It is a Newton method

where approximations of the gradient and the hessial ( ,\/) are calculated with the jacobian matrix
of y, with respect toy . The Gauss-Newton regression is a simpler waglmutate the optimal solution

[29]. It is based on a Taylor series expansionyof at a current estimatg®, of the parameters at

iterationk :

ys(x)= ys(afk){a(y;—f”)L (=74 +0 (29)

where: K

(M] =5, (30)
o), o

d,., 1s the(nxb), jacobian matrix ofy,, with respect toy, evaluated af;“.
Each coefficient ofj, , , defines a sensitivity function.

These sensitivity functions characterize the vammabf the output functionyg, with respect to a

variation of the parametey . The sensitivity functions are the solutions ofdifferential system

calculated from (21). However, this technique isrentme-consuming compared to the IDIM method.
Indeed, the DDM and the sensitivity functions mbst integrated many times at each step of the

iterative non-linear optimization method. Moreovitris necessary to have good initial conditions in
order to avoid multiple and local solutions.
Let us define:
y = ys(x )+ e (31)
From (29), it becomes:
Y= Yo (3)=0,, (¥ -%")+(o+¢) (32)
An over-determined linear system is obtained Wgriihg and sampling (32) over the time winddyy:
AY =WA M+ p (33)
with:
AXk+1 — (Xk+1_5{k)
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4Y , W, and p are, respectively, the sampling and filtering(yf— Y. (% )) , 6,,, »and of(o+g).

47" is the LS solution of (33). This process is itedatvith a new estimate;™* = ¥ + 47", until:
_ ~k+l _ ~k
Lo =lod tol, , and, max Lt
1=1,...,

<to (34)
2 :

|
~

where, tol, andtol,, are values ideally chosen to be small numbeggtdast convergence with good

accuracy.

IV. DIDIM: DIRECT AND INVERSEDYNAMIC IDENTIFICATION MODEL TECHNIQUE

A. Theoretical approach

In the OE method as shown in Fig. 3, the actugdutus the measured joint positiop= q.
We propose to change the outpuyt, from the actual joint positioq, to the actual joint force/torque
r, and the simulated outpuy,, from the simulated joint positiong,,,, to the simulated joint

force/torque,r ,,. Then, we takey =7, and y, = 7, according to Fig. 4.

Actual closed loop robot -:
| N 7(t) Actual ! q(t)
| Control law Robot I
| 7=y
9' l_‘ -_——— T_I =y Sampling
% ddm __7s | and filtering
g/ Fm """ m—— 1
| - - I
[ Direct Dynamic Mode| | |
1 L . Yaam
; | Control law M(%gm X ) Aiom= |
1 Tdam Toam™ N(Qggms Aaams¥ )| 1
:_Simulated closed loop robot | # :
~ . 2
X = mXInHYS - YH AN Y(7), YT qam)

Non Linear LS Tobs

Fig. 4. DIDIM identification scheme.

This means that the output equation (24) of theestpace model (22) reduces to a direct feedthrough
equation such asy, = u, =7 44,
Then we haveC, =0 and D, =1, in the output equation (24).

x2*n?
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The optimal solution,y, minimizes the quadratic criterion] ()() (27), where,Y, and Y,, are
vectors obtained by filtering the vectors of saraph,, and Y, respectively, where the equations of
each joint are grouped, with:

Yol 70 Yam| | Feam(t)
Y (2)=] o W Y=l o | Yem=| oo |y Y= (35)
Yim r;(t, ) Ysim Tddrp(tm )

This non-linear LS problem is solved by the Gauss#drwegression as explained in section 11l
The input force/torque of the DDMg,,,,, can be calculated with the analytical expressiorhef
inverse dynamic model (4), such as:
ys(X) = Tddm(X) =7 idm()() =IDM (q ddn()() e ddr()() a ddn(X))X (36)
The Taylor series expansion (29), with =7, at a current estimate;*, of the parameterg , at

iteration k, is calculated with the jacobian matrix gf,.( ), given by:

— a(T m) — a(Ti m) — a ~ . ~ .. ~ ~
5y5/;{ —(a—j(d)k _(6—; N —a(lDM (qddm()(k )1qddm(Xk)’q ddr(){k)))(k) (37)
X X
Then, it becomes:
0 A T Aky 4 aky s g
a(lDM (Qddm(Xk ):Ggan X ),8 ddn()(k)))(k) =DM (q aah )G qelod 18k k))"’---
(38)
0 AKy & gakN s /A N
E(IDM (Qddm(Xk )’qddm(){k)’q ddn()(k)))){k
The calculation of the second term on the right efd@8) needs to calculate the expression:
0 A 0 Ak & Ak s A 0
a(lDM (Qddm(Xk ), Ggend 2" ), ddn()(k))) :6—(|DM (q ach 18 agho ). drﬁ%k)))%"'
ddm
0 Ak 4 Ay s g 06
7 (1DM (g 7). G ') g 7)) e+ . (39)
0044m Ox

s (1DM (B0 7). )

ddm

Let us recall that the joint force/torqug=r, is obtained while the robot is tracking a refesenc
trajectory, (qr,cr q) with a closed-loop control law. The closed-loop dation uses the direct
dynamic model, the same control law and the sameerefertrajectory(q, ,¢ ,¢), as the actual one, to

calculateys.

