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Connecting discrete and continuous lookback or hindsight options in exponential Lévy models

El Hadj Aly Dia, Damien Lamberton

1. Introduction. The payoff of a lookback option typically depends on the maximum or the minimum of the underlying stock price. The maximum can be evaluated in continuous or discrete time depending on the contract. In the Black-Scholes setting, Broadie, Glasserman and Kou (1999 and 1997) derived a number of results relating discrete and continuous path-dependent options. In particular, they obtained continuity correction formulas for lookback, barrier and hindsight options. The purpose of this paper is to establish similar results for exponential Lévy models. We will focus on lookback or hindsight options, leaving the treatment of barrier options to another paper.

Our results are based on the analysis of the difference between the discrete and continuous maximum of a Lévy process. In the case of a Lévy process with finite activity and a non zero Brownian part, we extend (see Theorem 4.2) the theorem of Asmussen, Glynn and Pitman (1995) which is the key to the continuity correction formulas for lookback options in [START_REF] Broadie | Connecting discrete and continuous path-dependent options[END_REF]. This allows us to extend these formulas to jump-diffusion models. We also establish estimates for the L 1 -norm of the difference of the continuous and discrete maximum of a general Lévy process. These estimates are based on Spitzer's identity, which relates the expectation of the supremum of sums of iid random variables to a weighted sum of the expectations of the positive parts of the partial sums. In the case of Lévy processes with finite activity, we derive an expansion up to te order o(1/n), where n is the number of dates in the discrete supremum, see Theorem 3.5. In the case of infinite activity, we have precise upper bounds (see Theorem 3.9). We also derive an expansion in the case of Lévy processes with finite variation (see Theorem 3.12).

The paper is organized as follows. In the next section, we recall some basic facts about real Lévy processes. In section 3, we state Spitzer's identity for Lévy Processes and use it to analyse the expectation of the difference of the continuous and discrete maximum of a general Lévy process. Section 4 is devoted to the extension of the theorem of Asmussen et al. The last two sections are devoted to financial applications. In Section 5, we derive continuity corrections for lookback options in jump-diffusion models, and in Section 6, we give upper bounds for the case of general exponential Lévy models.

Preliminaries.

A real Lévy process X is characterized by its generating triplet (γ, σ 2 , ν), where (γ, σ) ∈ R×R + , and ν is a Radon measure on R\{0} satisfying

R 1 ∧ x 2 ν(dx) < ∞.
By the Lévy-Itô decomposition, X can be written in the form

X t = γt + σB t + X l t + lim ǫ↓0 X ǫ t , ( 2.1) 
with

X l t = |x|>1,s∈[0,t] xJ X (dx × ds) ≡ |∆Xs|≥1 0≤s≤t ∆X s X ǫ t = ǫ≤|x|≤1,s∈[0,t]
x J X (dx × ds)

≡ ǫ≤|∆Xs|<1 0≤s≤t ∆X s -t ǫ≤|x|≤1 xν(dx).
Here J is a Poisson measure on R × [0, ∞) with intensity ν(dx)dt, J X (dx × ds) = J X (dx × ds) -ν(dx)ds and B is a standard Brownian motion. We also have the Lévy-Khinchine formula for the characteristic function of X t . Namely

Ee iuXt = e tϕ(u) , u ∈ R,
where ϕ is given by

ϕ(u) = iγu - σ 2 u 2 2 + R (e iux -1 -iux1 |x|≤1 )ν(dx). (2.2) 
We say that X has finite activity if the Lévy measure ν is finite (ν (R) < ∞). We then have

X t = γ 0 t + σB t + Nt i=1 Y i , (2.3) 
where N is a Poisson process with rate λ = ν(R), (Y i ) i≥1 are i.i.d. random variables with common distribution ν(dx) ν(R) and

γ 0 = γ - |x|≤1 xν(dx). (2.4)
This is a jump-diffusion process. If the jump part of X has finite variation (which is equivalent to |x|≤1 |x|ν (dx) < ∞), then

X t = γ 0 t + σB t + x∈R,s∈[0,t]
xJ X (dx × ds), (2.5) with γ 0 given by (2.4). Note that X is a finite variation Lévy process if and only if σ = 0 and |x|≤1 |x|ν (dx) < ∞. Moreover, X is integrable if only if |x|>1 |x|ν(dx) < ∞.

3. Spitzer's identity and applications. In this section we will first state Spitzer's identity for Lévy processes (we refer to [START_REF] Asmussen | Applied probability and queues[END_REF], Proposition 4.5, p. 177 for the classical form of Spitzer's identity). Then we will use this result to derive expansions for the error between the continuous and discrete supremum of Lévy processes.

Definition 3.1. We define

M X t = sup 0≤s≤t X s , M X,n t = max 0≤k≤n X kt n .
When there is no ambiguity we can remove the super index X. Remark 3.2. Note that M t is integrable for all t > 0 if and only if x>1 xν(dx) is finite. We also have, for all α > 0, Ee αMt < ∞ if only if x>1 e αx ν(dx) is finite.

In the setting of Lévy processes, we have the following version of Spitzer's identity.

Proposition 3.3. If X is a Lévy process with generating triplet (γ, σ 2 , ν) satis- fying x>1 xν(dx) < ∞, then EM n t = n k=1 EX + k t n k , EM t = t 0 EX + s s ds.
For the proof of the above result, we need some estimates for EM t with respect to t.

Proposition 3.4. Let X a Lévy process with generating triplet (γ, σ 2 , ν) satisfying x>1 xν(dx) < ∞, then

EM t ≤ γ + + x>1 xν(dx) t + σ 2 π + 2 |x|≤1 x 2 ν(dx) √ t.
If in addition |x|≤1 |x|ν(dx) < ∞, then

EM t ≤ γ + 0 + R + xν(dx) t + σ 2 π √ t.
Proof of proposition 3.4. We will first prove the second result of the proposition. We have (see (2.5))

sup 0≤s≤t X s = sup 0≤s≤t γ 0 s + σB s + x∈R,τ ∈[0,s] xJ X (dx × dτ ) ≤ γ + 0 t + σ sup 0≤s≤t B s + x∈R + ,τ ∈[0,t] xJ X (dx × dτ ). So E sup 0≤s≤t X s ≤ γ + 0 t + σE sup 0≤s≤t B s + t R + xν(dx).
By the reflexion theorem, we know that sup 0≤s≤t B s has the same distribution as

|B t |. Therefore E sup 0≤s≤t B s = E|B t | = 2 π √ t. Hence E sup 0≤s≤t X s ≤ γ + 0 + R + xν(dx) t + σ 2 π √ t.
Consider now the general case. We define the process (R t ) t≥0 by

R t = lim ǫ↓0 X ǫ t = lim ǫ↓0 ǫ≤|x|≤1,s∈[0,t]
x J X (dx × ds).

We have, using (2.1),

E sup 0≤s≤t X s ≤ E sup 0≤s≤t γs + σB s + X l s + E sup 0≤s≤t (R s ) .
The process γs + σB s + X l s t≥0 has finite activity and the support of its Lévy measure does not intersect [-1, 1], so

E sup 0≤s≤t γs + σB s + X l s ≤ γ + + x>1 xν(dx) t + σ 2 π √ t.
Besides, using the Cauchy-Schwarz and Doob inequalities (note that R is a martingale) we get

E sup 0≤s≤t (R s ) ≤ 2 t |x|≤1 x 2 ν(dx). Hence E sup 0≤s≤t X s ≤ γ + + x>1 xν(dx) t + σ 2 π + 2 |x|≤1 x 2 ν(dx) √ t.

