Hadj El 
  
Dia Aly 
  
ERROR BOUNDS FOR SMALL JUMPS OF L ÉVY PROCESSES

Keywords: Approximation of small jumps, Lévy processes, Skorokhod embedding, Spitzer identity AMS subject classifications. 60G51, 65N15 JEL classification. C02, C15

   

Error bounds for small jumps of Lévy processes

El Hadj Aly Dia

1. Introduction. In the recent years, the use of general Lévy processes in financial models has grown extensively (see [START_REF] Barndorff-Nielsen | Normal inverse Gaussian distributions and stochastic volatility modelling[END_REF][START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF][START_REF] Eberlein | Application of generalized hyperbolic Lévy motions to finance[END_REF]). A variety of numerical methods have been subsequently developed, in particular methods based on Fourier analysis (see [START_REF] Broadie | A double-exponential fast Gauss transform algorithm for pricing discrete path-dependent options[END_REF][START_REF] Feng | Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: a fast Hilbert transform approach[END_REF][START_REF] Feng | Computing exponential moments of the discrete maximum of a Lévy process and lookback Options[END_REF][START_REF] Petrella | Numerical pricing of discrete barrier and lookback options via Laplace transforms[END_REF]). Nonetheless, in many situations, Monte-Carlo methods have to be used. The simulation of a Lévy process with infinite Lévy measure is not straightforward, except in some special cases like the Gamma or Inverse Gaussian models. In practice, the small jumps of the Lévy process are either just truncated or replaced by a Brownian motion with the same variance (see [START_REF] Asmussen | Approximations of small jumps of Lévy processes with a view towards simulation[END_REF][START_REF] Cont | Financial Modelling with Jump Processes[END_REF][START_REF] Cont | Integro-differential equations for option prices in exponential Lévy models[END_REF][START_REF] Rydberg | The normal inverse gaussian lévy process: simulation and approximation[END_REF][START_REF] Signahl | On error rates in Normal approximations and simulation schemes for Lévy processes[END_REF]). The latter approach was introduced by Asmussen and Rosinski [START_REF] Asmussen | Approximations of small jumps of Lévy processes with a view towards simulation[END_REF], who showed that, under suitable conditions, the normalized cumulated small jumps asymptotically behave like a Brownian motion.

The purpose of this article is to derive bounds for the errors generated by these two methods of approximation in the computation of functions of Lévy processes at a fixed time or functionals of the whole path of Lévy processes. We also derive bounds for the cumulative distribution functions. These bounds can be used to determine which type of approximations to use, since replacing small jumps by Brownian is more time-consuming (if we use Monte Carlo methods). Our bounds can be applied to derive approximation errors for lookback, barrier, American or Asian options. But this latter point will not be developed, and is left to another paper.

The characteristic function of a real Lévy process X with generating triplet (γ, b 2 , ν) is given by

Ee iuXt = exp t iγu - b 2 u 2 2 + +∞ -∞ e iux -1 -iux1 |x|≤1 ν(dx) ,
where γ ∈ R, b ≥ 0, and ν is a Lévy measure. The process X is the independent sum of a drift term γt, a Brownian component bB t , and a compensated jump part with Lévy measure ν. The process X has finite (resp. infinite) activity if ν(R) < ∞ (resp. ν(R) = +∞). For 0 < ǫ ≤ 1, the process X ǫ is defined by

X ǫ t = γt + bB t + 0≤s≤t ∆X s 1 {|∆Xs|>ǫ} -t ǫ<|x|≤1 xν(dx).
The process X ǫ is obtained (from X) by subtracting the compensated sum of jumps not exceeding ǫ in absolute value. Let R ǫ = X -X ǫ .

(1.1)

The process R ǫ is a Lévy process with characteristic function

Ee iuR ǫ t = exp t |x|≤ǫ e iux -1 -iux ν(dx) .
It holds E (R ǫ t ) = 0 and Var (R ǫ t ) = σ(ǫ) 2 t, where

σ(ǫ) = |x|≤ǫ x 2 ν(dx).
Note that lim ǫ→0 σ(ǫ) = 0. The behavior of σ(ǫ) when ǫ goes to 0 is known for classical models (VG, NIG, CGMY...). As noted in Example 2.3 of [START_REF] Asmussen | Approximations of small jumps of Lévy processes with a view towards simulation[END_REF], if ν(dx) = |x| -1-α L(x)dx, where α ∈ (0, 2) and L is slowly varying at 0 , then it holds σ(ǫ) ∼ ((L(-ǫ) + L(ǫ)) /(2 -α))

1/2 ǫ 1-α/2 ; consequently, lim ǫ→0 σ(ǫ)/ǫ = +∞. We also define the process Xǫ by

Xǫ t = X ǫ t + σ(ǫ) Ŵt , t ≥ 0,
where Ŵ is a standard Brownian motion independent of X. We aim to study the behavior of the errors made by replacing X by X ǫ or Xǫ , with respect to the level ǫ. These errors are studied for the process X at a fixed date and for its running supremum. Set, for any t ≥ 0,

M t = sup 0≤s≤t X s , M ǫ t = sup 0≤s≤t X ǫ s , M ǫ t = sup 0≤s≤t Xǫ s .
Unless stated otherwise, X is a Lévy process with generating triplet (γ, b 2 , ν).

The paper is organized as follows. In the next section, we will study the errors resulting from the truncation of the compensated sum of small jumps. The results of that section are based on estimates for the moments of R ǫ . We also derive an estimate for the expectation E (M t -M ǫ t ), by using Spitzer's identity. In Section 3 we study the errors resulting from Brownian approximation. The process X will be approximated by the process Xǫ . A major result of Section 3 is Theorem 2, which states an error bound for the expectation of a function of the supremum. This result is the consequence of Theorem 3.7, which relies on the Skorohod embedding theorem.