In the following section IV.B, we show how to tunestbontrol law of the closed-loop simulation in
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order to keep the same bandwidth and stability maagithe actual closed-loop for a@y, obtained at
iterationk. This assumes for the simulated tracking error to kéege to the actual one for afy, that
iS to say:

(o 7). Qe 7 )G aard ¥)) £/ (0.,6,6) , for any 7 (40)

This means thafdym(x ), Guanrx )-8 aad ) » have little dependence gn, such that:

0%4m 7 aqddmg aqddmg 0
4 0y 0y
Then (39) is simplified as:
o] AKy & gaky s g
a(lDM (qddm( 7 Gaand %" )18 aarl X ))) 10

Taking into account this simplification, we have(88):

%(IDM (o 7)o 7 G 7)) 7 7 IDM (0 o7 )0 ok )8 bt )

As a result, the jacobian matrix (37) can be apipnated by:
0 Ak 4 AKy s raky) A Ak & A Ky s A
5ys/;( :a(lDM (qddm( X" )1qddm(Xk)1q ddn(Xk))Xk)g IDM (q dd&Xk)ﬂ e “).4 ade k)) (41)

Each sensitivity function in the jacobian matrixapproximated by an algebraic equation. This is
much more simpler than for usual OE method wheee gbnsitivity functions are the solutions of
complicated differential equations. This is thes@awhy it is much more simpler to minimize theoerr
between the measured force/torque and the simufated/torque than to minimize the error between
the actual position and the simulated position.

Taking the approximation (41) of the jacobian matimto the Taylor series expansion (32), it
becomes:

Y=7=Y,(3*)+IDM (Qgord 7)o Gk 1 )8 aak ) (£ 1 = 7 ) + (0+ &) (42)
From (36), it becomes:

Yo(7) = T 3 = 1IDM (Qgard 7). 0 e "), e %)) 7 (43)
Taking (43) in (42), it becomes:

Y =7= IDM Gy 7 ) Gaan 7). 8 el 7)) 2 + (0+ ©) (44)

This is the Inverse Dynamic ldentification ModeDIM, (7), where (q, qq) are estimated with

(G »Uems Qe » Simulated withDDM (%) (21). At each iteratiork, the IDIM method is applied as
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described in section II.

The sampling of (44) at a sampling rafte, gives an over-determined linear system such as:

Y (7) :Wme( chdm’qddm;qddmx/k))( TPy (45)
With:
Yf]r.n T, ()
Ym(7)=] o |, Y= (46)
Yim Tj(tnm )
Wi, IDM (Gl (1) G &) Bl 1) )
Wafm(oddm’Qddm;'Qddnﬁ(k) = [ W F (47)
Woim IDM * (dgqm(t5, ) Glaanl ) o ) )
The parallel decimation of (45) gives:
Y (z) :WJ(qjdm G "qddma(k)%-i-p (48)

The LS solution of (48) giveg,,, , at iterationk+1.

This process is iterated until:

o=l . dw‘x =4
Il L

where, tol, andtol, are values ideally chosen to be small numbergtdagt convergence with good

< tol,,

accuracy.
This new identification method is based on a cldseg simulation using the direct dynamic model

(DDM) while the optimal parameters minimize the &m of the error between the actual force/torque
r, and the simulated force/torqueg,,, over an observation window tim&, .. This new technique
overcomes the problems of non-linear optimizationGE method, section lll, using the IDIM to
calculate the simulated force/torque vectgr,=r7.,,=7.4,- Because this method uses both models
DDM and IDIM, it is named the DIDIM method: Direaind Inverse Dynamic Identification Models
technique.

The DIDIM method with the Gauss-Newton regressgiflustrated Fig. 5.

This approach is particularly interesting thankgh following reasons:
* It needs only the actuator force/torque measurereastimation,
* It avoids tuning the bandpass filter in the IDIMtimed by using the integration of the DDM in a

closed-loop simulation where the tuning of the haidth automatically defines the same frequency
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range for the dynamics of the actual and of theehtwlbe identified.

* It combines the inverse and the direct dynamic rheae validates, in the same identification
procedure, both models for computed torque comindlfor simulation.

» It dramatically simplifies the computation of thetmx of the sensitivity functions which is given
by an algebraic equation (the inverse dynamic ifleation model) whereas it is given by the
resolution of a complicated system of differenéigliations in the usual OE method.

