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SOMEKAWA’S K-GROUPS AND VOEVODSKY’S HOM
GROUPS (PRELIMINARY VERSION)

BRUNO KAHN

Abstract. We construct a surjective homomorphism from So-
mekawa’s K-group associated to a finite collection of semi-abelian
varieties over a perfect field to a corresponding Hom group in Vo-
evodsky’s triangulated category of effective motivic complexes.
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1. Introduction

In this note, we construct an epimorphism

(1.1) K(k;G1, . . . , Gn) −→→ Hom
DM

eff
−
(Z, G1[0]⊗ · · · ⊗Gn[0])

where k is a perfect field, G1, . . . , Gn are semi-abelian k-varieties, the
left-hand-side is the abelian group defined by K. Kato and studied by
M. Somekawa in [6] and on the right hand side, the tensor product
G1[0] ⊗ · · · ⊗ Gn[0] is computed in Voevodsky’s triangulated category
of effective motivic complexes [11] or alternately in his category of
homotopy invariant Nisnevich sheaves with transfers (ibid.). This has
been announced in [8, Rk 10 (b)] and is used in [13, Th. 3.9].
I expect (1.1) to be bijective. This would provide an affirmative

answer to a version of Somekawa’s expectation in the introduction of
his paper (probably the closest answer, as long as one does not have

Date: September 22, 2010.
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2 BRUNO KAHN

an abelian category of mixed motives at hand). The method I have in
mind to prove injectivity involves defining a group

K−1(k;G1, . . . , Gn)

modelled on Voevodsky’s construction (−)−1 on sheaves. However the
construction of this group appears more subtle than I initially thought,
so I felt it might be useful to already release this much of the story.
Recall thatK(k;G1, . . . , Gn) is defined as a quotient of a larger group

(G1

M
⊗ . . .

M
⊗Gn)(k)

where
M
⊗ is computed in the category of cohomological Mackey functors

[3]. Our strategy will be as follows:

(1) Construct a surjective homomorphism

(1.2) (G1

M
⊗ . . .

M
⊗Gn)(k)→ Hom

DM
eff
−
(Z, G1[0]⊗ · · · ⊗Gn[0]).

This is achieved in §§2.12 and 3.6.
(2) Show that (1.2) factors through the Kato-Somekawa relations,

yielding (1.1). This is achieved in Theorem 5.1.

I wish to thank Takao Yamazaki for his interest and encouragement
to pursue this work.

2. Mackey functors and presheaves with transfers

2.1. A Mackey functor over k is a contravariant additive (i.e., commut-
ing with coproducts) functor A from the category of étale k-schemes
to the category of abelian groups, provided with a covariant structure
verifying the following exchange condition: if

Y ′ f ′

−−−→ Y

g′





y

g





y

X ′ f
−−−→ X

is a cartesian square of étale k-schemes, then the diagram

A(Y ′)
f ′∗

−−−→ A(Y )

g′∗





y

g∗





y

A(X ′)
f∗

−−−→ A(X)

commutes. Here, ∗ denotes the contravariant structure while ∗ denotes
the covariant structure. The Mackey functor A is cohomological if we
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further have

f∗f
∗ = deg(f)

for any f : X ′ → X , with X connected. We denote by Mack the
abelian category of Mackey functors, and byMackc its full subcategory
of cohomological Mackey functors.

2.2. Classically [9, (1.4)], a Mackey functor may be viewed as a con-
travariant additive functor on the category Span of “spans” on étale
k-schemes, defined as follows: objects are étale k-schemes. A morphism
from X to Y is an equivalence class of diagram (span)

(2.1) X
g
←− Z

f
−→ Y.

Composition of spans is defined via fibre product in an obvious man-
ner. If A is a Mackey functor, the corresponding functor on Span has
the same value on objects, while its value on a span (2.1) is given by
g∗f

∗.
Note that Span is a preadditive category: one may add (but not

substract) two morphisms with same source and target. We may as
well view a Mackey functor as an additive functor on the associated
additive category ZSpan.