2. Truncation of the compensated sum of small jumps. In this section, we will study the errors resulting from the approximation of X by X ǫ . These errors are related to the moments of R ǫ . Define

σ 0 (ǫ) = max (σ(ǫ), ǫ) .
(2.1)

The next result will be useful for many proofs in this paper. Proposition 2.1. Let X be a Lévy process and R ǫ defined in (1.1). Then

E |R ǫ t | 4 = t |x|≤ǫ x 4 ν(dx) + 3 tσ(ǫ) 2 2 ,
and for any real q > 0

E |R ǫ t | q ≤ K q,t σ 0 (ǫ) q ,
where K q,t is a positive constant which depends only on q and t. [START_REF] Tankov | Lévy processes in finance: inverse problems and dependence modelling[END_REF]. Substituting into the general formula

Proof. Let c k (R ǫ t ) denote the kth cumulant of R ǫ t . Then c 1 (R ǫ t ) = E (R ǫ t ) = 0, and, for any k ≥ 2, c k (R ǫ t ) = t |x|≤ǫ x k ν(dx) (note that c 2 (R ǫ t ) = Var (R ǫ t ) = σ 2 (ǫ)t). See Proposition 1.2 of
µ ′ 4 = c 4 + 4c 3 c 1 + 3c 2 2 + 6c 2 c 2 1 + c 4 1 (cf. (2.
3) below), where, here and below, µ

′ k and c k denote the kth moment and kth cumulant of a distribution, respectively, gives the first part of the proposition. We now prove the second part. Let n = ⌈q/2⌉. Since 0 < q/(2n) ≤ 1,

E |R ǫ t | q ≤ E |R ǫ t | 2n q 2n
(by Jensen's inequality for concave functions). It thus suffices to prove the result for the case q = 2n, n ∈ N; in fact, for any n ∈ N, it holds

|E (R ǫ t ) n | ≤ K n,t σ 0 (ǫ) n . (2.
2)

The last inequality can be proved by induction as follows. It is trivial for n = 0, 1, 2. Suppose that (2.2) holds for all n < m. Then, by the well-known result (see e.g. Theorem 2 of [START_REF] Morris | Natural exponential families with quadratic variance functions[END_REF])

µ ′ m = m-1 n=0 m -1 n µ ′ n c m-n , m ≥ 1, (2.3) 
for all m ≥ 2 we have (recall that c 1 (R ǫ t ) = 0)

|E (R ǫ t ) m | ≤ m-2 n=0 m -1 n |E (R ǫ t ) n | |c m-n (R ǫ t )| .
Hence, in view of the induction hypothesis, it suffices to show that

|c m-n (R ǫ t )| ≤ tσ 0 (ǫ) m-n . Since m -n ≥ 2, we have c m-n (R ǫ t ) = t |x|≤ǫ x m-n ν(dx)
, and hence

|c m-n (R ǫ t )| ≤ t |x|≤ǫ |x| m-n ν(dx) ≤ tǫ m-n-2 |x|≤ǫ |x| 2 ν(dx) ≤ tσ 0 (ǫ) m-n .
The proposition is thus established.

2.1.

Estimates for smooth functions. Let X be a Lévy process and f a C-Lipschitz function where C > 0. Then,

E |f (X t ) -f (X ǫ t )| ≤ CE |R ǫ t | ≤ C E |R ǫ t | 2 ≤ C √ tσ(ǫ).
Note that we do not ask that f (X t ) be integrable. If f is more regular, sharper estimates can be derived, as shown in the following proposition. Proposition 2.2. Let X be an infinite activity Lévy process.

1. If f ∈ C 1 (R) and satisfies E f ′ (X ǫ t ) < ∞, and if there exists β > 1 such that sup ǫ∈(0,1] E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) β 1 β
is finite and integrable with respect to θ on [0, 1], then

E (f (X t ) -f (X ǫ t )) = o (σ 0 (ǫ)) . 2. If f ∈ C 2 (R) and satisfies E f ′ (X ǫ t ) + E f ′′ (X ǫ t ) < ∞, and if there ex- ists β > 1 such that sup ǫ∈(0,1] E f ′′ (X ǫ t + θR ǫ t ) -f ′′ (X ǫ t ) β 1 β
is finite and integrable with respect to θ on [0, 1], then

E (f (X t ) -f (X ǫ t )) = σ(ǫ) 2 t 2 Ef ′′ (X ǫ t ) + o σ 0 (ǫ) 2 .
Note that, if f has bounded derivatives or f is the exponential function and e βXt is integrable, where β > 1, the conditions in the above proposition are satisfied. Recall that the truncation of small jumps is used when ν(R) = ∞. In typical applications, we have lim inf σ(ǫ)/ǫ > 0, so that o σ 0 (ǫ) 2 is in fact o σ(ǫ) 2 .

Proof. To prove part 1, we first write f

(X t ) -f (X ǫ t ) as f (X t ) -f (X ǫ t ) = 1 0 f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) R ǫ t dθ + f ′ (X ǫ t ) R ǫ t ( 2.4) 
(by Theorem 27.4 of [START_REF] Sato | Lévy processes and Infinitely Divisible Distributions[END_REF], R ǫ t = 0 a.s.). Since R ǫ t and X ǫ t are independent, E f ′ (X ǫ t ) R ǫ t = 0. For any 1 < α < β, by Hölder's inequality,

E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) R ǫ t ≤ E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) α 1 α E |R ǫ t | α α-1 α-1 α
. By Lyapunov's inequality,

E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) α 1 α ≤ E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) β 1 β
.

Further, the assumption

sup ǫ∈(0,1] E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) β < ∞ implies that the collection f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) α ǫ∈(0,1]
is uniformly integrable; hence, since

f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) α → 0 a.s. as ǫ → 0, E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) α → 0 (pointwise for θ ∈ [0, 1]). Therefore, by dominated convergence, lim ǫ→0 1 0 E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) α 1 α dθ = 0.
Combined with Proposition 2.1, it thus follows that

1 0 E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) R ǫ t dθ = o (σ 0 (ǫ)) .
Part 1 of the proposition then follows from (2.4) (using Fubini's theorem). We now prove the second part of the proposition. Using Taylor's formula we get

E (f (X t ) -f (X ǫ t )) = E f ′ (X ǫ t ) (X t -X ǫ t ) + Xt X ǫ t f ′′ (x) (X t -x)dx = E f ′ (X ǫ t ) R ǫ t + 1 0 f ′′ (X ǫ t + θR ǫ t ) (1 -θ) (R ǫ t ) 2 dθ = E 1 0 f ′′ (X ǫ t + θR ǫ t ) (1 -θ) (R ǫ t ) 2 dθ = E 1 0 f ′′ (X ǫ t ) (1 -θ) (R ǫ t ) 2 dθ +E 1 0 f ′′ (X ǫ t + θR ǫ t ) -f ′′ (X ǫ t ) (1 -θ) (R ǫ t ) 2 dθ .
The first expectation after the last equality sign is equal to σ(ǫ) 2 t 2 Ef ′′ (X ǫ t ) while the second one can be shown to be o σ 0 (ǫ) 2 by following the proof of part 1. The proposition is proved.