The drawback is that the structure and the tunfrteactual closed-loop control law must be known
to be implemented in the closed-loop simulatiorthef robot. Most often, this is not a real problem,
because working on identification for simulationocantrol of the robot, needs a minimal knowledge on

the robot controller.

r———-—-----=-=-=-=- A
| Actual closed loop robot |
| » Control | 7 Actual |
ontrol law| Robot
I a(t)
 TO=y ,
G L _________ E—— e sampling {m )
g | — IDM_(addm,qddm.qddm,)( ) lowpass filtering|__
G | T === ="==="="="=== I downsampling
| - - |
| Direct Dynamic Mode| | | Inverse Dynamic
: S control lawi M (g X ) gm= : Identification Model
I [ % s
I T dam Taam— N(Qggme qddm)(k “ | IDM (qddm!qddmlqddmv)(k)
:_Simulated closed loop robot | ¥ _:
~k+1 _ . _ 2 . B R
X m)(InHY W(SXH Y(@) W‘,( IDM (qidm’ Qe Qddek))
Linear LS Tons

Fig. 5. DIDIM with the Gauss-Newton regression ntigcation scheme.

B. Initialization of the algorithm

A problem is how to choose the initial valug$.

We can use CAD values, or identified values with HBIM method, but we show that there is no need
at all of a priori values.

We propose an algorithm not sensitive to the int@nditions, which assumes that the condition
(e X ) Gaand X 048 aak X )2 (0,6, , is satisfied at any iteratiok, and especially fork =0.

This is possible by taking the same control lawdtire for the actual robot and for the simulated o

with the same performances given by the bandwitlté, stability margin or the closed-loop poles.
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Because the simulated robot parametgfs change at each iteratiok, the gains of the simulated
control law must be updated accordingitt.
For example, let us consider a PD control law faetejoint j . The inverse dynamic model IDM (1)

for the joint j, can be written as a decoupled double integradotufbed by a coupling force/torque,

such that:

7= T, =M@ G + N (G D=M, @A+ M (dja+r N(a9=M (d7¢ | (49)
i=1 i
where p; is considered as a perturbation given by:
pjz_ZMj,i(q)q_ N(g 9 (50)
i
M;;(q) which depends on , is approximated by a constant inertia moméntgiven by:
=2z + 1 +maf M, (9- 27~ J ) (51)
J;, is the maximum value, with respectdg of the inertia moment around joiaf axis. This gives

the smallest damping value and the smallest dhaliiargin of the closed-loop second order transfer
function (55), whileq varies.

It can be calculated from a priori CAD values oériial parameters and must be taken at least as
ZZ +1, .
The joint j dynamic model is approximated by a double integravhere p,, is a perturbation, as

following:

(5+0)0 (5 +1) (52)

M;,; (@) J;

Let us consider the joinf PD control of the actual robot which is illustrtég. 6:

qj:

Y

q V T 1 qJ G; q;
i a a g a 1 J 1 J
AN e LIy L7 U

Fig. 6. Joint PD control of the actual robot.

vl
wnl

The control input calculated by the robot controiéegiven by:

p 16



v, =%, *k, (4 -9)-"k g (53)

v, is the current reference of the current amplifighsch supplies the motor.

Trj1e joint j , force/torque is given by:

;=% v, (54)
where:

a

g, is the actual drive gain, calculated with the acharameters in (9).

aJj is the actual value od; .

. " N
In order to tune the tracking performances of thkerence positiory, the transfer function—- is

q
calculated withp,=0:
q; 1 1
H =| L = = 55
R e a + a s+1 ﬁ-'- st 1
gfi K’j kH kﬂ Wy %ni

where:

a

@y is the actual natural frequency which characterthe closed-loop bandwidth,

°; is the actual damping coefficient which charéetes the closed-loop stability margin, with:

| "9, 1%, 9,
aw_ - ak a i , a == i i
" ? K" an <) 2 akIq an

(56)
Then it becomes:
2., aJ.
a =T”J , %k, =2 fw, - I (57)
P24, | oM,

J

The closed-loop performances are chosen with theetk2 poles of a second order transfer function
characterized by, 'w),, °C;, where:

da)nj is the desired natural frequency,
%7, is the desired damping coefficient.

Because the actual values are unknown, the gagnsadeulated from (57), where the unknown actual

values,’w;, °¢;, *J;, ""gij , are replaced respectively by their desired valﬂeﬁ,, de , and by their a

priori values,™J;,*g, :
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d ap
a - C% a - d d J;
kpj - 2 dZJ] ’ kvj - 2 Zj wnj ang (58)

T

where:
*J; and a"grj are a priori values of the actual unknown valtgsand agrj , respectively.
Now, let us consider the joint PD control of the simulated robot which is illeged Fig. 7.

pddn]

g o Taam 1 G Oy
— O oo
T J

Fig. 7. Joint PD control of the simulated robot.