2.3. Let Cor be Voevodsky’s category of finite correspondences on
smooth k-schemes, denoted by SmCor(k) in [11, §2.1]. The category
ZSpan is isomorphic to its full subcategory consisting of smooth k-
schemes of dimension 0 (= étale k-schemes). In particular, any presheaf
with transfers in the sense of Voevodsky [11, Def. 3.1.1] restricts to a
Mackey functor over k. By [10, Cor. 3.15], the restriction of a homo-
topy invariant presheaf with transfers yields a cohomological Mackey
functor. In other words, we have exact functors

ρ : PST→Mack(2.2)

ρ : HI→Mackc(2.3)

where PST denotes the category of presheaves with transfers (con-
travariant additive functors from Cor to abelian groups) and HI is
its full subcategory consisting of homotopy invariant presheaves with
transfers.

2.4. There is a tensor product of Mackey functors
M
⊗, originally de-

fined by L. G. Lewis (unpublished): it extends naturally the symmet-
ric monoidal structure (X, Y ) 7→ X ×K Y on ZSpan via the additive

Yoneda embedding (see §A.6). If either A or B is cohomological, A
M
⊗B

is cohomological.
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This tensor product is the same as the one defined in [3]: this follows
from (A.2) and the fact that ZSpan is rigid, all objects being self-dual
(indeed, ZSpan is canonically isomorphic to the category of Artin
Chow motives with integral coefficients).

2.5. There is a tensor product on presheaves with transfers defined
exactly in the same way [11, p. 236].

2.6. By definition, the functor (2.2) equals i∗, where i is the inclusion
ZSpan → Cor. This inclusion has a left adjoint π0 (scheme of con-
stants). Both functors i and π0 are symmetric monoidal: for π0, reduce
to the case where k is separably closed.

2.7. By §§A.2 and A.8, this implies that (2.2) is symmetric monoidal.
In other words, if F and G are presheaves with transfers, then

(2.4) ρF
M
⊗ ρG ≃ ρ(F ⊗PST G).

2.8. The inclusion functor HI → PST has a left adjoint h0, and the
symmetric monoidal structure of PST induces one on HI via h0. In
other words, if F ,G ∈ HI, we define

(2.5) F ⊗HI G = h0(F ⊗PST G).

Note that (2.3) is not symmetric monoidal (since it is the restriction
of (2.2)).

2.9. For any F ∈ PST, the unit morphism F → h0(F) induces a
surjection

F(k)→ h0(F)(k).

This is obvious from the formula h0(F) = Coker(C1(F)→ F).

2.10. We shall also need to work with Nisnevich sheaves with transfers.
We denote by NST the category of Nisnevich sheaves with transfers
(objects of PST which are sheaves in the Nisnevich topology). By
[11, Th. 3.1.4], the inclusion functor NST → PST has an exact left
adjoint F 7→ FNis (sheafification). The category NST then inherits a
tensor product by the formula

F ⊗NST G = (F ⊗PST G)Nis.

Similarly, we define HINis = HI∩NST. The sheafification functor
restricts to an exact functor HI → HINis [11, Th. 3.1.11], and HINis

gets a tensor product by the formula

F ⊗HINis
G = (F ⊗HI G)Nis.
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To summarise, all functors in the following commutative diagram are
symmetric monoidal:

(2.6)

PST
Nis
−−−→ NST

h0





y

hNis
0





y

HI
Nis
−−−→ HINis .

where each functor is left adjoint to the corresponding inclusion.

2.11. Let F be a presheaf on Sm/k, and let FNis be the associated
Nisnevich sheaf. Then we have an isomorphism

(2.7) F(k)
∼
−→ FNis(k).

Indeed, any covering of the Nisnevich topology on Spec k refines to
a trivial covering. In particular, the functor F 7→ FNis(k) is exact.
This applies in particular to a presheaf with transfers and the asso-

ciated Nisnevich sheaf with transfers.

2.12. If G is an abelian k-group scheme whose identity component is a
quasi-projective variety, then G has a canonical structure of Nisnevich
sheaf with transfers ([7, proof of Lemma 3.2] completed by [1, Lemma
1.3.2]). This applies in particular to semi-abelian varieties. In partic-
ular, if G1, . . . , Gn are semi-abelian varieties, (2.4) yields a canonical
isomorphism

(2.8) (G1

M
⊗ . . .