Remark 2.3. Assume that X is an integrable infinite activity Lévy process and

that f ∈ C 1 (R) with f ′ being C-Lipschitz. Then |E (f (X t ) -f (X ǫ t ))| ≤ Cσ(ǫ) 2 t 2 . Indeed, E f ′ (X ǫ t ) R ǫ t = 0 (by the assumptions on X and f , E f ′ (X ǫ t ) < ∞)
, and so the result follows directly from (2.4) using

|E (f (X t ) -f (X ǫ t ))| ≤ E 1 0 f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) |R ǫ t | dθ .
We will consider now the case of the supremum process. Proposition 2.4. Let X be a Lévy process and f a K-Lipschitz function. Then

E |f (M t ) -f (M ǫ t )| ≤ 2K √ tσ(ǫ).
Proof. We have

E f sup 0≤s≤t X s -f sup 0≤s≤t X ǫ s ≤ KE sup 0≤s≤t X s -sup 0≤s≤t X ǫ s ≤ KE sup 0≤s≤t |R ǫ s | ≤ K E sup 0≤s≤t |R ǫ s | 2 .
Note that R ǫ is a càdlàg martingale. So, using Doob's inequality, we get

E f sup 0≤s≤t X s -f sup 0≤s≤t X ǫ s ≤ 2K E |R ǫ t | 2 = 2K √ tσ(ǫ).
Remark 2.5. Suppose that X is an integrable Lévy process and f a function from R + × R to R, K-Lipschitz with respect to its second variable. Then

sup τ ∈T [0,t] Ef (τ, X τ ) -sup τ ∈T [0,t] Ef (τ, X ǫ τ ) ≤ 2K √ tσ(ǫ),
where T [0,t] denotes the set of stopping times with values in [0, t]. For a proof, the reader is referred to [START_REF] Dia | Options exotiques dans les modèles exponentiels de Lévy[END_REF], pp. 67 -68.

The bound in Proposition 2.4 might not be optimal. This is what suggests the following result.

Theorem 2.6. Let X be an integrable infinite activity Lévy process. Then

0 ≤ E (M t -M ǫ t ) = o (σ(ǫ)) .
Proof. Using Spitzer's identity (see Proposition 1 in Section 3 of [START_REF] Dia | Connecting discrete and continuous lookback or hindsight options in exponential Lévy models[END_REF] for details), we have

E (M t -M ǫ t ) = t 0 EX + s s ds - t 0 E (X ǫ s ) + s ds = t 0 E X + s -(X ǫ s ) + ds s .
It holds

X + s -(X ǫ s ) + = (X ǫ s + R ǫ s ) + -(X ǫ s ) + = (X ǫ s + R ǫ s ) 1 X ǫ s +R ǫ s >0 -X ǫ s 1 X ǫ s >0 = (X ǫ s + R ǫ s ) 1 X ǫ s >0 + 1 X ǫ s +R ǫ s >0,X ǫ s ≤0 -1 X ǫ s +R ǫ s ≤0,X ǫ s >0 -X ǫ s 1 X ǫ s >0 = (X ǫ s + R ǫ s ) 1 X ǫ s +R ǫ s >0,X ǫ s ≤0 -1 X ǫ s +R ǫ s ≤0,X ǫ s >0 + R ǫ s 1 X ǫ s >0 = (|R ǫ s | -|X ǫ s |) + 1 X ǫ s +R ǫ s >0,X ǫ s ≤0 + 1 X ǫ s +R ǫ s ≤0,X ǫ s >0 + R ǫ s 1 X ǫ s >0 . Set I ǫ s = E X + s -(X ǫ s ) + . Thus, since E R ǫ s 1 X ǫ s >0 = 0 (by independence), 0 ≤ I ǫ s ≤ E (|R ǫ s | -|X ǫ s |) + .
By the left inequality,

E (M t -M ǫ t ) ≥ 0. We now prove that E (M t -M ǫ t ) = o (σ(ǫ)). Since (|R ǫ s | -|X ǫ s |) + ≤ |R ǫ s | 1 |X ǫ s |<|R ǫ s | , we get I ǫ s ≤ E |R ǫ s | 1 |X ǫ s |<|R ǫ s | .
Hence, by Cauchy-Scwarz inequality,

I ǫ s ≤ E |R ǫ s | 2 1 2 E 1 |X ǫ s |<|R ǫ s | 2 1 2 = σ(ǫ) √ sP [|X ǫ s | < |R ǫ s |] 1 2 .
Thus,

0 ≤ E (M t -M ǫ t ) ≤ σ(ǫ) t 0 P [|X ǫ s | < |R ǫ s |] 1 2 ds √ s . Since ν(R) = ∞, R ǫ s → 0 a.s. and X ǫ s → X s a.s. with X s = 0. Hence P [|X ǫ s | < |R ǫ s |] 1 2 → 0 as ǫ → 0. Therefore, by dominated convergence, lim ǫ→0 t 0 P [|X ǫ s | < |R ǫ s |] 1 2 ds √ s = 0,
and so E (M t -M ǫ t ) = o (σ(ǫ)). In financial applications, the function f in Proposition 2.4 is not always Lipschitz, as for call lookback option where the function is exponential. Hence the following proposition.