Gddm

nlk

The variables(v,ddm » Taam Qoo O agmo @ dqr), in Fig. 7, are computed by numerical integratadn

DDM(%%), (21).

The control law of the simulated robot has the satnecture as the actual one, Fig. 6, where we take

a

9 :e‘pgij , the a priori value ofgij :
J, :3}‘ , the value ofJ, (51), calculated with the estimatigy , at iteration k.

K, » °k,, are the gains of the simulated control law.

They are calculated in order to keep the same pedoces for the simulated closed-loop and for the

actual closed-loop, that is to say to keep the sdestred values?'a)nj and de, for the closed-loop

poles. Then, it becomes:

dw Tk
S| _ nj _ a s — d d j
kpi_zdijj_k“ : k, = 27, a)m-ap'r (59)

The proportional gain?kpj , does not depend at all on the parameters vabueshe derivative gain in
the simulator 'k, , must be updated witﬁ}‘, at each iteratiork .

It is important to note that only the gain in themglated closed-loop?kvj, is modified during the
iterative procedure. The actual gain of the roloottiol law, ""kvj , I1s not modified.

The simulated closed-loop tuning given Bwnj, de , differs from the actual onég,, °¢; , with the
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following ratio, calculated by taking (58) into (56

w, . |® °g,
d o dZJ a : apg l (60)
@y ¢ J; 7o,

Usually this ratio is between 0.8 and 1.2. The @ctalues,’w,, °(;, can be estimated from step

i
response or frequency analysis of the actual clsmal But this is not necessary, because thelrtlés
effect on the identification accuracy, assumii”rg‘j, is regularly chosen more than 10 times greatar th
the frequency range of the robot dynamics.

This allows to keef{ Oy «)-Uaand ¥ 0,8 aek ¥ )7 (9,9,9) , at each iteration k.

We propose to take a regular inertia matdxq,,,x°) , in order to have a good initialization for the

numerical integration of the DDM (21) . This is nedrthe "regular initialization”.

It can be obtained with:
X°=0, except for,la) =1,j =1,n (61)
The inertia of the rotor and gear of actuajois generally taken into account in the IDM modgl &s:
T, = la; q
Then, the initial inertia matrix becomes the idgntnatrix, which is the best regular matrix:
M Qe X ) =1, (62)
Another simple regular initialization is to take:
X°=0, except for,ZZ! =1,j=1,n (63)
The initial inertia matrix,M (g,,,,X°), is no more the identity matrix, but remains regul
Another point is to choose the state initial coioditof the state vectorgy(0),844(0)) , in order to
integrate the DDM (21). Because DIDIM doesn't nt#eljoint position measurement, the actual values
(a(0),0(0)), are supposed to be unknown and we chofgg,.(0),0..(0)) =( d,(0),5,(0), which is
close to(q(O),q(O)). Because the closed-loop transient response diiffiécent initial conditions differs
between the actual and the simulated signals duitr@nsient period of approximately/ %w,, the

corresponding joint force/torque samples are elt@d from the identification data in (45).

V. CASE STUDY. MODELING OF THESCARAROBOT

The identification method is carried out on a 2redegpf-freedom planar direct drive prototype robot
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without gravity effect, shown in Fig. 8. This ditedrive prototype is very suitable for the study of
DIDIM because it emphasizes non linear couplingides while this non-linear effect is divided by at
least 2500 for industrial robots with gear rati@ger than 50. Moreover, the dynamic model of this
robot depends on eight parameters only, whichifatgk the study of the identification efficiencythw
respect to several conditions. At last, this rodad its real parameters, called the nominal parnset
are well known. Thus, we can check the physicalmmeggof the identified parameters.

The description of the geometry of the robot udes modified Denavit and Hartenberg (DHM)
notations [30] which are illustrated in Fig.9. Thabot is direct driven by 2 DC permanent magnet
motors supplied by PWM amplifiers.

09, ot 0
Fig. 8. The scara robot prototype. Fig. 9. DHMies of the scara robot.
The dynamic model depends on 8 minimal dynamicrpaters, considering 4 friction parameters:
x=[2z, Fv, Fq ZZ, LMX, LMY, Fy Fq’ (64)
Z22,,=2Z+ la+ M, 2
2Z,,= 72+ I3,

L=0.5m, is the length of the first link.
In the case of the SCARA robot, the parameteMX,, and LMY,, are identified instead ofMX, ,

and MY, respectively.