M
⊗Gn)(k) ≃ (G1 ⊗PST · · · ⊗PST Gn)(k)

where the Gi are considered on the left as Mackey functors, and on the
right as presheaves with transfers.
Since the Gi are semi-abelian varieties, they are homotopy invariant.

Therefore, composing (2.8) with the unit morphism Id ⇒ hNis
0 from

(2.6) and taking (2.5) into account, we get a canonical morphism

(2.9) (G1

M
⊗ . . .

M
⊗Gn)(k)→ (G1 ⊗HINis

· · · ⊗HINis
Gn)(k).

which is surjective by §2.9.

3. Preseheaves with transfers and motives

3.1. The left adjoint hNis
0 in (2.6) “extends” to a left adjoint C∗ of the

inclusion

DMeff
− → D−(NST)

where the left hand side is Voevodsky’s triangulated category of effec-
tive motivic complexes [11, §3, esp. Prop. 3.2.3].
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More precisely, DMeff
− is defined as the full subcategory of objects

of D−(NST) whose cohomology sheaves are homotopy invariant. The
canonical t-structure ofD−(NST) induces a t-structure onDMeff

− , with
heart HINis. The functor C∗ is right exact with respect to these t-
structures, and if F ∈ NST, then H0(C∗(F)) = hNis

0 (F).

3.2. The tensor structure of §2.10 onNST extends to one onD−(NST)
[11, p. 206]. Via C∗, this tensor structure descends to a tensor struc-
ture on DMeff

− [11, p. 210], which will simply be denoted by ⊗. The
relationship between this tensor structure and the one of §2.10 is as
follows: is F ,G ∈ HINis, then

(3.1) F ⊗HINis
G = H0(F [0]⊗ G[0])

where F [0],G[0] are viewed as complexes of Nisnevich sheaves with
transfers concentrated in degree 0.
We shall need the following lemma, which is not explicit in [11]:

3.3. Lemma. The tensor product ⊗ of DMeff
− is right exact with respect

to the homotopy t-structure.

Proof. By definition,

C ⊗D = C∗(C
L
⊗D)

for C,D ∈ DMeff
− , where

L
⊗ is the tensor product of D−(NST) defined

in [11, p. 206]. We want to show that, if C and D are concentrated
in degrees ≤ 0, then so is C ⊗D. Using the canonical left resolutions
of loc. cit., it is enough to do it for C and D of the form C∗(L(X))
and C∗(L(Y )) for two smooth schemes X, Y . Since C∗ is symmetric
monoidal, we have

C∗(L(X))⊗ C∗(L(Y ))
∼
←− C∗(L(X)

L
⊗L(Y )) = C∗(L(X × Y ))

and the claim is obvious in view of the formula for C∗ [11, p. 207]. �

3.4. Let C ∈ DMeff
− . For any X ∈ Sm/k and any i ∈ Z, we have

H
i
Nis(X,C) ≃ Hom

DM
eff
−
(M(X), C[i])

where M(X) = C∗(L(X)) is the motive of X computed in DMeff
− (cf.

[11, Prop. 3.2.7]).
Specialising to the case X = Spec k (M(X) = Z) and taking §2.11

into account, we get

(3.2) Hom
DM

eff
−
(Z, C[i]) ≃ H i(C)(k).

Combining (3.1), (2.7) and (3.2), we get:
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3.5. Lemma. Let F1, . . . ,Fn be homotopy invariant Nisnevich sheaves
with transfers. Then we have a canonical isomorphism

(F1 ⊗HINis
· · · ⊗HINis

Fn)(k) ≃ Hom
DM

eff
−
(Z,F1[0]⊗ · · · ⊗ Fn[0]).

�

3.6. Combining Lemma 3.5 with (2.9), we get the announced homo-
morphism (1.2). However, we shall mainly work with presheaves with
transfers in the sequel, hence use (2.9) rather than (1.2).

4. Presheaves with transfers and local symbols

4.1. Given a presheaf with transfers G, recall from [10, p. 96] the
presheaf with transfers G−1 defined by the formula

G−1(U) = Coker
(

G(U ×A1)→ G(U × (A1 − {0}))
)

.