Proposition 2.7. Let X be a Lévy process and p > 1. If Ee pMt < ∞, then

E e Mt -e M ǫ t ≤ C p,t σ 0 (ǫ), where C p,t is a positive constant independent of ǫ. Lemma 2.8. Let p > 0. If Ee pMt < ∞ , then sup 0<δ≤1 Ee pM δ t < ∞.
Remark 2.9. For any p > 0, Ee pMt < ∞ if and only if x>1 e px ν(dx) < ∞.

The "only if" part follows from Theorem 25.3 of [START_REF] Sato | Lévy processes and Infinitely Divisible Distributions[END_REF], noting that e pXt ≤ e pMt . For the "if" part, decompose X as the independent sum [START_REF] Sato | Lévy processes and Infinitely Divisible Distributions[END_REF] that E e p sup 0≤s≤t Ys is finite; so is E e pZt by the former theorem, under the assumption that x>1 e px ν(dx) < ∞.

X = Y + Z + Z ′ of
Hence E e pMt < ∞.

Proof. [Proof of Lemma 2.8] For δ ∈ (0, 1], define Rδ = X δ -X 1 . The process Rδ is the compensated sum of jumps belonging to (δ, 1] in absolute value. So

Ee pM δ t ≤ Ee p sup 0≤s≤t X 1 s +p sup 0≤s≤t Rδ s ≤ Ee p sup 0≤s≤t X 1 s Ee p sup 0≤s≤t | Rδ s | .
By hypothesis and Remark 2.9, noting that Remark 2.9 holds also for

M 1 t , Ee p sup 0≤s≤t X 1 s < ∞. We need to bound Ee p sup 0≤s≤t | Rδ s | independently of δ. We have Ee p sup 0≤s≤t | Rδ s | = E +∞ n=0 p sup 0≤s≤t Rδ s n n! = 1 + pE sup 0≤s≤t Rδ s + +∞ n=2 p n n! E sup 0≤s≤t Rδ s n .
By Doob's inequality ( Rδ is a càdlàg martingale)

Ee p sup 0≤s≤t | Rδ s | ≤ 1 + p E sup 0≤s≤t Rδ s 2 + +∞ n=2 p n n! n n -1 n E Rδ t n ≤ 1 + 2p E Rδ t 2 + +∞ n=2 p n n! 2 n E Rδ t n ≤ 2p Var Rδ t + E +∞ n=0 p n n! 2 n Rδ t n ≤ 2p t δ<|x|≤1 x 2 ν(dx) + Ee 2p| Rδ t | ≤ 2p tσ(1) 2 + Ee 2p Rδ t + Ee -2p Rδ t .
It thus suffices to show that sup 0<δ≤1 Ee β Rδ t < ∞ for any β ∈ R. Indeed, we have

Ee β Rδ t = exp t δ<|x|≤1 e βx -1 -βx ν(dx)
(a moment-generating function of a compensated compound Poisson process). By Taylor's theorem, e βx -1 -βx = β 2 x 2 e βξ /2 for any |x| ≤ 1, where ξ is some number between 0 and x. This completes the proof, as it implies that

Ee β Rδ t ≤ exp β 2 t 2 e |β| |x|≤1
x 2 ν(dx) .

Proof. [Proof of Proposition 2.7] By the mean value theorem, we have

e Mt -e M ǫ t = (M t -M ǫ t ) e Mǫ t ,
where M ǫ t is between M t and M ǫ t . Let q be defined such that 1 p + 1 q = 1.

E e Mt -e M ǫ t ≤ E |M t -M ǫ t | e Mǫ t ≤ E sup 0≤s≤t |R ǫ s | e Mǫ t ≤ E sup 0≤s≤t |R ǫ s | q 1 q Ee p Mǫ t 1 p .
Hence, using Doob's inequality and then Proposition 2.1, we get

E e Mt -e M ǫ t ≤ q q -1 (E |R ǫ t | q ) 1 q Ee p Mǫ t 1 p ≤ C p,t σ 0 (ǫ) E e pMt + e pM ǫ t 1 p ,
where C p,t denotes a constant depending on p and t. We conclude the proof by Lemma 2.8.

Estimates for cumulative distribution functions.

For cumulative distribution functions, bounds are expected to be bigger. However, in some cases we can get similar results as in Lipschitz case. In the first result below, we assume local boundedness of the probability density function of the Lévy process X and its supremum process M at a fixed time t. The regularity of the probability density function of a Lévy process is studied in [START_REF] Sato | Lévy processes and Infinitely Divisible Distributions[END_REF][START_REF] Bertoin | Lévy Processes[END_REF]. For the supremum process see [START_REF] Chaumont | On the law of the supremum of Lévy processes[END_REF][START_REF] Dia | Options exotiques dans les modèles exponentiels de Lévy[END_REF].

Proposition 2.10. Let X be a Lévy process.

1. If b > 0, then sup x∈R |P [X t ≥ x] -P [X ǫ t ≥ x]| ≤ 1 √ 2πb σ(ǫ).
2. If X t has a locally bounded probability density function and x ∈ R, then for any q ∈ (0, 1),

|P [X t ≥ x] -P [X ǫ t ≥ x]| ≤ C x,t,q σ 0 (ǫ) 1-q ,
where, here and below, C x,t,q denotes a positive constant depending on x, t and q. 3. If M t has a locally bounded probability density function on (0, +∞) and x > 0, then for any q ∈ (0, 1/2),

|P [M t ≥ x] -P [M ǫ t ≥ x]| ≤ C x,t,q σ 0 (ǫ) 1-q .
Lemma 2.11. Let X and Y be two r.v.'s. We assume that X has a bounded density in a neighbourhood of x ∈ R, and there exists p > 0 such that E |X -Y | p is finite. Then there exists a constant K x > 0, such that for any δ > 0

|P [X ≥ x] -P [Y ≥ x]| ≤ K x δ + E |X -Y | p δ p .
Proof. We have

|P [X ≥ x] -P [Y ≥ x]| = |P [X ≥ x, Y < x] -P [X < x, Y ≥ x]| .
We will study the above terms on the right of the equality.