The 8 columns)DM ., k =1,8, of IDM (q,4,4), in IDIM (7), are the following:

This work has been submitted to the IEEE for pdegnblication. Copyright may be transferred
without notice, after which this version may noden be accessible p 20



0
IDM.; =IDM ., :{S'g%(q )} IDM ., =IDM , _ :El:gj,
i}
(26, +6 ) cosg -g (2g-"g sin
ql Cosq+ (j SimZ ,
~(24+¢ ) sing-q (2¢- 9 cosgj

|D|\/|:’1 =IDM 22, :|:q01i|' IDM ;,2:|DM oy :{O&}

IDM .5 =IDM =[ (65)

IDM.; =IDM =[ ¢ cosq-"q sing

0 0

IDM_, =IDM ¢, {qj’ IDM ; =IDM :[sign(q )}

The closed-loop control is a PD control law (538f¢ording to Fig. 6, with:

J, =722+ 2Z,,+2 LMX,, and J, = ZZ,...

The actual gains are calculated with (58), takingsired damping‘f(j =1, for joint 1 and joint 2.

The desired natural frequenc‘ﬂwnj, is chosen according to the driving capacity withsaturation of
the joint drive. For this robot we obtain a fulligavidth with, ‘) =1rd /s, and“«y; =10rd s.

The sample rates of the control and of the measemeare equal tof ,=200Hz.

Torque data are obtained from (54), and from threcoti reference date, .

The simulation of the robot is carried out with 8@me reference trajectory and with the same dontro
law structure as the actual robot.

The gains in the simulator are calculated with (&8l with the same values'{; =1, “a, =1rd/s,

and‘w, =10rd 5.

VI. EXPERIMENTAL IDENTIFICATION RESULTS

The new identification process is performed ineti#nt cases in order to compare the previous IDIM
technique to the new DIDIM technique and to in\gte the robustness of DIDIM with respect to the
initialization, to the acquisition sampling rate,the data filtering and to the closed-loop tuning.

All the results are given in Sl units, on the jaide.

A. Comparison of IDIM and DIDIM with good initial vaés, y°= "™ .

At first, the algorithm is initialized with ™™™ , the vector of parameters identified with the IDLU@

estimator.
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The IDIM LS off-line estimation is carried out withfiltered positionq, calculated with a 20Hz cut-

off frequency forward and reverse Butterworth fill@nd with the velocitie§|, and the accelerationé,,

calculated with a central difference algorithmdpf The parallel decimation of,, and W

fm?

in (10), is
carried out with a sample rate divided by a factgr20, and a lowpass filter cut-off frequency equal
to, 0.8*,./(2*n,)=4Hz.

The results are given in Table 1. It needs onlyepsto obtain the optimal solution which is very
close to the IDIM solution. Hence, the DIDIM methddes not improve the IDIM solution calculated
with good bandpass filtered data.

A validation is plotted on Fig. 10, at the frequgmeeasurementf =200Hz. It shows that the actual

joint torques, Y, (z), and the torques estimated with the identified efod
Y, =V\{,fm( Charm » U ','qddmf(z) X?, as defined in (45), (46), (47), are very close.

Both methods give a small relative norm ertft~ W/ /| Y| <3%, which shows a good accuracy for

the model and for the identified values.

It can be seen that the parametery,, and Fv,, have no significant estimations because of their

large relative standard deviation (>30%). They haoesignificant contribution in the joint torquesda
they can be cancelled to keep a set of essentiaheers of a simplified dynamic model, withoutslos
of accuracy [31].

However, we prefer to keep all the parametersienfollowing, for a better comparison of IDIM and
DIDIM identification methods.
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TABLE 1: COMPARISON OHDIM AND DIDIM METHODS

IDIM DIDIM
Parameter )"(IDIM 2 G}( %Gir )"(0 =)"(IDIM )"(2 2 G}( 0/06acr
ZZ1R 3.44 0.034 0.5 3.44 3.45 0.036 0.52
Fv, 0.03 0.031 52. 0.03 0.04 0.032 40.0
Fc, 0.82 0.1 6.0 0.82 0.82 0.05 3.0
Z7Z, 0.062 0.0006 0.5 0.062 0.061 0.0006 0.49
LMX, 0.121 0.0014 0.5 0.121 0.124 0.0013 0.52
LMY, 0.007 0.0007 5.0 0.007 0.007 0.0005 3.5
Fv, 0.013 0.006 23. 0.013 0.014 0.0084 30/0
Fc, 0.137 0.006 2.3 0.137 0.133 0.0080 3.0
Y —wWx™™| /| Y|=0.024 | %7 /| Y|=0.021
- — - -Measurement: Yfm Joirt 1 Joint 2
Estimation: Ye Lo | Co 1 N S — [
150 — — Error=Yim-ve ‘ - - Z;ﬁ:r:ge:; Yfm | | i !
— —Emor=Yfm-ve ! ! | !
0 L — .TL ,,,,,, [NAET A v
E s E : ' \ﬁ“ % iw i J\‘
H 3 oum Ly w LT W ‘,» ,\n ol
- g Mf W Lk W‘ H tﬁ W ';M
o 2 | W | |
2 s OO\ VI SR Y 20" RV (N A
\ R ": &
-10 I | | | ]
L Lol Ao o L
: | e
40‘00 45‘00 50‘00 55‘00 60‘00

Sample number Sample number

Fig. 10. DIDIM, validation,Y, =W, . ( Gy Cgm tand ) X
B. DIDIM, validation of the regular initializationM (g, X°)=1,

The robustness of DIDIM with respect to a wronigatization, such as the regular initializatior2§6

is investigated.