⋄

Proof of proposition 3.3. By Proposition 3.4 we have

∃c 1 , c 2 > 0, ∀t ≥ 0, E sup 0≤s≤t X s ≤ c 1 t + c 2 √ t. (3.1) Thus EX + s s ≤ E sup 0≤τ ≤s X τ s ≤ c 1 + c 2 √ s . Since s → 1 √ s is integrable on [0, t], so is s → EX + s s . For s ∈ (0, t], define f (s) = EX + s s f n (s) = n k=1 1 (k-1)t n , kt n (s)f kt n , so that n k=1 EX + k t n k = t n n k=1 f kt n = t 0 f n (s)ds.
We can prove that f is continuous on (0, t]. We deduce that lim n→+∞ f n = f a.e. We also have for any s ∈ (0, t]

|f n (s)| ≤ n k=1 1 (k-1)t n , kt n (s) f kt n ≤ n k=1 1 (k-1)t n , kt n (s)   c 1 + c 2 kt n   ≤ c 1 + c 2 √ s .
So, by dominated convergence, we have lim n→+∞ n k=1 

EX + k t n k = t 0 EX + s s ds. On the other hand max k=0,...,n X k t n = max 0, X t n , X 2 t n , . . . , X t = max X + t n , X + 2 t n , . . . , X + t . Note that, for k ≥ 1, we have X k t n = k j=1 X j t n -X (j-
X k t n = n k=1 1 k EX + k t n .
The sequence max k=0,...,n X k t n n≥0 is dominated by sup 0≤s≤t X s , so by using the dominated convergence theorem, we get

E sup 0≤s≤t X s = E lim n→+∞ max k=0,...,n X k t n = lim n→+∞ E max k=0,...,n X k t n = lim n→+∞ n k=1 1 k EX + k t n = t 0 EX + s s ds. ⋄ 3.1.
Case of finite activity Lévy processes. The use of proposition 3.3 in the finite activity case, leads to the following theorem.

Theorem 3.5. Let X be a finite activity Lévy process satisfying x>1 xν(dx) < ∞, t > 0 and n ∈ N.

1. If σ > 0, we have, for n → +∞,

E (Mt -M n t ) = 1 2n γ0t 2 + λtEY + 1 -σ √ tEφ γ0 σ √ t + Nt i=1 Yi σ √ t - 1 2n E γ0t + Nt i=1 Yi Φ γ0 σ √ t + Nt i=1 Yi σ √ t - σ √ tζ 1 2 √ 2πn + o 1 n .
Here, 

ζ
E (M t -M n t ) = 1 2n γ + 0 t + λtEY + 1 -EX + t + o 1 n
when n → +∞. Recall that in the case of Brownian motion, Broadie Glasserman and Kou prove in [START_REF] Broadie | Connecting discrete and continuous path-dependent options[END_REF] (cf. lemma 3) a result similar to the first point of the above theorem. In the case σ = 0, if Y 1 have a continuous density function or γ 0 = 0, the error o 1 n is in fact O 1 n 2 (see [START_REF] Dia | Exotic Options under Exponential Lévy Model[END_REF]). To prove Theorem 3.5, we need the following more or less elementary lemmas.

Lemma 3.6.

Let f ∈ C 2 [0, t]. Then t 0 1 √ x f ( √ x)dx = t n n k=1 1 kt n f kt n - √ tζ 1 2 f (0) √ n - √ tf ( √ t) -tf ′ (0) 2n + o 1 n .
Lemma 3.7. Let f be an absolutely continuous function on [0, t], then we have

t 0 f (s)ds - t n n k=1 f kt n = t 2n (f (0) -f (t)) + o 1 n .
The proof of the previous lemma is based on the following result. Lemma 3.8. Let h ∈ L 1 ([0, t]), we define the sequence (I m (h)) m≥1 by

I m (h) = m k=1 k t m (k-1) t m h(u) u -(k -1) t m du.
Then we have

lim m→ +∞ mI m (h) = t 2 t 0 h(u)du.
Proof of lemma 3.8. Consider first the case where h ∈ C([0, t]). By the variable substitutions v = u -(k -1) t m , then w = mv we get 

I m (h) = m k=1 t m 0 h v + (k -1) t m vdv = m k=1 t 0 h w m + (k -1) t m w m dw m = 1 m t 0 1 m m k=1 h w m + (k -1) t m

So we have

u n m : = mI m (h n ) -m m k=1 k t m (k-1) t m h(u) u -(k -1) t m du = m m k=1 k t m (k-1) t m (h n (u) -h(u)) u -(k -1) t m du ≤ m m k=1 k t m (k-1) t m |h n (u) -h(u)| u -(k -1) t m du ≤ t m k=1 k t m (k-1) t m |h n (u) -h(u)|du ≤ t t 0 |h n (u) -h(u)|du.
The convergence (with respect to m) of mI m (h n ) is uniform. Hence by the limits inversion theorem

lim m→ +∞ lim n→ +∞ mI m (h n ) = lim n→ +∞ lim m→ +∞ mI m (h n ) ⇒ lim m→ +∞ mI m (h) = lim n→ +∞ t 2 t 0 h n (u)du ⇒ lim m→ +∞ mI m (h) = t 2 t 0 h(u)du.

⋄

Proof of lemma 3.7. Let h be the a.e. derivative of f . We have

t 0 f (s)ds - t n n k=1 f kt n = n k=1 k t n (k-1) t n f (s) -f kt n ds = - n k=1 k t n (k-1) t n k t n s h(u)duds = - n k=1 k t n (k-1) t n u (k-1) t n h(u)dsdu, by Fubini. Thus t 0 f (s)ds - t n n k=1 f kt n = - n k=1 k t n (k-1) t n h(u) u -(k -1) t n du = - t 2n t 0 h(u)du + o 1 n , by lemma 3.8 = - t 2n (f (t) -f (0)) + o 1 n = t 2n (f (0) -f (t)) + o 1 n .

⋄

Proof of lemma 3.6. We consider first the case t = 1. The case t = 1 will be deduced by a variable substitution. We have

1 √ x f ( √ x) = f (0) √ x + f ( √ x) -f (0) √ x . Set g(x) = f ( √ x) -f (0) √ x .
The function g can be extended to a continuous function on [0, 1], and lim x→0 g(x) = f ′ (0). Furthermore g is differentiable on (0, 1] and

g ′ (x) = f (0) -f ( √ x) + √ xf ′ ( √ x) 2x 3 2
.

The function g ′ is integrable on [0, 1], so g is absolutely continuous. Thus

ǫ n (f ) = 1 0 f (0) √ x dx + 1 0 g(x)dx - 1 n n k=1 f (0) k n - 1 n n k=1 g k n = f (0)   1 0 1 √ x dx - 1 n n k=1 1 k n   + 1 0 g(x)dx - 1 n n k=1 g k n .
By using [START_REF] Knopp | Theory and applications of infinite series[END_REF] (see p.538) and lemma 3.7, we get

ǫ n (f ) = f (0) - ζ 1 2 √ n - 1 2n + O 1 n 2 + g(0) 2n - g(1) 2n + o 1 n = - ζ 1 2 √ n f (0) - f (0) 2n - f (1) -f ′ (0) -f (0) 2n + o 1 n = - ζ 1 2 f (0) √ n - f (1) -f ′ (0) 2n + o 1 n .

⋄

Proof of theorem 3.5. We know by theorem 3.3 that

E sup 0≤s≤t X s -max k=0,...,n X k t n = t 0 EX + s s ds - t n n k=1 EX + k t n kt n
.

So we need to study the smoothness of the function s → EX + s /s and conclude with lemmas 3.6 and 3.7.