P [X ≥ x, Y < x] = P [x ≤ X < x + (X -Y )] = P [x ≤ X < x + (X -Y ) , |X -Y | ≤ δ] +P [x ≤ X < x + (X -Y ) , |X -Y | > δ] ≤ P [x ≤ X < x + δ] + P [|X -Y | > δ] .
Suppose that X has a bounded density f in the interval [x -δ 0 , x + δ 0 ], δ 0 > 0 fixed, and let

K x = max sup x-δ0≤t≤x+δ0 f (t), 1 δ 0 .
By considering the cases δ < δ 0 and δ ≥ δ 0 separately, it is readily checked that

P [x ≤ X < x + δ] ≤ K x δ,
for any δ > 0. Thus, using Markov's inequality, we get

P [X ≥ x, Y < x] ≤ K x δ + E |X -Y | p δ p .
Similarly, using

P [x -δ ≤ X < x] ≤ K x δ, it holds that P [X < x, Y ≥ x] ≤ K x δ + E |X -Y | p δ p .
Lemma 2.11 is thus established.

Proof.

[Proof of Proposition 2.10] We have

|P [X t ≥ x] -P [X ǫ t ≥ x]| = |P [X t ≥ x, X ǫ t < x] -P [X t < x, X ǫ t ≥ x]| . (2.5)
It holds that

P [X t ≥ x, X ǫ t < x] = P [x -(X t -X ǫ t ) ≤ X ǫ t < x] = P [x -R ǫ t ≤ bB t + (X ǫ t -bB t ) < x] .
Note that bB t is independent of X ǫ t -bB t and R ǫ t , and 1

√

2πtb is an upper bound of the probability density function of bB t . Then, by conditioning on the pair (R ǫ t , X ǫ t -bB t ), it can be concluded that

P [x -R ǫ t ≤ bB t + (X ǫ t -bB t ) < x] ≤ 1 √ 2πtb E |R ǫ t | . Therefore, using that E |R ǫ t | ≤ σ(ǫ) √ t, P [X t ≥ x, X ǫ t < x] ≤ 1 √ 2πb σ(ǫ).
Similarly

P [X t < x, X ǫ t ≥ x] = P [x ≤ X ǫ t < x -(X t -X ǫ t )] = P [x ≤ σB t + (X ǫ t -σB t ) < x -R ǫ t ] ≤ 1 √ 2πσ σ(ǫ).
Hence part 1 of the proposition follows from (2.5). We now prove part 2 of the proposition. Let p > 0. By Lemma 2.11 followed by Proposition 2.1, there exist positive constants K x,t and K p,t such that

|P [X t ≥ x] -P [X ǫ t ≥ x]| ≤ K x,t δ + E |X t -X ǫ t | p δ p = K x,t δ + E |R ǫ t | p δ p ≤ K x,t δ + K p,t σ 0 (ǫ) p δ p for any δ > 0. Choosing δ = σ 0 (ǫ) p p+1 yields |P [X t ≥ x] -P [X ǫ t ≥ x]| ≤ 2 max (K x,t , K p,t ) σ 0 (ǫ) p p+1 ,
and so the result follows since p/(p + 1) can be chosen arbitrarily in (0, 1). We now prove part 3 of the proposition. Let p > 1. By Lemma 2.11, there exists a constant K ′ x,t > 0 such that

|P [M t ≥ x] -P [M ǫ t ≥ x]| ≤ K ′ x,t δ + E |M t -M ǫ t | p δ p
for any δ > 0. On the other hand

E |M t -M ǫ t | p ≤ E sup 0≤s≤t |X s -X ǫ s | p = E sup 0≤s≤t |R ǫ s | p .
So by Doob's inequality, we have, using the constant K p,t from part 2,

E |M t -M ǫ t | p ≤ p p -1 p E |R ǫ t | p ≤ K p,t p p -1 p σ 0 (ǫ) p .
Part 3 of the proposition then follows by choosing δ = σ 0 (ǫ) p p+1 .

3. Approximation of the compensated sum of small jumps by a Brownian motion. In this section we will replace R ǫ by a Brownian motion. This method gives better results, subject to a convergence assumption. In fact, Asmussen and Rosinski proved ([1], Theorem 2.1) that, if X is a Lévy process, then the process σ(ǫ) -1 R ǫ converges in distribution to a standard Brownian motion, when ǫ → 0, if and only if for any k > 0 lim The conditions (3.1) and (3.2) are equivalent if ν does not have atoms in some neighbourhood of zero ([1], Proposition 2.1).

3.1.

Estimates for smooth functions. The errors resulting from Brownian approximation have not been much studied in the literature, at least theoretically. There are some results which we can find in [START_REF] Cont | Financial Modelling with Jump Processes[END_REF][START_REF] Cont | Integro-differential equations for option prices in exponential Lévy models[END_REF].

Proposition 3.1. Let X be an infinite activity Lévy process and t > 0.

1. If f ∈ C 1 (R) and satisfies E |f ′ (X ǫ t )| < ∞, and if there exists β > 1 such that sup ǫ∈(0,1] E f ′ X ǫ t + θσ(ǫ) Ŵt -f ′ (X ǫ t ) β 1 β
and

sup ǫ∈(0,1] E f ′ (X ǫ t + θR ǫ t ) -f ′ (X ǫ t ) β 1 β
are finite and integrable with re-

spect to θ on [0, 1], then E f (X t ) -f Xǫ t = o (σ 0 (ǫ)) . 2. If f ∈ C 2 (R) and satisfies E |f ′ (X ǫ t )| + E |f ′′ (X ǫ t )| < ∞,
and if there exists

β > 1 such that sup ǫ∈(0,1] E f ′′ X ǫ t + θσ(ǫ) Ŵt -f ′′ (X ǫ t ) β 1 β
and

sup ǫ∈(0,1] E |f ′′ (X ǫ t + θR ǫ t ) -f ′′ (X ǫ t )| β 1
β are finite and integrable with re-

spect to θ on [0, 1], then E f (X t ) -f Xǫ t = o σ 0 (ǫ) 2 .
Examples of functions satisfying the above conditions are noted after Proposition 2.2.