The initial values of the dynamic parameters avemioy (61), with:
X¥=[1 001000 ¢

The identified values given in Table 2, are vemysel to those given in Table 1. This result valislate
the regular initialization procedure , describedéction 1V.B.

Moreover the algorithm converges in only 3 steps iamot time consuming.
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TABLE 2: DIDIM WITH THE REGULAR INITIALIZATION

Parameter ° ¥ 20, %o,
ZZ1R 1 3.45 0.014 0.2
Fv, 0 0.02 0.012 15
Fc, 0 0.85 0.016 1.0
Z7, 1 0.061 0.0001; 0.1
LMX, 0 0.124 | 0.0002 0.1
LMY, 0 0.007 0.0003 2.0
Fv, 0 0.01 0.003 10
Fc, 0 0.132 0.0008 0.3

The relative norm errors on joint position, velgc#nd acceleration are plotted in Fig.11 ,with the

following legend:
* norm error relative to the actual filtered joirgsgtion, qudm —f:]jH /Hiqju, velocity ”qddn] —file /“?qj“,
and acceleratiod‘qddm - a]H /th“ Where(Q,Aqfq), are calculated as given in section VI.A.

/ , and

* norm error relative to the reference joint pasiti Hqc!dm - qg” / o velocity, quidm AR

accelerationuqddm -4, H /

4
The assumption (40), made in section IV(Bugn(¥ ), Geanl ¥ -8 aak X 2) (6121 Aq) at each iteration

k, is confirmed on Fig.11. , with a constant relathorm error close to 0.5% for the position, 58&6,the
velocity and 10%, for the acceleration.
These results validate the updating procedure (8%he simulated PD control law gains.

It can be seen also on Fig.11. , that the simultggelctory, (Oym( Xy ):Qaanl ¥ .8 sk ), IS 3105

times closer to the actual or(e“q 4 h) , than to the reference onf, ,¢ ), with a relative norm error

close to 1.5% for the position, 15%, for the vetp@nd 30%, for the acceleration. Moreover, thierer

depends on the closed-loop bandwidth. It meanscthraputing the observation matrix in (13) with the

reference trajector;(,qr Kol q) , leads to a bad identification of the dynamic paaters.

Then, the right assumption iq.( % «),Gaan( X 058 sk X )/ (6121 Aq) (40), made in section 1V.B.
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Fig.11.» norm error relative to the filtered actual positigelocity, acceleration.

* norm error relative to the reference posit velocity, acceleration.

We have seen thdtlyy( %) Qaad ¥ 0,8 aad X 2) (qﬁ Aq) at each iteration k, with a constant small

error. On the contrary, the relative torque nornmorergiven in Table 3, and plotted on Fig. 12,

dramatically decreases in only 3 steps. This shtbedast algorithm convergence.

TABLE 3: RELATIVE NORM ERROR OF JOINT TORQuE”Yj -W ¥ || /|| Y! ||

Iterationk | O 1 2 3
Jointj=1 | 0.42| 0.036| 0.02| 0.018
Jointj=2 | 3.20| 0.110| 0.02| 0.022

Relative error: Joint torque 1
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Fig. 12. DIDIM, convergence of the joint torquec&rr”Yj -W ¥*

/]
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The fast convergence of each parameter is showabike 4 , and is plotted on Fig. 13.

TABLE 4: PARAMETERS CONVERGENCE
Parameters )‘(0 )*(1 )‘(2 )‘(3
ZZ1r 1 3.46 | 3.45| 3.45

Fv, 0 | 0.04] 002 0.02
Fc, 0O | 0.86| 0.85| 0.85
ZZ, 1 | 0.06| 0.061 0.061
LMX, 0 | 0.122|0.124| 0.124
LMY, 0O | 0.05| 0.07| 0.07
Fv, 0 | 0.005H 0.01| 0.01
Fc, 0 |0.130]0.132[ 0.132
4 ; ; 0.04 . \
® [ ] ® I |
gt , .
gz 777777 I B Eo.oz———————: —————— ‘# ————— )
2 1 2 3 g 1 2 3
1 ; ; 1 \
¢ it i l l
Bosr-——--4------F--——-——- Nosr--—---4------F--—--—+
g : Z s % P 2 3
02 ; 01 ‘ \
gm———————’: —————— :,———————“ %'o.os —————— ; —————— .}———————“
S 1 2 3 g 1 2 3
0.01 ; . 02 \
VR DR A R bttt
J 1 > 3 J 1 2 3
lterations Iterations

Fig. 13. DIDIM, parameters convergence
C. Comparison of IDIM and DIDIM robustness with respica low sample rate.