Case 1 : σ > 0 and EY + 1 < ∞. Let U be a normal r.v. with mean γ and variance σ 2 . By an easy computation we get

EU + = σφ γ σ + γΦ γ σ .
So, for any s > 0, we have, by conditionning with respect to the jump part of the process X,

E X + s s = E σ √ s φ γ0 σ √ s + Ns i=1 Yi σ √ s + E γ0 + Ns i=1 Yi s Φ γ0 σ √ s + Ns i=1 Yi σ √ s .
Let f and g be the functions defined by

f (s) = Eφ γ 0 σ s + N s 2 i=1 Y i σs g(s) = E γ 0 σ s + N s 2 i=1 Y i σs Φ γ 0 σ s + N s 2 i=1 Y i σs , so that E X + s s = σ √ s f √ s + σ √ s g √ s .
If f and g can be extended as C 2 functions on [0, t] then, using lemma 3.6, we get the first part of the theorem. By [START_REF] Cont | Financial modelling with jump processes[END_REF], proposition 9.5, we have

f (s) = Es 2N1 e -λ(s 2 -1) φ γ 0 σ s + N1 i=1 Y i σs .
So, the function f has the same regularity as f defined by

f (s) = Es 2N1 φ µs + N1 i=1 Y i σs ,
where µ = γ0 σ . For x ∈ R, we define the function

s → h(s, x) = φ µs + x s .
We then have

f (s) = Es 2N1 h s, N1 i=1 Y i σ .
Note that

0 ≤ h (s, x) ≤ 1 √ 2π , and h (s, x) = 1 √ 2π exp - 1 2 µs + x s 2 = 1 √ 2π exp - µ 2 s 2 2 exp -µx - x 2 2s 2 .
Using the inequality -µx ≤ µ 2 s 2 + x 2 4s 2 , we get

h (s, x) ≤ 1 √ 2π e µ 2 s 2 2 e -x 2 4s 2 ∧ 1 . (3.2)
Moreover, we have

∂ ∂s h (s, x) = x 2 s 3 -µ 2 s h(s, x)
and

∂ 2 ∂s 2 h (s, x) = - 3x 2 s 4 -µ 2 φ µs + x s + x 2 s 3 -µ 2 s 2 φ µ √ s + x √ s . Using (3.2), we get ∂ ∂s h (s, x) ≤ µ 2 s 2 √ 2π + x 2 s 3 √ 2π e µ 2 s 2 2 e -x 2 4s 2 ≤ µ 2 s 2 √ 2π + C 1 1 {x =0} s e µ 2 s 2 ,
where

C 1 = sup y>0 y 2 e -y 2 4 √ 2π
. Using (3.2) again and the fact that

x 2 s 3 -µ 2 s 2 ≤ 2 x 4 s 6 + µ 4 s 2 , we obtain ∂ 2 ∂s 2 h (s, x) ≤ µ 2 + 2µ 4 s 2 h(s, x) + 3x 2 s 4 + 2 x 4 s 6 h(s, x) ≤ µ 2 + 2µ 4 s 2 √ 2π + C 2 1 x =0 s 2 e µ 2 s 2 2
,

where

C 2 = sup y>0 3y 2 +2y 4 √ 2π e -y 2 4
. Hence

∂ ∂s s 2N 1 h s, N 1 i=1 Yi σ = 2N1s 2N 1 -1 h s, N 1 i=1 Yi σ +s 2N 1 ∂ ∂s h s, N 1 i=1 Yi σ . Thus ∂ ∂s s 2N 1 h s, N 1 i=1 Yi σ ≤ 2N1s 2N 1 -1 √ 2π + µ 2 s 2N 1 -1 √ 2π + C11 {N 1 >0} s 2N 1 -1 e µ 2 s 2 2 .
We deduce that f is continuously differentiable, and

f ′ (s) = E 2N 1 s 2N1-1 h s, N1 i=1 Y i σ + s 2N1 ∂ ∂s h s, N1 i=1 Y i σ .
Similarly,

∂ 2 ∂s 2 s 2N1 h s, N1 i=1 Y i σ = 2N 1 (2N 1 -1) s 2N1-2 h s, N1 i=1 Y i σ +4N 1 s 2N1-1 ∂ ∂s h s, N1 i=1 Y i σ + s 2N1 ∂ 2 ∂s 2 h s, N1 i=1 Y i σ . But 2N 1 (2N 1 -1) s 2N1-2 h s, N1 i=1 Y i σ ≤ 2N 1 (2N 1 -1) s 2N1-2 √ 2π 42N 1 s 2N1-1 ∂ ∂s s, N1 i=1 Y i σ ≤ 4N 1 (2N 1 -1) s N1 √ 2π +4N 1 (2N 1 -1) s 2N1-2 C 1 1 {N1>0} e µ 2 s 2 2 s 2N1 ∂ 2 ∂s 2 h s, N1 i=1 Y i σ ≤ µ 2 + 2µ 4 s 2 √ 2π s 2N1 + C 2 1 N1>0 s 2N1-2 e µ 2 s 2 2 .
We deduce that f is twice differentiable on [0, t] and

f ′′ (s) = E 2N1 (2N1 -1) s 2N 1 -2 h s, N 1 i=1 Yi σ + 4N1s 2N 1 -1 ∂ ∂s h s, N 1 i=1 Yi σ +E s 2N 1 ∂ 2 ∂s 2 h s, N 1 i=1 Yi σ .
Hence f is in C 2 [0, t] and we verify that f (0) = 1 √ 2π and f ′ (0) = 0. On the other hand the function g can be written in the following form (see [START_REF] Cont | Financial modelling with jump processes[END_REF], proposition 9.5)

g(s) = Es 2N1 e -λ(s 2 -1) γ 0 σ s + N1 i=1 Y i σs Φ γ 0 σ s + N1 i=1 Y i σs .
With the same reasoning we could prove that g is in C 2 [0, t], and satisfies g(0) = 0

and g ′ (0) = λEY + 1 σ + γ0
2σ . This proves the first part of the theorem. Case 2: σ = 0 and EY + 1 < ∞. We have

EX + s s = γ + 0 e -λs + e -λs +∞ n=1 λ n s n-1 n! E γ 0 s + n i=1 Y i + .
Observe that, for any positive integer n, the function

s → E (γ 0 s + n i=1 Y i ) + is absolutely continuous. So is s → λ n s n-1 n! E (γ 0 s + n i=1 Y i ) + . If we call h n its a.e.
derivative, then, for any n ≥ 2,

h n (s) = γ 0 λ n s n-1 n! P γ 0 s + n i=1 Y i ≥ 0 + n -1 n! λ n s n-2 E γ 0 s + n i=1 Y i + , so that, for s ∈ [0, t], |h n (s)| ≤ |γ 0 | λ n t n-1 n! + n -1 n! λ n t n-2 |γ 0 |t + nEY + 1 .
Hence the normal convergence of h n on [0, t], and thus the absolute continuity of

EX + s s on [0, t]
. So, by proposition 3.3 and lemma 3.7,

E sup 0≤s≤t X s -max k=0,...,n X k t n = t 0 EX + s s ds - t n n k=1 EX + k t n kt n = t 2n lim s→0 + EX + s s - EX + t t + o 1 n = 1 2n γ + 0 + λEY + 1 t -EX + t + o 1 n = 1 2n γ + 0 t + λtEY + 1 -EX + t + o 1 n . ⋄ 3.2.
Case of infinite activity Lévy processes. In the case of Lévy processes with infinite activity, we cannot use (2.3). So the method used in theorem 3.5 does not work anymore and we must use another approach.

Theorem 3.9. Let X be an integrable Lévy process with generating triplet

(γ, σ 2 , ν). Then 1. If σ > 0 E (M t -M n t ) = O 1 √ n . 2. If σ = 0 E (M t -M n t ) = o 1 √ n . 3. If σ = 0 and |x|≤1 |x|ν(dx) < ∞ E (M t -M n t ) = O log(n) n .
To prove the result 2 of theorem 3.9, we will use the lemma below. Lemma 3.10. Let X be an integrable Lévy process with generating triplet (γ, 0, ν). Then we have

EX + t = o √ t when t → 0.
The proof of this lemma is quite standard, and is left to the reader. For more details, see [START_REF] Dia | Exotic Options under Exponential Lévy Model[END_REF].