Suppose that G is homotopy invariant. Let X ∈ Sm/k (connected),
K = k(X) and x ∈ X be a point of codimension 1. By [10, Lemma
4.36], there is a canonical isomorphism

(4.1) G−1(k(x)) ≃ H1
x(X,GZar)

yielding a canonical map

(4.2) ∂x : G(K)→ G−1(k(x)).

The following lemma follows from the construction of the isomor-
phisms (4.1). It is part of the general fact that G defines a cycle module
in the sense of Rost (cf. [2, Prop. 5.4.64]).

4.2. Lemma. a) Let f : Y → X be a dominant morphism, with Y
smooth and connected. Let L = k(Y ), and let y ∈ Y (1) be such that
f(y) = x. Then the diagram

G(L)
(∂y)
−−−→ G−1(k(y))

f∗

x





ef∗

x





G(K)
∂x−−−→ G−1(k(x))

commutes, where e is the ramification index of vy relative to vx.
b) If f is finite surjective, the diagram

G(L)
(∂y)
−−−→

⊕

y∈f−1(x)

G−1(k(y))

f∗





y

f∗





y

G(K)
∂x−−−→ G−1(k(x))
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commutes. �

4.3. Proposition. Let G ∈ HINis. There is a canonical isomorphism

G−1 = Hom(Gm,G).

Proof. This may not be the most economic proof, but it is quite short.
The statement means that G−1 represents the functor

H 7→ HomHINis
(H⊗HINis

Gm,G).

By [10, Lemma 4.35], we have

G−1 = Coker(G → p∗p
∗G)

where p : A1−{0} → Spec k is the structural morphism and p∗, p
∗ are

computed with respect to the Zariski topology. By [10, Th. 5.7], we
may replace the Zariski topology by the Nisnevich topology. Moreover,
by [10, Prop. 5.4 and Prop. 4.20], we have Rip∗p

∗G = 0 for i > 0,

hence p∗p
∗G[0]

∼
−→ Rp∗p

∗G[0].
By [11, Prop. 3.2.8], we have

Rp∗p
∗G[0] = Hom(M(A1 − {0}),G[0])

where Hom is the (partially defined) internal Hom of DMeff
− . By [11,

Prop. 3.5.4] (Gysin triangle) and homotopy invariance, we have an
exact triangle, split by any rational point of A1 − {0}:

Z(1)[1]→M(A1 − {0})→ Z
+1
−→

To get a canonical splitting, we may choose the rational point 1 ∈
A1 − {0}.
By [11, Cor. 3.4.3], we have an isomorphism Z(1)[1] ≃ Gm[0]. Hence,

in DMeff
− , we have an isomorphism

G−1[0] ≃ Hom(Gm[0],G[0]).

Let H ∈ HINis. We get:

Hom
DM

eff
−
(H[0],G−1[0]) ≃ Hom

DM
eff
−
(H[0]⊗Gm[0],G[0])

≃ HomHINis
(H0(H[0]⊗Gm[0]),G) =: HomHINis

(H⊗HINis
Gm,G)

as desired (see (3.1)). For the second isomorphism, we have used the
right exactness of ⊗ (Lemma 3.3). �

4.4. Remark. The proof of Proposition 4.3 also shows that, in DMeff
− ,

we have an isomorphism

Hom(Gm[0],G[0]) ≃ Hom(Gm,G)[0]
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where the left Hom is computed in DMeff
− and the right Hom is com-

puted in HINis. In particular, Hom(Gm[0],−) : DMeff
− → DMeff

− is
t-exact.

4.5. Proposition. Let C be a smooth, proper, connected curve over k,
with function field K. There exists a canonical homomorphism

TrC/k : H
1
Zar(C,G)→ G−1(k)

such that, for any x ∈ C, the composition

G−1(k(x)) ≃ H1
x(C,G)→ H1

Zar(C,G)
TrC−→ G−1(k)

equals the transfer map Trk(x)/k associated to the finite surjective mor-
phism Spec k(x)→ Spec k.

Proof. By [11, Prop. 3.2.7], we have

H1
Zar(C,G)

∼
−→ H1

Nis(C,G) ≃ Hom
DM

eff
−
(M(C),G[1]).

The structural morphism C → Spec k yields a morphism of motives
M(C)→ Z which, by Poincaré duality, yields a canonical morphism

Gm[1] ≃ Z(1)[2]→M(C).