The actual torque and the simulated data are rdednp obtain a low frequency measuremépt

0.5Hz. This is a downsample procedure without I@gpantialiasing filtering which investigates a real

problem on industrial robots where the available@a rate measurement given by the controller may

be much lower than the control sample rate. Allabeial and simulated data are sampled, & 0.5Hz.
The IDIM LS estimation is carried out with the mesesi joint positionq, and With(a,ﬁ), calculated

by a central difference algorithm af, without lowpass Butterworth filtering. There i® mparallel
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decimation. DIDIM starts with the regular initiadizon. Results are given in Table 5 .

TABLE 5:IDIM AND DIDIM, LOW SAMPLING RATE, f_=0.5Hz.

IDIM DIDIM
Parametef §'°™ 20, %o, x° X 20, %o,
ZZir | 3.10 0.03 0.3 1.0 3.45 0.04 0.5
Fv, 0.9 18 100 0 0.04 0.02 30
Fe, 1.0 0.1 5 0 0.81 0.05 3
zz, | 0.025| 0.003 5.5 1.0 0.061 0.0006 0.5
LMX, | 0.075 |  0.008 5.3 0 0.124 0.001 05
LMY, | -0.02 0.01 250 0 0.008 0.0006 4.0
Fv, 0.35 5.6 800 0 0.01 0.005 25
Fc, 0.19 0.087 23 0 0.13 0.008 3.0
Y -wx™ | /] Y|=0.5 [y -wx?| /] ¥|=0.04

The identified values with IDIM are not good whtlee identified values with DIDIM are still good.

This shows the robustness of DIDIM with respedt® sampling rate measurement.

IDIM fails because there is an amplitude distortionthe estimation of(fqﬁ) with a central

difference ofq, sampled at a too low frequendy. This point is illustrated in Table 6, which givite
relative norm errors on velocity (80%) and accdiera(80%).

(a(ZOOHz), a(ZOOHz), is calculated fronq, sampled at 200Hz and lowpass filtered at a 0.6z
off frequency, and derived with a central differeragorithm.
(E](O.SHZ), E}(O.SHZ), is calculated frong, sampled at 0.5Hz and derived with a central dhffee

algorithm.
DIDIM succeeds becausfgg,daam taar) » IS COMputed with accuracy by the integrationhef tDDM

with a well-tuned variable step solver, and it barsampled without error at any frequentgy
TABLE 6:1DIM, JOINT DATA ERRORS AT f_ =0.5Hz

¢,(200H2)- ¢ (0.5HZ) /| &, (200H7, | 0-39

4, (200Hz)- &, (0.5H4}/ ¢ (200HZ) | 0-73

az(ZOOHZ)-E]z(O.SHz[}/ &, (200H4 | 0-80

8,(200Hz)- &, (0.5HZ) /| &, (200H7 | 0-81
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D. Comparison of IDIM and DIDIM, without data filieg.

All the actual and simulated data are sampled &t 200Hz.

by a central difference algorithm af, without lowpass Butterworth filtering. There n® parallel

decimation. DIDIM starts with the regular initisdizon. Results are given in Table 7.

TABLE 7:IDIM AND DIDIM ESTIMATION WITHOUT DATA FILTERING

The IDIM LS estimation is carried out with the mesesl joint positiong, and with(a,ﬁ), calculated

IDIM DIDIM
Parameter | 3P 20, %o;, x° X’ 20, %o
ZZir 1.50 0.05 1.60 1.0 3.45 0.007 0.1
Fv, 0.095 0.15 80.0 0 0.05 0.023 21
Fc, 0.55 0.26 23.3 0 0.81 0.004 0.24
zZ, 0.14 0.018 6.7 1.0, 0.061 0.0004 0.3
LMX, 0.63 0.035 2.7 0 0.124 0.0015 0.3
LMY, 0.1 0.023 11.8 0 0.008 0.0009 5.6
Fv, 0.001 0.143 700.0 0 0.023 0.0022 48
Fc, 0.19 0.244 68.40 0 0.13 0.0038 1.5
Iy -wg™ | /] ¥|=0.8 Iy -wy?| /] Y|=0.08

The identified values with IDIM are not good whilee identified values with DIDIM are still good.

IDIM fails because of the too large noise in theservation matrix,me(q,A'le'(), coming from the
derivation ofq, without lowpass filtering. Then the LS estimatisrbiased.