Proof of theorem 3.9. With the notation δ = t n , we have, using proposition 3.3,

E (M t -M n t ) = t 0 EX + s s ds - n k=1 EX + kδ k = n k=1 kδ (k-1)δ EX + s s - n k=1 kδ (k-1)δ EX + kδ kδ ds = δ 0 EX + s s - EX + δ δ ds + n k=2 kδ (k-1)δ EX + s s - EX + kδ kδ ds.
We call u(δ) (respectively v(δ)) the first (respectively the second) term on the right of the last equality. We easily deduce from Proposition 3.

4 that, if σ > 0, u(δ) = O( √ δ) and, if σ = 0 and |x|≤1 |x|ν(dx) < ∞, u(δ) = O(δ). We also have u(δ) √ δ = δ 0 EX + s s √ δ ds - EX + δ √ δ = 1 0 1 √ s EX + sδ √ sδ - EX + δ √ δ ,
and we easily deduce from Lemma 3.10 that, if

σ = 0, u(δ) = o( √ δ).
We now study v(δ). For s ≥ 0, let Xs = X s -αs, where α = EX 1 . Then, X is a martingale and, for a fixed s ≥ 0, Xτ + αs

+ τ ≥0 is a submartingale, because x → x + is a convex function. So, for s ∈ [(k -1)δ, δ], EX + s = E Xs + αs + ≤ E Xkδ + αs + .
Hence

v(δ) = n k=2 kδ (k-1)δ EX + s s - EX + kδ kδ ds ≤ n k=2 kδ (k-1)δ E Xkδ + αs + s - E Xkδ + αkδ + kδ ds = n k=2 kδ (k-1)δ E Xkδ + αkδ + 1 s - 1 kδ ds + n k=2 kδ (k-1)δ E Xkδ + αs + -E Xkδ + αkδ + s ds.
Using the inequality |x

+ -y + | ≤ |x -y|, we get v(δ) ≤ n k=2 EX + kδ log k k -1 - 1 k + n k=2 kδ (k-1)δ |α| (kδ -s) s ds = n k=2 EX + kδ log 1 + 1 k -1 - 1 k ds + n k=2 kδ (k-1)δ |α| kδ s -1 ds ≤ n k=2 EX + kδ 1 k -1 - 1 k + n k=2 |α|δ k log k k -1 -1 ≤ n k=2 EX + kδ 1 k(k -1) + |α|δ n k=2 k k -1 -1 = n k=2 EX + kδ 1 k(k -1) + |α|δ n k=2 1 k -1 .
Now, if σ = 0 and |x|≤1 |x|ν(dx) < ∞, we know from Proposition 3.4 that EX + kδ ≤ Ckδ for some C > 0, so that

v(δ) ≤ Cδ n k=2 1 k -1 + |α|δ n k=2 1 k -1 ≤ (Cδ + |α|) (1 + log(n -1)) = O log(n) n ,
so that the last statement of the Theorem is proved.

For the other cases, let

f (s) = E(X + s )/ √ s, so that n k=2 EX + kδ 1 k(k -1) = √ δ n k=2 f (kδ) 1 √ k(k -1)
.

We know from Proposition 3.4 that f is bounded on [0, t], so that the first statement of Theorem 3.9 now follows from the convergence of the series 1/k 3/2 . In order to prove the second statement (i.e. the case σ = 0), we observe that

n k=2 f (kδ) 1 √ k(k-1)
goes to 0 as n → ∞, as follows easily from lim s→0 f (s) = 0 (cf. Lemma 3.10). ⋄ Remark 3.11. The second result of theorem 3.9 is optimal in the following sense: for any ǫ > 0, there exists a Lévy process X satisfying σ = 0, such that

lim n→+∞ n 1 2 +ǫ E (M t -M n t ) = +∞.
More precisely, if X is a stable process of order α, with α ∈ (1, 2), we have

lim n→∞ n 1/α E (M t -M n t ) = -t 1/α ζ 1 - 1 α EX + 1 .
The proof can be found in [START_REF] Dia | Exotic Options under Exponential Lévy Model[END_REF].

In the finite variation case, with a stronger assumption, we extend the results on compound Poisson processes which we get in the previous section, to infinite activity case.

Theorem 3.12. Let X be an integrable Lévy process with generating triplet (γ, 0, ν). Suppose that

|x|≤1 |x| |log (|x|)| ν(dx) < ∞ and ν(R) = +∞, then E (M t -M n t ) = γ + 0 + R x + ν(dx) t -EX + t 1 2n + o 1 n .
Lemma 3.13. If X is a finite variation Lévy process with infinite activity and γ 0 = 0, then

t 0 ds 1 0 du 1 s |P [X s ≥ 0] -P [X su ≥ 0]| < ∞. (3.3)
Proof of lemma 3.13. We first consider the case γ 0 < 0. Recall that, since X has finite variation, we have, with probability one, lim t→0 Xt t = γ 0 , therefore P(R 0 > 0) = 1, where

R 0 = inf{t > 0 | X t > 0},
and t 0 s -1 P(X s > 0)ds < ∞ (see [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], Section 47, especially Theorem 47.2). Set

I = t 0 ds 1 0 du 1 s |P [X s ≥ 0] -P [X su ≥ 0]|
Note that, since X has infinite activity, we have P(X s = 0) = 0, for all s > 0 (see [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], Theorem 27.4), so that

I ≤ t 0 1 s P [X s ≥ 0] ds + t 0 ds 1 0 du 1 s P [X su ≥ 0] = t 0 1 s P (X s > 0) ds + t 0 ds 1 0 du 1 s P (X su > 0) .
So, we need to prove that t 0 ds

1 0 dus -1 P (X su > 0) < ∞. We have t 0 ds 1 0 du 1 s P [X su > 0] = t 0 ds s 0 du 1 s 2 P [X u > 0] = t 0 1 s 2 s 0 P [X u > 0] du ds = - 1 s s 0 P [X u > 0] du t 0 + t 0 1 s P [X s > 0] ds.
But, for any s > 0,

1 s s 0 P [X u ≥ 0] du ≤ 1
So, using again

t 0 s -1 P(X s > 0)ds < ∞, we conclude that t 0 ds 1 0 du 1 s P [X su ≥ 0] < ∞.
Consider now γ 0 > 0. Let X be the dual process of X (e.g. X = -X). Then γ X 0 = -γ 0 , and so γ X 0 < 0. Thus

I = t 0 ds 1 0 du 1 s |P [X s < 0] -P [X su < 0]| = t 0 ds 1 0 du 1 s P Xs ≥ 0 -P Xsu ≥ 0 < ∞.