Proof. We consider only part 2. The proof for part 1 is similar. By Proposition 2.2, we have

E (f (X t ) -f (X ǫ t )) = σ(ǫ) 2 t 2 Ef ′′ (X ǫ t ) + o σ 0 (ǫ) 2 .
On the other hand, using the same reasoning as in the proof of Proposition 2.2 (we will replace R ǫ by σ(ǫ) Ŵ ) we get

E f (X ǫ t + σ(ǫ) Ŵt ) -f (X ǫ t ) = σ(ǫ) 2 t 2 Ef ′′ (X ǫ t ) + o σ 0 (ǫ) 2 . Hence E f (X t ) -f ( Xǫ t ) = o σ 0 (ǫ) 2 .
The combination of Proposition 6.2 of [START_REF] Cont | Financial Modelling with Jump Processes[END_REF] and the Spitzer's identity for Lévy processes (Proposition 1 of [START_REF] Dia | Connecting discrete and continuous lookback or hindsight options in exponential Lévy models[END_REF]) leads to the following result.

Proposition 3.2. Let X be an integrable infinite activity Lévy process. Then

EM t -E M ǫ t ≤ 33σ(ǫ)ρ(ǫ) 1 + log √ t 2ρ(ǫ)
,

where ρ(ǫ) = σ(ǫ) -3 |x|≤ǫ |x| 3 ν(dx). Remark 3.3. Under condition (3.2), we have lim ǫ→0 ρ(ǫ) = 0 and, in turn,

σ(ǫ)ρ(ǫ) 1 + log √ t 2ρ(ǫ) = o (σ(ǫ)) .
Proof. Let δ ∈ (0, t). Using Spitzer's identity for Lévy processes, we have

EM t -E M ǫ t = t 0 EX + s s ds - t 0 E( Xǫ s ) + s ds ≤ δ 0 EX + s -E( Xǫ s ) + ds s + t δ EX + s -E( Xǫ s ) + ds s .
On the one hand,

EX + s -E( Xǫ s ) + ≤ E (X ǫ s + R ǫ s ) + -(X ǫ s + σ(ǫ) Ŵs ) + ≤ E R ǫ s -σ(ǫ) Ŵs ≤ 1 + 2 π √ sσ(ǫ).
On the other hand, it follows from Proposition 6.2 of [START_REF] Cont | Financial Modelling with Jump Processes[END_REF] that

EX + s -E( Xǫ s ) + ≤ Aσ(ǫ)ρ(ǫ),
with A < 16.5 (consider the function f (x) = x + ). Therefore,

EM t -E M ǫ t ≤ 2 1 + 2 π σ(ǫ) √ δ + Aσ(ǫ)ρ(ǫ) log t δ ≤ 16.5σ(ǫ) √ δ + ρ(ǫ) log t δ .
The last expression is minimal for δ = 4ρ(ǫ) 2 , and so the desired result follows by substitution.

3.2.

Estimates by Skorokhod embedding. We will use a powerful tool to prove the results of this section. This is the Skorokhod embedding theorem. We will begin by defining some useful notations.

Definition 3.4. We define

β(ǫ) = |x|≤ǫ x 4 ν(dx) (σ 0 (ǫ)) 4 , β t p,θ (ǫ) = β(ǫ) pθ p+4θ log t β(ǫ) 2θ p+4θ + 3 p + 1 , β t 1 (ǫ) = β(ǫ) 1 6
log t β(ǫ)

1 3 + 3 + 1 , β t 2 (ǫ) = β(ǫ) 1 4
log t β(ǫ)

1 4 + 3 + 1 .
Remark 3.5. Note that under condition (3.2), we have lim ǫ→0 β(ǫ) = 0. The proof of Proposition 3.2 cannot be extended to the Lipschitz functions, because the reformulation of the Spitzer identity for Lévy processes cannot be applied in that case. We have to use another method. Define

V j,n = R ǫ jt n -R ǫ (j-1) t n , j = 1, . . . , n, so that R ǫ kt/n = k j=1 V j,n , k = 1, .
. . , n. The V j,n are i.i.d. with the same distribution as R ǫ t/n , hence E (V j,n ) = 0 and Var (V j,n ) = σ(ǫ) 2 t/n. Thus, by Skorokhod's embedding theorem (Theorem 1 of [START_REF] Skorokhod | Studies in the Theory of Random Processes[END_REF], see p. 163), there exist positive i.i.d. r.v.'s τ j , j = 1, . . . , n, and a standard Brownian motion, B, such that the (partial sums) R ǫ kt/n and the

Bτ1+•••+τ k , k = 1, . . . , n, have the same joint distributions; moreover, E (τ 1 ) = Var (V 1,n ) and Eτ 2 1 ≤ 4EV 4 1,n . (3.3) 
Further, note that the σ(ǫ) Ŵkt/n and Bσ(ǫ) 2 kt/n , k = 1, . . . , n, have the same joint distributions. Set

T k = τ 1 + • • • + τ k , T ǫ k = σ(ǫ) 2 kt n .
This setting will be used in all of the subsequent results. Theorem 3.6. Let X be an integrable infinite activity Lévy process, and f a Lipschitz function. Then

Ef (M t ) -Ef M ǫ t ≤ C t σ 0 (ǫ)β t 1 (ǫ),
where C t is a positive constant independent of ǫ.

Proof. Set

I ǫ f = E f sup 0≤s≤t X s -f sup 0≤s≤t X ǫ s + σ(ǫ) Ŵs I ǫ f (n) = E f sup 0≤k≤n X kt n -f sup 0≤k≤n X ǫ kt n + σ(ǫ) Ŵ kt n .
Because f is, say, K-Lipschitz, we can show that

f sup 0≤k≤n X kt n -f sup 0≤k≤n X ǫ kt n + σ(ǫ) Ŵ kt n ≤ K sup 0≤s≤t |R ǫ s | + σ(ǫ) sup 0≤s≤t
Ŵs .