DIDIM succeeds because the observation ma‘m;gm(addm Oy ,"qddmj("), is calculated without noise
with the simulated valuefy,, Gugm: daar) -

This validation shows that DIDIM cancels the biasIDIM estimation, coming from a noisy

estimation of(q,ﬁfq), which gives a too noisy observation mam(qquq.
E. DIDIM robustness with respect to error in the siatedd closed-loop tunind\w,

This section investigates the effect of an errdwken the actual valuée,, and the simulated value

e, , of the natural frequency which represents theed-loop bandwidth.
The DIDIM identification is performed taking halfi¢ values of the full ones given in section V,

‘@, = °w, /2=1/2 (rd/s’ and “w, = ", / 2=10/2 (rd/s, and the same procedure used to obtain results
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shown in Table 2, that is to say a frequency measeant, f =200Hz, and a parallel decimation with a

factor, n;=20, and a lowpass filter cut-off frequency equadiHz.

The parameters, given in Table 8, converge in én$geps to values which are very close to those

obtained in Table 2, with a full closed-loop bandili

TABLE 8: DIDIM, WITH SIMULATED HALF FULL BANDWIDTH , ‘@), = %@ /2

Parameter ° i° 20, %%
ZZ1r 1 3.44 0.014 0.2
Fv, 0 0.02 0.012 15
Fc, 0 0.86 0.016 1.0
zZ, 1 0.060 0.0001 0.1
LMX, 0 0.124 0.0002 0.1
LMY, 0 0.007 0.0003 2.0
Fv, 0 0.01 0.003 10
Fc, 0 0.13 0.0008, 0.3

The relative norm errors on joint position, velgcind acceleration are plotted on Fig. 14, with the

same legend as those given for Fig.11, section.VI.B

It can be seen thafO,( % «):Gaanl X .8 aad X 2) (qa Aq) at each iteration k, with a constant norm

error larger but close to the value obtained wita full bandwidth, Fig.11, close to, 0.5% for the

position, 5%, for the velocity and 10%, for the élecation.
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The relative torque norm error, given in Table 8¢ glotted in Fig. 15, decreases in 6 steps, only
twice more than with the full bandwidth, Table 33.FL2. This shows that DIDIM is not very sensitive

to error in the simulated closed-loop bandwidtlovated the control law structure is known.

However, DIDIM fails beyond 1/3 of the full banduiid with ‘c, < ‘@ / 3.

TABLE 9:; RELATIVE NORM ERROR OF JOINT TORQU,E”Yj —Wij(k|| /|| Y || FULL BANDWIDTH/2

Iterationk | O 1 2 3 4 5 6
Jointj=1 | 0.6] 0.05| 0.06| 0.04| 0.025| 0.02| 0.02
Jointj=2 | 3.0/ 0.11| 0.05| 0.02| 0.025| 0.02| 0.02

Relative error: Joint torgue 1
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Fig. 15. DIDIM, convergence of the joint torquecnrlﬂYi -W ¥~

v
VII. CONCLUSION

This paper deals with a new off-line identificatitechnique of robot dynamic parameters, called
DIDIM for Direct and Inverse Dynamic Identificatidlodels technique. This method is a closed-loop
Output Error approach, but considering the outpuitad more the joint position but the joint forcedue.
The optimal parameters are the solution of a noeali least-squares problem which is solved with a
Gauss-Newton method. Each step of the iterativecgahare of the Gauss-Newton regression is
dramatically simplified to a linear regression whis solved with the Inverse Dynamic Identification
Model technique (IDIM). Then, DIDIM mixes the clas@®op OE technique and the IDIM technique.

DIDIM needs a closed-loop simulation of the robaing the direct dynamic model (DDM) and
assuming the same structure of the control lawthedame reference trajectory for both the actodl a
the simulated robot. Then, it needs to initialize parameters and the state vector of the DDM.

The difficulties for the choice of the initial caitidns for non-linear LS problem are overcome vath
"regular initialization" of the parameters and grdating of the control law gains at each step ef th

iterative procedure. The initial state is giventhg initial values of the reference trajectory.
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An experimental validation is carried out on a 2 mot. The following points were checked:

» DIDIM gives the same results as IDIM, provided welhed data filtering for IDIM, adapted to the
system dynamics,

* DIDIM is robust to the initialization of both paraters and state,

* DIDIM is robust to the closed-loop performancesing errors between the simulated and the
actual closed-loop robot, provided the same colfdrelstructure.

Compared to IDIM, DIDIM technique is particularlitractive thanks to the following reasons:

* It needs only the actuator force/torque measureregstimation,

* It avoids tuning the bandpass filter in the IDIMtiveed by using the integration of the DDM in a
closed-loop simulation where the tuning of the haidth automatically defines the same frequency
range for the dynamics of the actual system antleomodel to be identified,

e |t cancels bias in IDIM due to errors in bandpaktering data, or no filtering at all, or too low
frequency measurement,

» It combines the inverse and the direct dynamic rheae validates, in the same identification
procedure, both models for computed torque coratndl for simulation. Up to now, the DDM was
validateda posterioriin simulation.

Future work concerns the validation of DIDIM on d& industrial robot.
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