⋄

Proof of theorem 3.12. By proposition 3.3, we have

E (M t -M n t ) = t 0 EX + s s ds - n k=1 EX + kδ k . Define h(s) = EX + s s , s ∈ [0, t].
In order to prove the theorem we need to show that h is absolutely continuous (cf. Lemma 3.7). We will first show that the derivative (in the sense of distributions) of s → EX + s is given by the function

d ds E(X s ) + = γ 0 P [X s ≥ 0] + R E (X s + y) + -(X s ) + ν(dy), s ∈ (0, t).
We first consider a continuously differentiable function f with bounded derivative. Since X is a finite variation process, Itô's formula reduces to

f (X s ) = f (0) + γ 0 s 0 f ′ (X τ ) dτ + 0≤τ ≤s (f (X τ ) -f (X τ -)) , so that Ef (X s ) = f (0) + γ 0 E s 0 f ′ (X τ ) dτ + E 0≤τ ≤s (f (X τ ) -f (X τ -)) .
The compensation formula (see [START_REF] Bertoin | Lévy Processes[END_REF], preliminaries) yields that, if

E s 0 dτ R |f (X τ + y) -f (X τ )| ν(dy) < ∞, (3.4) 
then

E 0≤τ ≤s (f (X τ ) -f (X τ -)) = E s 0 ds R (f (X τ + y) -f (X τ )) ν(dy) .
Since f is a Lipschitz function and X is integrable, the condition (3.4) is satisfied and we have

Ef (Xs) = f (0) + γ0E s 0 f ′ (Xτ ) dτ + E s 0 ds R (f (Xτ + y) -f (Xτ )) ν(dy) = f (0) + E γ0 s 0 f ′ (Xτ ) dτ + s 0 ds R (f (Xτ + y) -f (Xτ )) ν(dy) .
Now, for ǫ > 0, define

f ǫ (x) = x 2 + √ ǫ + x 2 2 , x ∈ R.
Note that f ǫ is continuously differentiable and

f ′ ǫ (x) = 1 2 + x 2 √ ǫ + x 2 , x ∈ R, so that f ′ ǫ ∞ ≤ 1.
We can write

Efǫ(Xs) = 1 2 + E γ0 s 0 f ′ ǫ (Xτ ) dτ + s 0 ds R (fǫ (Xτ + y) -fǫ (Xτ )) ν(dy) .
Note that the function f ǫ converges uniformly to x → x + when ǫ goes to 0. And, for any x = 0,

lim ǫ→0 f ′ ǫ (x) = 1 x≥0 .
Moreover, for any τ > 0, P(X τ = 0) = 1 (because X have infinite activity), and, for any x ∈ R,

x + ≤ f ǫ (x) ≤ x 2 + √ ǫ + |x| 2 ≤ x + + √ ǫ 2 .
By dominated convergence, we get

E(X s ) + = 1 2 + E γ 0 s 0 1 {Xτ ≥0} dτ + s 0 ds R (X τ + y) + -(X τ ) + ν(dy) = 1 2 + γ 0 s 0 P [X τ ≥ 0] dτ + s 0 ds R E (X τ + y) + -(X τ ) + ν(dy). Hence d ds E(X s ) + = γ 0 P [X s ≥ 0] + R E (X s + y) + -(X s ) + ν(dy).

Now, we have

h(s) - R y + ν(dy) = E(X s ) + s - R y + ν(dy) = 1 s s 0 γ 0 P [X u ≥ 0] + R E (X u + y) + -X + u ν(dy) du - R y + ν(dy) = γ 0 s s 0 P [X u ≥ 0] du + 1 s s 0 R E (X u + y) + -X + u -y + ν(dy)du. But (X u + y) + -X + u -y + = (X u + y) 1 {Xu+y>0} -X u 1 {Xu>0} -y1 {y>0} = (X u + y) 1 {Xu+y>0} -X u 1 {Xu>0} -y1 {y>0} = X u 1 {Xu+y>0} -X u 1 {Xu>0} -y 1 {Xu+y>0} -X u 1 {y>0} = -|X u |1 {yXu<0,|y|>|Xu|} -|y|1 {yXu<0,|y|≤|Xu|} = -|X u | ∧ |y|1 {yXu<0} . So h(s) - R y + ν(dy) = γ0 s s 0 P [Xu ≥ 0] du - 1 s s 0 R E|Xu| ∧ |y|1 {yXu<0} ν(dy)du.
It is now clear that h is continuous on (0, +∞), and that its derivative is given by

h ′ (s) = u s + v s + w s ,
where

u s = γ 0 s P [X s ≥ 0] - γ 0 s 2 s 0 P [X u ≥ 0] du, v s = - 1 s R E |X s | ∧ |y|1 {yXs<0} ν(dy), w s = 1 s 2 s 0 R E |X u | ∧ |y|1 {yXu<0} ν(dy)du.
We will now show that

t 0 |h ′ (s)|ds < ∞
We have u s = 0 if γ 0 = 0, and, for γ 0 = 0, we can write

|u s | = γ 0 s P [X s ≥ 0] - γ 0 s 2 s 0 P [X u ≥ 0] du ≤ |γ 0 | s 1 0 |P [X s ≥ 0] -P [X su ≥ 0]| du.
Hence, by lemma 3.13,

t 0 |u s |ds < ∞.
Besides, using the concavity of the function x ∈ R + → x ∧ |y| and Proposition 3.4, we get

|v s | ≤ 1 s R E (|X s | ∧ |y|) 1 yXs<0 ν(dy) ≤ 1 s R E (|X s | ∧ |y|) ν(dy) ≤ 1 s R (E|X s |) ∧ |y|ν(dy) ≤ 1 s R (cs) ∧ |y|ν(dy),
where the positive constant c comes from Proposition 3.4. Now, let vs = 1 s R (cs) ∧ |y|ν(dy). Using Fubini's theorem, we have Note that the last integral is finite, due to the assumption on the Lévy measure. For the term w s , we have

|w s | ≤ 1 s 2 s 0 R (cu) ∧ |y|ν(dy)du ≤ 1 s 2 s 0 R (cs) ∧ |y|ν(dy)du = 1 s R (cs) ∧ |y|ν(dy) = vs .
We deduce that

t 0 |w s |ds < ∞.
Therefore, we have proved that h is absolutely continuous. Using lemma 3.7 and theorem 3.3 we complete the proof. ⋄ 4. Extension of the Asmussen-Glynn-Pitman Theorem. The continuity correction results of Broadie Glasserman and Kou for lookback options within the Black-Scholes model are based on a result due to Asmussen, Glynn and Pitman, about the weak convergence of the normalized difference between the continuous and discrete maximum of Brownian motion(see [START_REF] Asmussen | Discretization error in simulation of one-dimensional reflecting brownian motion[END_REF], Theorem 1). In this section, we extend this result to Lévy processes with finite activity and a non-trivial Brownian component, i.e. a Lévy process with generating triplet (γ, σ 2 , ν), where σ 2 > 0 and ν is a finite measure.

The following statement is a reformulation of the Asmussen-Glynn-Pitman Theorem. It can be deduced from a careful reading of the proof of Theorem 1 in [START_REF] Asmussen | Discretization error in simulation of one-dimensional reflecting brownian motion[END_REF] (see particularly pages 879 to 883, and Remark 2). , where

I n = k ∈ N | kt n ∈ [a, b] .
Then, as n goes to infinity, the pair

( √ n (M -M n ) , β) converges in distribution to the pair ( √ tW, β)
where W is independent of β and can be written as

W = min {j∈Z} Ř(U + j). (4.1)
Here ( Ř(t)) t∈R is a two sided three dimensional Bessel process (i.e. Ř(t) = R 1 (t) for t ≥ 0 and Ř(t) = R 2 (-t) for t < 0, where R 1 and R 2 are independent copies of the usual three dimensional Bessel process, starting from 0) and U is uniformly distributed on [0, 1] and independent of Ř. We can now state and prove the main result of this section. Theorem 4.2. Let X = (X t ) t≥0 be a finite activity Lévy process with generating triplet (γ, σ 2 , ν) satisfying σ 2 > 0. For a fixed positive real number t, consider the continuous supremum of X over [0, t] and, for any positive integer n, the discrete supremum associated with a mesh of size t n , that is

M t = sup 0≤s≤t X s and M n t = sup k=0,1,...,n X kt n .
Then, as n goes to infinity, the pair

√ n (M t -M n t ) , X (t) = (X s ) 0≤s≤t converges in distribution to the pair (σ √ tW, X (t)
) where W is independent of X (t) and given by (4.1). Note that, in the above statement, X (t) is viewed as a random variable with values in the space of càd-làg functions defined on the interval [0, t], which can be endowed with the Skorohod topology.