(One may view this morphism as the image of the canonical mor-
phism L→ h(C) in the category of Chow motives.)
Therefore, by Proposition 4.3 and Remark 4.4, we get a map

TrC/k : H1
Zar(X,G)→ Hom

DM
eff
−
(Gm[1],G[1]) = G−1(k).

It remains to prove the claimed compatibility. Let Mx(C) be the
motive of C with supports in x, defined as C∗(Coker(L(C − {x}) →
L(C)). Let Zk(x) = M(Spec k(x)). By [11, proof of Prop. 3.5.4], we
have an isomorphism Mx(C) ≃ Zk(x)(1)[2], and we have to show that
the composition

Z(1)[2]→M(C)
gx
−→ Zk(x)(1)[2]

is Trk(x)/k, up to twisting and shifting. To see this, we observe that gx
is the image of the morphism of Chow motives

h(C)→ h(Spec k(x))(1)

dual to the morphism h(Spec k(x)) → h(C) induced by the inclusion
Spec k(x) → C: this is easy to check from the definition of gx in [11]
(observe that in this special case, Blx(C) = C and that we may use a
variant of the said construction replacing C × A1 by C × P1 to stay
within smooth projective varieties). The conclusion now follows from
the fact that the composition

Spec k(x)→ C → Spec k
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is the structural morphism of Spec k(x). �

4.6. Proposition (Reciprocity). Let C be a smooth, proper, connected
curve over k, with function field K. Then the sequence

G(K)
(∂x)
−−−→

⊕

x∈C G−1(k(x))
∑

x Trk(x)/k
−−−−−−−→ G−1(k)

is a complex.

Proof. This follows from Proposition 4.5, since the composition

G(K)→
⊕

x∈C

H1
x(C,G)

gx
−→ H1(C,G)

is 0. �

4.7. If F ,G are presheaves with transfers, there is a bilinear mor-
phism of presheaves with transfers (i.e. a natural transformation over
PST×PST):

F(U)⊗ G−1(V ) =

Coker
(

F(U)⊗ G(V ×A1)→ F(U)⊗ G(V × (A1 − {0}))
)

→

Coker
(

(F ⊗PST G)(U × V ×A1)→ (F ⊗PST G)(U × V × (A1 − {0}))
)

= (F ⊗PST G)−1(U × V )

which induces a morphism

(4.3) F ⊗PST G−1 → (F ⊗PST G)−1.

In particular, for G = Gm, we get a morphism F → (F⊗PSTGm)−1.

4.8. Theorem. Suppose F ∈ HINis. Then
a) The composition

F → (F ⊗PST Gm)−1 → (F ⊗HINis
Gm)−1

is the unit map of the adjunction between −⊗HINis
Gm and (−)−1 stem-

ming from Proposition 4.3.
b) This composition is an isomorphism.

Proof. a) is an easy bookkeeping. For b), we compute again in DMeff
− .

By Proposition 4.3, we are considering the morphism in HINis

(4.4) F → Hom(Gm,F ⊗HINis
Gm).

Consider the corresponding morphism in DMeff
−

F [0]→ Hom(Gm[0],F [0]⊗Gm[0]).

As recalled in the proof of Proposition 4.3, we have Gm[0] = Z(1)[1],
hence the above morphism amounts to

F [0]→ Hom(Z(1),F [0](1))
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which is an isomorphism by the cancellation theorem [12]. A fortiori,
(4.4), which is (by Remark 4.4) the H0 of this isomorphism, is an
isomorphism. �

4.9. Notation. Let F ,G ∈ HINis and H = F ⊗HINis
G. Let X,K, x be

as in §4.1. For (a, b) ∈ F(K)× G(K), we denote by a · b the image of
a⊗ b in H(K) by the map

F(K)⊗ G(K)→ H(K).

4.10. Proposition (cf. [2, Prop. 5.5.27]). Let F ,G ∈ HINis, and
consider the morphism induced by (4.3)

F ⊗HINis
G−1

Φ
−→ (F ⊗HINis

G)−1.