As the right hand side expression is integrable, by dominated convergence we can deduce that lim n→+∞ I ǫ f (n) = I ǫ f . It holds that

I ǫ f (n) = E f sup 0≤k≤n X ǫ kt n + BT k -f sup 0≤k≤n X ǫ kt n + BT ǫ k ≤ KE sup 0≤k≤n X ǫ kt n + BT k -sup 0≤k≤n X ǫ kt n + BT ǫ k ≤ KE sup 1≤k≤n BT k -BT ǫ k .
Part 1 of the following theorem concludes the proof. Theorem 3.7. Let X be an infinite activity Lévy process. Then:

• It holds that lim sup n→+∞ E sup 1≤k≤n BT k -BT ǫ k ≤ C t σ 0 (ǫ)β t 1 (ǫ).
• It holds that

lim sup n→+∞ E sup 1≤k≤n BT k -BT ǫ k 2 ≤ C t σ 0 (ǫ) 2 β t 2 (ǫ).
• For any reals p ≥ 1 and θ ∈ (0, 1), it holds that

lim sup n→+∞ E sup 1≤k≤n BT k -BT ǫ k p ≤ C p,θ,t σ 0 (ǫ) p β t p,θ (ǫ).
In the above, C t and C p,θ,t are constants independent of ǫ. This theorem is the main result of this section. Lemma 3.8. Let X be an infinite activity Lévy process. Then, for any δ > 0, lim sup

n→+∞ P sup 1≤k≤n |T k -T ǫ k | > δ ≤ 4tσ 0 (ǫ) 4 β(ǫ) δ 2 . Proof. As T k -T ǫ k = k i=1 (τ i -E (τ i ))
, by Kolmogorov's inequality

P sup 1≤k≤n |T k -T ǫ k | > δ ≤ Var (T n -T ǫ n ) δ 2 ≤ nVar (τ 1 ) δ 2 ≤ nEτ 2 1 δ 2 ≤ 4nE R ǫ t n 4 δ 2 ,
where the last inequality follows from (3.3). The proof then follows from Proposition 2.1.

Proof. [Proof of Theorem 3.7] For δ > 0, we have

E sup 1≤k≤n BT k -BT ǫ k = I 1 + I 2 ,
with

I 1 = E sup 1≤k≤n BT k -BT ǫ k 1 {sup 1≤k≤n |Tk-T ǫ k |≤δ} I 2 = E sup 1≤k≤n BT k -BT ǫ k 1 {sup 1≤k≤n |Tk-T ǫ k |>δ} . On {sup 1≤k≤n |T k -T ǫ k | ≤ δ}, set, for k fixed, s 1 = T ǫ k ∧ T k s 2 = T ǫ k ∨ T k . We have s 1 ≤ s 2 ≤ s 1 + δ.
Let j be such that jδ ≤ s 1 < (j + 1)δ. We have s 1 ≤ s 2 ≤ (j + 2)δ. If jδ ≤ s 1 ≤ s 2 ≤ (j + 1)δ, we have

Bs1 -Bs2 ≤ Bs1 -Bjδ + Bjδ -Bs2 ≤ 2 sup 0≤j≤ σ(ǫ) 2 t δ +1 sup jδ≤u≤(j+1)δ Bu -Bjδ . If jδ ≤ s 1 ≤ (j + 1)δ ≤ s 2 ≤ (j + 2)δ, we have Bs1 -Bs2 ≤ Bs1 -Bjδ + Bjδ -B(j+1)δ + B(j+1)δ -Bs2 ≤ 3 sup 0≤j≤ σ(ǫ) 2 t δ +2 sup jδ≤u≤(j+1)δ
Bu -Bjδ .

Hence

I 1 ≤ 3E sup 0≤j≤ σ(ǫ) 2 t δ +2 sup jδ≤u≤(j+1)δ Bu -Bjδ = 3E sup 1≤j≤ σ(ǫ) 2 t δ +3 sup (j-1)δ≤u≤jδ
Bu -B(j-1)δ .

The r.v.'s sup (j-1)δ≤u≤jδ Bu -B(j-1)δ .

In our case V 1 = sup 0≤u≤1 Bu . So V 1 ≤ sup 0≤u≤1 Bu + sup 0≤u≤1 -Bu .
For α ∈ (0, 1/8), we have

Ee αV 2 1 ≤ Ee 2α (sup 0≤u≤1 Bu) 2 +(sup 0≤u≤1 (-Bu)) 2 ≤ Ee 4α(sup 0≤u≤1 Bu) 2 1 2
Ee 4α(sup 0≤u≤1 (-Bu))

2 1 2 = Ee 4α(sup 0≤u≤1 Bu) 2 = (1 -8α) -1 2 .
The last equality follows from sup 0≤u≤1 Bu 2 ∼ χ 2 1 upon using the moment-generating function of the χ 2 1 distribution, given by (1 -2β) -1 2 for β < 1 2 . It follows straightforwardly from the above that, for α ∈ (0, 1 8 ),

I 1 ≤ C α √ δ log σ(ǫ) 2 t δ + 3 ,
where

C α = 3 1 α 1 -log(1-8α) 2 log(3)
. Consider now I 2 . We have

I2 ≤ E sup 1≤k≤n BT k -BT ǫ k 2 1 2 P sup 1≤k≤n |T k -T ǫ k | > δ 1 2 ≤ E sup 1≤k≤n BT k + sup 1≤k≤n BT ǫ k 2 1 2 P sup 1≤k≤n |T k -T ǫ k | > δ 1 2 ≤ E sup 0≤s≤t |R ǫ s | 2 1 2 + E sup 0≤s≤σ(ǫ) 2 t Bs 2 1 2 P sup 1≤k≤n |T k -T ǫ k | > δ 1 2 ≤ 2 E |R ǫ t | 2 1 2 + E Bσ(ǫ) 2 t 2 1 2 P sup 1≤k≤n |T k -T ǫ k | > δ 1 2 ≤ 4 √ tσ(ǫ) P sup 1≤k≤n |T k -T ǫ k | > δ 1 2
, where the fourth inequality is obtained using Doob's inequality. So, by Lemma 3.8, we have

lim sup n→+∞ I2 ≤ 4 √ tσ(ǫ) 4tσ0(ǫ) 4 β(ǫ) δ 2 1 2
.