Proof of theorem 4.2. We will prove that for any bounded and continuous function f and for any bounded random variable Z which is measurable with respect to the σ-algebra generated by the random variables X s , 0 ≤ s ≤ t, we have

lim n→∞ E f √ n(M t -M n t ) Z = E f σ √ tW E(Z). (4.2)
Since X is a finite activity process, it admits the following representation

X s = γ 0 s + σB s + Ns j=1 Y j , s ≥ 0,
where B is a standard Brownian motion, N is a Poisson process with intensity λ = ν(R), and the random variables Y j are iid with distribution ν ν(R) . Note that B, N and the Y j 's are independent.

By conditioning with respect to N t , we have

E f √ n(M t -M n t ) Z = ∞ m=0 E f √ n(M t -M n t ) Z | N t = m P(N t = m).
Note that, conditionally on {N t = 0, X t = y}, the process X (t) σ is a Brownian bridge from 0 to y σ so that, using Theorem 4.1,

lim n→+∞ E f √ n(M t -M n t ) Z | N t = 0 = E f σ √ tW E (Z | N t = 0) .
For the conditional expectation given {N t = m}, m ≥ 1, we condition further with respect to the jump times, to the values of X and to the values of the left-hand limits at the jump times. Denote by T 1 , T 2 ,. . . , T j ,. . . the jump times of the Poisson process N . For any numbers 0 < t 1 < t 2 < . . . < t m < t, x 1 ,. . . , x m , y 1 ,. . . ,y m , y m+1 , let

A m = N t = m, T i = t i , X T - i = x i , X Ti = y i , i = 1, . . . , m, X t = y m+1 .
We observe that, conditionally on A m , the random processes β 0 , . . . , β m defined by

β j s =        1 σ X s if s ∈ [t j , t j+1 ), 1 σ X t - j+1 if s = t j+1 ,
with t 0 = 0 and t m+1 = t, are independent Brownian bridges over the intervals [t j , t j+1 ]. Introduce the random variables

M j = sup tj ≤s≤tj+1 β j s , M j,n = sup k∈I j n β j kt n
, where

I j n = k ∈ N | t j ≤ kt n ≤ t j+1 .
Conditionally on A m , the random variables M j are independent and each of them admits a density. Therefore, with probability one, one of them has to be strictly larger than the others. For j = 0,. . . , m, set

A j m = {M j > M i for i = j}.
Conditionally on A m , we have

f √ n(M t -M n t ) Z = m j=0 1 A j m f √ n(σM j -M n t ) G j (β 0 , . . . , β m ),
for some bounded Borel functions G j defined on the space m j=0 C([t j , t j+1 ]). Now, on the set A j m , we have, for n large enough, M n t = σM j,n . This follows from the fact that the maximum of β j is attained at an interior point of the interval (t j , t j+1 ) and the fact that for n large enough, some elements of I j n are arbitrarily close to this point. Therefore, for n large enough, we have

f √ n(M t -M n t ) Z = m j=0 1 A j m f σǫ j n G j (β 0 , . . . , β m ),
with ǫ j n = √ n(M j -M j,n t ). We deduce from Theorem 4.1 and the independence of the Brownian bridges that

lim n→∞ E f √ n(Mt -M n t ) Z | Am = m j=0 lim n→∞ E 1 A j m f σǫ j n Gj (β 0 , . . . , β m ) | Am = m j=0 E f σ √ tW E 1 A j m Gj(β 0 , . . . , β m ) | Am = E f σ √ tW E(Z | Am).
Hence, for all m ≥ 1,

lim n→∞ E f √ n(M t -M n t ) Z | N t = m = E f σ √ tW E(Z | N t = m),
so that (4.2) follows easily. ⋄

In order to use the convergence in distribution above, we sometimes need to switch between limit and expected value. For that purpose, the following result of uniform integrability will be useful.

Lemma 4.3. Let X be a finite activity Lévy process with generating triplet (γ, σ 2 , ν), satisfying σ > 0. Fix t > 0 and set ǫ n = M t -M n t . Then the sequence ( √ nǫ n e -Mt ) n≥1 is uniformly integrable. If in addition Ee qMt < ∞ for some q > 2, then the sequence ( √ nǫ n e Mt ) n≥1 is uniformly integrable.

Proof of lemma 4.3. We will prove that ( √ nǫ n e Mt ) n≥1 is uniformly integrable. The other case can be easily deduced. We will use the same notations as in the proof of Theorem 4.2. Note that on the set {N t = 0}, we have X s = γ 0 s + σB s for 0 ≤ s ≤ t, so that the uniform integrability of the sequence ( √ nǫ n e Mt 1 {Nt=0} ) n≥1 follows from Lemma 6 in [START_REF] Asmussen | Discretization error in simulation of one-dimensional reflecting brownian motion[END_REF]. On the event {N t ≥ 1}, we will need to rule out the case when there is no jump between two mesh-points. So, we introduce the event

Λ n = {N t ≥ 1 and ∃j ∈ {1, . . . , N t } T j -T j-1 ≤ t/n} ∪ {t -T Nt ≤ t/n}.

Note that

P(Λ n ) ≤ P(t -T Nt ≤ t/n) + E Nt j=1 1 {Tj -Tj-1≤t/n} ≤ EN t (N t + 1)/n,
where we have used the inequalities

P(t-T Nt ≤ t/n | N t = l) ≤ l/n and P(T j -T j-1 ≤ t/n | N t = l) ≤ l/n (cf. [7], Proposition 5.5).
Therefore, we have, using ǫ n ≤ M t and Hölder's inequality,

E √ nǫ n e Mt 1 Λn ≤ √ n EM p t e pMt 1 p (P(Λ n )) 1-1 p ,
for every p > 1. Since Ee qMt < ∞ for some q > 2, we can choose p > 2. Hence

lim n→∞ E √ nǫ n e Mt 1 Λn = 0.
Now, we want to prove that the sequence (

√ nǫ n e Mt 1 {Nt≥1}∩Λ c n ) n≥1 is uniformly in- tegrable.
Fix m ≥ 1 and t 1 ,. . . , t m satisfying 0 < t 1 < . . . < t m < t. Conditionaly on

{N t = m, T 1 = t 1 , . . . , T m = t m } ∩ Λ c
n , we have, with probability one,

ǫ n = m j=0 M j -M n t 1 {M j >max i =j M i } ,
where M j = sup tj ≤s<tj+1 X s , t 0 = 0 and t m+1 = t. Moreover, due to the definition of Λ n , each subinterval [t j , t j+1 ) contains at least one mesh point. Denote

k j = min{k ∈ {0, 1, . . . , n} | kt/n ≥ t j } l j = max{k ∈ {0, 1, . . . , n} | kt/n ≤ t j+1 },
and let s * be a point at which the supremum of

X s over [t j , t j+1 ) is attained. If s * ∈ (t j , k j t/n), we can write M j -M n t ≤ sup s∈(tj ,kj t/n) (X s -X kjt/n ). If s * ∈ (l j t/n, t j+1 ), we have M j -M n t ≤ sup s∈(lj t/n,tj+1) (X s -X lj t/n ). Hence M j -M n t ≤ δ n,j + ǫ n,j + η n,j ,
where [START_REF] Asmussen | Discretization error in simulation of one-dimensional reflecting brownian motion[END_REF], we see that the conditional expectation of any power of √ nǫ n,j is bounded by a constant which is independent of the conditioning. We conclude from this discussion that, for any p > 1,