Let X,K, x be as in §4.1. Then the diagram

F(OX,x)⊗ G(K) //

i∗x⊗∂x
��

(F ⊗HINis
G)(K)

∂x

��

F(k(x))⊗ G−1(k(x))

��

(F ⊗HINis
G−1)(k(x))

Φ
// (F ⊗HINis

G)−1(k(x))

commutes, where i∗x is induced by the reduction map OX,x → k(x). In
other words, with Notation 4.9 we have the identity

(4.5) ∂x(a · b) = Φ(i∗xa · ∂xb)

for (a, b) ∈ F(OX,x)× G(K).

4.11. Corollary. Let F ∈ HINis; let X,K, x be as in §4.1 and let
(a, f) ∈ F(K)×K∗. Let H = F ⊗HINis

Gm, and consider the element
a · f ∈ H(K) as in Notation 4.9.
a) Suppose that a ∈ Im(F(OX,x)→ F(K)). Then we have

∂x(a · f) = vx(f)ā

where ∂x is the map of (4.2) and ā is the image of a in F(k(x)). Here
we have used the isomorphism H−1 ≃ F of Theorem 4.8.
b) Suppose that vx(f − 1) > 0. Then ∂x(a · f) = 0.

Proof. a) This follows from Proposition 4.10 (applied with G = Gm)
and Theorem 4.8. b) This follows again from Proposition 4.10, after
switching the rôles of F and G. �
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4.12.Proposition. Let G be a semi-abelian variety and letH = G⊗HINis

Gm, so that H−1 = G by Theorem 4.8. Let X,K, x be as in §4.1, and
let (g, f) ∈ G(K) ×K∗. As in Corollary 4.11, write g · f for the im-
age of g ⊗ f in H(K). Then ∂x(g · f) = ∂x(g, f), where ∂x(−,−) is
Somekawa’s local symbol [6, (1.1)] (generalising the Rosenlicht-Serre
local symbol).

Proof. Up to base-changing from k to k̄ (see Lemma 4.2 a)), we may
assume k algebraically closed. We then have to show that ∂x(g · f)
is the Rosenlicht-Serre local symbol of [5, Ch. III, Def. 2]. In this
definition, Condition i) is obvious, Condition ii) is Corollary 4.11 b),
Condition iii) is Corollary 4.11 a) and Condition iv) is Proposition 4.6.
The conclusion now follows from the uniqueness of the local symbol [5,
Ch. III, Prop. 1]. �

5. The factorisation

5.1. Theorem. The homomorphism (2.9) factors through Somekawa’s
relations. Consequently, we get a surjective homomorphism (1.1).

Proof. Let C/k be a smooth proper an connected curve. LetK = k(C),
and, for all i ∈ [1, n], let gi ∈ Gi(K). We also give ourselves a rational
function h ∈ K∗. We assume that, for any c ∈ C, there exists i(c) such
that gi ∈ Gi(OC,c) for all i 6= i(c). Let F = G1 ⊗HINis

· · · ⊗HINis
Gn.

We must show that the element
∑

c∈C

Trk(c)/k(g1(c)⊗ · · · ⊗ ∂c(gi(c), h)⊗ · · · ⊗ gn(c))

of (G1

M
⊗ . . .

M
⊗Gn)(k) goes to 0 in F(k) via (2.9), where ∂c is Somekawa’s

local symbol.1

Consider the element g = g1 ⊗ · · · ⊗ gn ∈ F(K). It follows from
Corollary 4.11 a) and Proposition 4.12 that, for any c ∈ C, we have

g1(c)⊗ · · · ⊗ ∂c(gi(c), h)⊗ · · · ⊗ gn(c) =

g1(c)⊗ · · · ⊗ ∂c(gi(c) ⊗ {h})⊗ · · · ⊗ gn(c) = ∂c(g ⊗ {h}).

The claim now follows from Proposition 4.6. �

1As was observed by W. Raskind, the signs appearing in [6, (1.2.2)] should not
be there.
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Appendix A. Extending monoidal structures

A.1. Let A be an additive category. We write A–Mod for the category
of contravariant additive functors from A to abelian groups. This is a
Grothendieck abelian category. We have the additive Yoneda embed-
ding

yA : A → A–Mod

sending an object to the corresponding representable functor.