δ n,j = sup s∈(tj ,kj t/n) (X s -X kj t/n ), η n,j = sup s∈(lj t/n,tj+1) (X s -X lj t/n ),
E √ nǫ n 1 Λ c n ∩{Nt≥1} p | N t ≤ C p N p t ,
where C p is a deterministic constant which depends only on p, γ 0 , σ and t. The uniform integrability of √ nǫ n e Mt follows easily. ⋄ 5. Continuity correction. In this section, we extend the results of Broadie-Glasserman-Kou (1999) on lookback and hindsight options to the jump-diffusion model. Let (S t ) t∈[0,T ] be the price of a security modeled as a stochastic process on a filtered probability space Ω, F , (F t ) t∈[0,T ] , P . The σ-algebra F t represents the historical information on the price until time t. Under the exponential Lévy model, the process S behaves as the exponential of a Lévy process

S t = S 0 e Xt ,
where X is a Lévy process with generating triplet (γ, σ 2 , ν). The considered probability is a risk-neutral probability, under which the process e -(r-δ)t S t t∈[0,T ] is a martingale. The parameter r is the risk-free interest rate, and δ is the dividend rate. The options we will consider in the sequel will have as underlying the asset with price S. We will denote by K the strike price of the option (in the case of hindsight options). The r.v. m T and m n T in table 5.1 satisfy

m T = inf 0≤s≤T X s , m n T = min 0≤k≤n X k∆t ,
where ∆t = T n . The results we are going to show depend on the assumptions made on the process X. That is why we need to introduce the following assumptions: H1 X is an integrable Lévy process with finite activity, satisfying σ > 0 and there exists q > 2 such that Ee qMT < ∞; H2 X is an integrable Lévy process with finite activity, satisfying σ > 0.

Let W be the r.v. defined in theorem 4.1. We set

β 1 = EW = - ζ( 1 2 ) √ 2π
, where ζ is the Riemann zeta function.

At a given time t ∈ [0, T ), the value of the continuous lookback put is given by

V (S + ) = e -r(T -t) E max S + , max t≤u≤T S u -S t e -δ(T -T ) ,
where S + = max 0≤u≤t S u is the predetermined maximum. The continuous value of the lookback call will depend similarly on S -= min 0≤u≤t S u (the predetermined minimum) and on min t≤u≤T S u . The price of the discrete lookback put at the k-th fixing date is given by

V n (S + ) = e -r∆(n-k) E max S + , max k≤j≤n S j∆t -S k∆t e -δ(n-k)∆t ,
where S + = max 0≤j≤k S j∆t . The discrete call value will depend similarly on S -= min 0≤j≤k S j∆t and on min k≤j≤n S j∆t . Proposition 5.1. The price of a discrete lookback option at the k-th fixing date and the price of the continuous lookback option at k∆t satisfy

Vn (S±) = e ∓β 1 σ T n V S±e ±β 1 σ T n ± e ∓β 1 σ T n -1 e -δ(T -t) St + o 1 √ n V (S±) = e ±β 1 σ T n Vn S±e ∓β 1 σ T n ± e ±β 1 σ T n -1 e -δ(T -t) St + o 1 √ n ,
where in ± and ∓, the top case applies for puts and the bottom case for calls. The relations for the put are true under H1, and those for the call under H2. These formulas are the same as those found by Broadie, Glasserman and Kou (1999) for the Black-Scholes model.

Proof of proposition 5.1. Since we have theorem 4.2 and lemma 4.3, the proofs of the above proposition is similar to the proof of theorem 3 of [START_REF] Broadie | Connecting discrete and continuous path-dependent options[END_REF]. For example to relate discrete lookback put with respect to continuous lookback put, we need to prove that for

x ∈ R E e M n T -x + = e -β1σ √ T n E e MT -e β1σ √ T n x + + o 1 √ n .
In fact we have to show first that

E e MT -x + = E e MT -e M n T 1 {e M T >x} + E e M n T -x + +E e M n T -x 1 e M n T ≤x<e M T . So E e M n T -x + = E e MT -x + -E e MT -e M n T 1 {e M T >x} -E e M n T -x 1 e M n T ≤x<e M T . But E e M n T -x 1 e M n T ≤x<e M T ≤ E e MT -e M n T 1 e M n T ≤x<e M T ≤ E (M T -M n T ) e MT 1 e M n T ≤x<e M T .
Moreover the sequence

√ n (M T -M n T ) e MT 1 e M n T ≤x<e M T n≥1
is uniformly integrable (by lemma 4.3). So

lim n→+∞ E √ n (M T -M n T ) e MT 1 e M n
T ≤x<e M T = 0.

On the other hand, using theorem 4.2 and lemma 4.3, we get

E e MT -e M n T 1 {e M T >x} = σβ 1 T n Ee MT 1 {e M T >x} + o 1 √ n .
Thus

E e M n T -x + = E e MT -x + -σβ 1 T n Ee MT 1 {e M T >x} + o 1 √ n = e -σβ1 √ T n E e MT -xe σβ1 √ T n 1 {e M T >x} + o 1 √ n = e -σβ1 √ T n E e MT -xe σβ1 √ T n 1 x<e M T ≤xe σβ 1 √ T n +e -σβ1 √ T n E e MT -xe σβ1 √ T n + + o 1 √ n .
But, we can show that

E e MT -xe σβ1 √ T n 1 x<e M T ≤xe σβ 1 √ T n = o 1 √ n .
Hence

E e M n T -x + = e -σβ1 √ T n E e MT -xe σβ1 √ T n + + o 1 √ n .
The others cases can be derived in the same way. Detailed proofs are given in [START_REF] Dia | Exotic Options under Exponential Lévy Model[END_REF]. ⋄

For hindsight options, we have similar results as for the lookback case. The price of a continuous hindsight call option at time t with a predetermined maximum S + and strike K is

V (S + , K) = e -r(T -t) E max S + , max t≤u≤T S u -K + .
Similarly, for the put we have

V (S -, K) = e -r(T -t) E K -min S -, min t≤u≤T S u + .
The discrete versions at the k-th fixing date are

V n (S + , K) = e -r∆t(n-k) E max S + , max k≤j≤n S j∆t -K + and V n (S -, K) = e -r∆t(n-k) E K -min S -, min k≤j≤n S j∆t + .
Proposition 5.2. The prices of a discrete hindsight option at the k-th fixing date and its continuous version at k∆t, satisfy

V n (S ± , K) = e ∓β1σ √ T n V S ± e ±β1σ √ T n , Ke ±β1σ √ T n + o 1 √ n and V (S ± , K) = e ±β1σ √ T n V n S ± e ∓β1σ √ T n , Ke ∓β1σ √ T n + o 1 √ n ,
where in ± and ∓, the top case applies for calls and the bottom for puts. The relations for the calls are true under H1, and those for the put under H2. To explain the above proposition one can say that, in order to price a continuous (resp. discrete) hindsight option using a discrete (resp. continuous) one, we must shift the predetermined extremum and the strike. Proposition 5.2 can be deduced from proposition 5.1, thanks to the relations between lookback and hindsight options. Remark 5.3. If the process X is an integrable Lévy process with generating triplet (γ, 0, ν), satisfying ν(R) < ∞, then the price of a discrete lookback option and its continuous version at time k∆t satisfy 1. for the call

V n (S -) = V (S -) + α n + o 1 n ,
where the constant α can be derived explicitly, 2. for the put, if there exists β > 1 such that Ee βMT < ∞, then

V n (S + ) = V (S + ) + o 1 n β-1 β
.

The proof of these results can be found in [START_REF] Dia | Exotic Options under Exponential Lévy Model[END_REF].

6. Upper bounds. In the infinite activity case and if there is no Brownian part, the prices of the discrete and continuous calls are close to each other. The following proposition is a consequence of theorems 3.9 and 3.12. Proposition 6.1. Suppose that X is an integrable infinite activity Lévy process with generating triplet (γ, 0, ν). Then the prices of a discrete call option at the k th fixing date and its continuous version at k∆t satisfy 1.