A.2. Let f : A → B be an additive functor. We have an induced functor
f ∗ : B–Mod → A–Mod (“composition with f”). As in [SGA 4, Exp.
1, Prop. 5.1 and 5.4], the functor f ∗ has a left adjoint f! and a right
adjoint f∗ and the diagram

A
yA
−−−→ A–Mod

f





y

f!





y

B
yB
−−−→ B–Mod

is naturally commutative.

A.3. If f is fully faithful, then f! and f∗ are fully faithful and f ∗ is a
localisation, as in [SGA 4, Exp. 1, Prop. 5.6].

A.4. Suppose that f has a left adjoint g. Then we have natural iso-
morphisms

g∗ ≃ f!, g∗ ≃ f ∗

as in [SGA 4, Exp. 1, Prop. 5.5].

A.5. Suppose further that f is fully faithful. Then g∗ ≃ f! is fully
faithful. From the composition

g∗g∗ ⇒ IdA–Mod ⇒ g∗g!

of the unit with the counit, one then deduces a canonical morphism of
functors

g∗ ⇒ g!.

A.6. Let A and B be two additive categories. Their tensor product is
the category A ⊠ B whose objects are finite collections (Ai, Bi) with
(Ai, Bi) ∈ A× B, and

(A⊠ B)((Ai, Bi), (Cj, Dj)) =
⊕

i,j

A(Ai, Cj)⊗ B(Bi, Dj).

We have a “cross-product” functor

⊠ : A–Mod×B–Mod→ (A⊠ B)–Mod
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given by

(M ⊠N)((Ai, Bi)) =
⊕

i

M(Ai)⊗N(Bi).

A.7. Let A be provided with a biadditive bifunctor • : A×A → A. We
may view • as an additive functor A ⊠A → A. We may then extend
• to A–Mod by the composition

A–Mod×A–Mod
⊠
−→ (A⊠A)–Mod

•!−→ A–Mod .

This is an extension in the sense that the diagram

A×A
yA×yA
−−−−→ A–Mod×A–Mod

•×•





y

•





y

A
yA−−−→ A–Mod

is naturally commutative.
If • is monoidal (resp. monoidal symmetric), then its associativity

and commutativity constraints canonically extend to A–Mod.

A.8. Let A,B be two additive symmetric monoidal categories, and let
f : A → B be an additive symmetric monoidal functor. The above defi-
nition shows that the functor f! : A–Mod→ B–Mod is also symmetric
monoidal.

A.9. In §A.7, let us write •! =
∫

for clarity. Let P ∈ (A ⊠ A)–Mod.
Then

∫

P is the left Kan extension of P along • in the sense of [4, X.3].
This gives a formula for

∫

P as a coend (ibid., Th. X.4.1); for A ∈ A:

(A.1)

∫

P (A) =

∫ (B,B′)

A(A,B •B′)⊗ P (B,B′).

In particular:

A.10. Proposition. Suppose A rigid. Then (A.1) simplifies as
∫

P (A) =

∫ B

P (B,A •B∗)

where B∗ is the dual of B ∈ A. In particular, if P = M ⊠ N for
M,N ∈ A–Mod, we have for A ∈ A:

(A.2) (M •N)(A) =

∫ B

M(B)⊗N(A •B∗)

which describes M •N as a “convolution”.
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Proof. Applying (A.1) and rigidity, we have

∫

P (A) =

∫ (B,B′)

A(A,B •B′)⊗ P (B,B′)

=

∫ (B,B′)

A(A •B∗, B′)⊗ P (B,B′)

=

∫ B

P (B,A •B∗)

because in the third formula, the variable B′ is dummy (this simplifi-
cation is not in Mac Lane!). �
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[5] J.-P. Serre Groupes algébriques et corps de classes, Hermann, 1959.
[6] M. Somekawa On Milnor K-groups attached to semi-abelian varieties, K-

Theory 4 (1990), 105–119.
[7] M. Spiess, T. Szamuely On the Albanese map for smooth quasiprojective

varieties, Math. Ann. 235 (2003), 1–17.
[8] M. Spiess, T. Yamazaki A counterexample to generalizations of the Milnor-

Bloch-Kato conjecture, J. K-Theory 4 (2009), 77–90.
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