V n (S -) = V (S -) + o 1 √ n . In the put case, the error between continuous and discrete prices depends on the integrability of the exponential of the supremum of the Lévy process driving the underlying asset. Theorem 6.2. Suppose that X is an infinite activity Lévy process with generating triplet (γ, 0, ν) and there exists β > 1 such that Ee βMT < ∞. Then the price of a discrete put option at the k-th fixing date and its continuous version at k∆t, satisfy 1. We have, for any ǫ > 0,

If

V n (S + ) = V (S + ) + O 1 .

The main technical difficulty for the proof of theorem 6.2 consists of deducing an estimate of E e MT -e M n T from an estimate of E (M T -M n T ). In fact, the theorem can be deduced from the following lemma. Lemma 6.3. Assume that X is an infinite activity Lévy process with generating triplet (γ, 0, ν) and there exists β > 1 such that Ee βMT < ∞. Then for any ǫ > 0

E e MT -e M n T ≤ C (E (M T -M n T )) β-1 β -ǫ ,
where C is a positive constant.

Proof of lemma 6. .

Note that Ee βMT < ∞ implies that EM q T < ∞ for any q > 0. Let ρ ∈]0, 1[, we have We can easily deduce the first result of the lemma (σ = 0). In the case σ > 0, we have

E (M T -M n T ) β β-1 = E (M T -M n T ) ρ (M T -M n T ) β β-1 -ρ = E (M T -M n T ) ρ (M T -M n T ) β(1-ρ)+ρ β-1 ≤ (E (M T -M n T )) ρ E (M T -M n T ) β(1-ρ)+ρ (β-1)(1-ρ)
sup 0≤s≤ T n X s ≤ 1 √ n |γ 0 |T √ n + σ √ n sup 0≤s≤ T n B s ≤ 1 √ n |γ 0 |T + σ √ n sup 0≤s≤ T n B s = d 1 √ n |γ 0 |T + σ sup 0≤s≤T B s .
Let (V k ) 1≤k≤n be i.i.d. r.v. with the same distribution as |γ 0 |T + σ sup 0≤s≤T B s . Then we have

E (M T -M n T ) β ≤ 1 √ n β E max 1≤k≤n V β k .
Let g be the function defined as follows

g(x) = (log(x)) β , x > 1.
The function g is concave and non-decreasing on the set [e β-1 , +∞). So we have e max(V k ,β-1) , because g is non-decreasing ≤ g nEe max(V1,β-1) .

E sup 1≤k≤n V β k = E sup
Note that we have Ee max(V1,β-1) < ∞. Hence the second result of the lemma. ⋄ Proof of proposition 6.4. To prove proposition 6. 

Theorem 4 . 1 .

 41 Consider four real numbers a, b, x and y, with 0 ≤ a < b. Let β = (β t ) a≤t≤b be a Browian bridge from x to y over the time interval [a, b] (so that β a = x and β b = y) and let t be a fixed positive number. Denote by M the supremum of β and, for any positive integer n, by M n the discrete supremum associated with a mesh of size t n , so that M = sup a≤t≤b β t and M n = sup k∈In β kt n
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 551 Fig. 5.1. The payoffs of lookback and hindsight options.

3 .

 3 |x|≤1 |x|ν(dx) < ∞, V n (S -) = V (S -) + O log(n) n . If |x|≤1 |x| log(|x|)ν(dx) < ∞, V n (S -) = V (S -) + O 1 n .

. 2 .. 3 . 1 n

 231 If |x|≤1 |x|ν(dx) < ∞, we have, for any ǫ > 0,V n (S + ) = V (S + ) + O log(n) n If |x|≤1 |x| log(|x|)ν(dx) < ∞, we have, for any ǫ > 0, V n (S + ) = V (S + ) + O

3 .

 3 By the convexity of the exponential function, we have e MT -e M n T ≤ (M T -M n T ) e MT . So, by Hölder's inequality,E e MT -e M n T ≤ Ee βMT 1 β E (M T -M n T )

.

  Hence, from the fact thatlim n→+∞ E (M T -M n T ) β(1-ρ)+ρ (β-1)(1-ρ) = 0, there exists a constant C > 0 such that E e MT -e M n T ≤ C (E (M T -M n T ))

1≤k≤n g e V k =

 k Eg sup 1≤k≤n e V k , because g is non-decreasing ≤ Eg sup 1≤k≤n e max(V k ,β-1) , because g is non-decreasing ≤ g E sup 1≤k≤n e max(V k ,β-1) , by Jensen ≤ g E n k=1

4 ,

 4 we need to show that E e MT -e M n T But by the convexity of the exponential function, we have e MT -e M n T ≤ e MT (M T -M n T ) . So using Hölder's inequality, we get E e MT -e M n T

  wdw.

	But h is continuous and for w ∈ [0, t] we have w m + (k -1) t m ∈ (k -1) t m , k t m , so
	lim m→ +∞	t m	m k=1	h	w m	+ (k -1)	t m	=	0	t	h(s)ds.
	Hence										
	lim m→ +∞	mI m (h) =	0	t		1 t	0	t	h(s)ds wdw
						=	t 2	0	t	h(s)ds.
	Consider now the case where h is integrable on [0, t]. Then there exists a sequence of
	functions (h n ) n≥0 in C([0, t]) such that					
					t						
		lim n→ +∞	0	|h(u) -h n (u)|du = 0.

  = γ 0 s + σ(B s+kj t/n -B kj t/n ). Using Lemma 6 of

	where β j s					
	and					
		ǫ n,j =	sup kj t/n≤s≤lj t/n	X s -max kj ≤k≤lj	X kt/n .
	Observe that					
	δ n,j =	sup s∈(tj ,kj t/n)	γ 0 s + σB s -γ 0	k j t n	+ σB kj t/n
	≤ |γ 0 |	t n	+ σ	sup s∈(tj ,kj t/n)	B s -B kj t/n .	(4.3)
	Similarly,					
	η n,j ≤ |γ 0 |	t n	+ σ	sup s∈(lj t/n,tj+1)	B s -B lj t/n .	(4.4)
	Note that |t j -k j t/n| ≤ t/n and t j+1 -l j t/n ≤ t/n. Therefore, we easily deduce from (4.3) (resp. (4.4)) that the conditional expectation of any power of √ nδ n,j (resp. √ nη n,j ) is bounded by a constant which is independent of the conditioning. We also
	have					
	ǫ n,j =	sup 0≤s≤(lj -kj )t/n	β j s -max 0≤k≤lj -kj	β j kt/n ,

.

We conclude by lemma 6.5. ⋄

Results for hindsight options are similar to those for lookback options. This is simply due to the relations between lookback and hindsight options.

Then for any ǫ > 0, there exists a constant C > 0 such that

⋄

When the Lévy process driving the underlying asset has no positive jumps, we get tighter estimates. Proposition 6.4. Let X be a Lévy process with generating triplet (γ, σ 2 , ν). We assume that X has no positive jump (ν(0, +∞) = 0), that -1≤x<0 |x|ν(dx) < ∞ and that there exists β > 1 such that Ee βMT < ∞. Then, the price of a discrete put lookback at the k-th fixing date and its continuous version at time k∆t, satisfy 1. if σ = 0

Proposition 6.4 is based on the estimation of the moments of M T -M n T , which can be performed when there are no positive jumps. Lemma 6.5. Let X be a Lévy process with generating triplet (γ, σ 2 , ν), satisfying |x|≤1 |x|ν(dx) < ∞. We suppose that X has no positive jumps, then for any β > 1, we have

Proof of lemma 6.5. We have

where the random variables sup