Hence

lim sup n→+∞ E sup 1≤k≤n BT k -BT ǫ k ≤ Cα δ log σ(ǫ) 2 t δ + 3 + 8t δ σ(ǫ)σ0(ǫ) 2 β(ǫ).
Part 1 now follows by letting C t = max (C α , 8t) and choosing δ = σ 0 (ǫ) 2 β(ǫ) 1 3 . For the proof of parts 2 and 3 of the theorem, we refer the reader to [ [START_REF] Dia | Options exotiques dans les modèles exponentiels de Lévy[END_REF], pp. 86-89]. However, some small corrections are needed in the proof of part 3 in order to comply with the definition of β t p,θ (ǫ). Remark 3.9. Letting θ = 1/2 and p = 1, 2 in the definition of β t p,θ (ǫ), we see that part 3 of Theorem 3 partially generalizes parts 1 and 2. It may be relevant to note here that for part 3 the proof used the function g(x) = α -1 log(x) p , whereas for parts 1 and 2 it used the function g(x) = α -1 log(x) p/2 , p = 1, 2, respectively.

The following result follows directly from part 1 of Theorem 3. Proposition 3.10. Let X be an integrable infinite activity Lévy process, and f a Lipschitz function. Then

Ef (X t ) -Ef Xǫ t ≤ C t β t 1 (ǫ)σ 0 (ǫ), where C t is a positive constant. Proof. We have R ǫ t = d BTn , σ(ǫ) Ŵt = d BT ǫ n . So, if f is K-Lipschitz, we have Ef (X t ) -Ef Xǫ t = Ef X ǫ t + BTn -Ef X ǫ t + BT ǫ n ≤ KE BTn -BT ǫ n .
We conclude with Theorem 3.7.

For non-Lipschitz functions, we have the following result.

Proposition 3.11. Let X be an infinite activity Lévy process and p > 1. If Ee pMt < ∞, then for any x ∈ R and for any θ ∈ (0, 1)

E e Mt -x + -E e Mǫ t -x + ≤ C p,θ,t σ 0 (ǫ) β t p p-1 ,θ (ǫ) 1-1 p ,
where C p,θ,t is a positive constant independent of ǫ.

Proof. Define

M n t = sup 0≤k≤n X ǫ kt n + R ǫ kt n , M ǫ,n t = sup 0≤k≤n X ǫ kt n + σ(ǫ) Ŵ kt n .
We 

≤ E sup 0≤k≤n BT k -BT ǫ k p p-1 1-1 p Ee p Ūǫ,n t 1 p ≤ E sup 0≤k≤n BT k -BT ǫ k p p-1 1-1 p E e pM n t + e p Mǫ,n t 1 p ≤ E sup 0≤k≤n BT k -BT ǫ k p p-1
E e Mt -x + -E e M ǫ t -x + = lim n→+∞ E e M n t -x + -E e M ǫ,n t -x + = lim sup n→+∞ E e U n t -x + -E e Û ǫ,n t -x + ≤ C p,θ,t σ0(ǫ) β t p p-1 ,θ (ǫ) 1-1 p .
3.3. Estimates for cumulative distribution functions. The bounds obtained in this section are better than those obtained by truncation, provided that condition (3.2) is satisfied.

Proposition 3.12. Let X be an infinite activity Lévy process. Below, the constants C t and C x,t,q,θ are independent of ǫ.

1. If b > 0, then

sup x∈R P [X t ≥ x] -P Xǫ t ≥ x ≤ C t σ 0 (ǫ)β t 1 (ǫ).
2. If X t has a locally bounded probability density function and x ∈ R, then for any pair of reals θ ∈ (0, 1), q ∈ (0, 1/2],

P [X t ≥ x] -P Xǫ t ≥ x ≤ C x,t,q,θ σ 0 (ǫ) 1-q β t 1 q -1,θ (ǫ) q .

3. If M t has a locally bounded probability density function on (0, +∞) and x > 0, then for any pair of reals θ ∈ (0, 1), q ∈ (0, 1/2],

P [M t ≥ x] -P M ǫ t ≥ x ≤ C x,t,q,θ σ 0 (ǫ) 

P Y t ≥ x, Ŷ ǫ t < x ≤ 1 b √ 2πt E BTn -BT ǫ n .
Analogously, it also holds that

P Y t < x, Ŷ ǫ t ≥ x ≤ 1 b √ 2πt E BTn -BT ǫ n .
We get the first part of the proposition by using Theorem 3.7.

We now prove the second part of the proposition. Let p ≥ 1. By Lemma 2.11, there exists K x,t > 0 such that, for any δ > 0, .

P [Y t ≥ x] -P Ŷ ǫ t ≥ x ≤ K x,
The result then follows by substituting p = 1/q -1.

For the third part of the proposition, we use the notation of Proposition 

  Lévy processes, where Y has Lévy measure [ν] {|x|≤1} , and Z and Z ′ are pure jump with Lévy measures [ν] {x>1} and [ν] {x<-1} , respectively. Here [ν] E denotes the restriction of ν to E. Note that M t ≤ sup 0≤s≤t Y s +Z t ; thus E e pMt ≤ E e p sup 0≤s≤t Ys E e pZt . It can be deduced from Theorems 25.3 and 25.18 of

  +3 are i.i.d. r.v.'s with the same distribution as sup 0≤u≤1 Bu . On the other hand, we know that if (V j ) 1≤j≤m are i.i.d. r.v.'s satisfying Ee αV 2 1 < ∞ where α is a positive real, then

	tribution as sup 0≤u≤δ Bu and, in turn,	1≤j≤ √ δ sup 0≤u≤1 Bu . Then σ(ǫ) 2 t δ are i.i.d. with the same dis-+3
			I 1 ≤ 3	√ δE	1≤j≤	sup δ σ(ǫ) 2 t	+3	V j ,
	where (V j ) 1≤j≤ σ(ǫ) 2 t δ				
			E sup 1≤j≤m	V j ≤ g mEe αV 2 1	,
	where g : x ∈ [1, +∞) → 1 α log(x). Indeed, since g is concave, we have
	E sup 1≤j≤m	1≤j≤m V j = E sup	g e αV 2 j
		= Eg	sup	e αV 2 j	, because g is non-decreasing
			1≤j≤m
		1≤j≤m ≤ g E sup	e αV 2 j	, by Jensen's inequality
		≤ g	  E	j=1 m	e αV 2 j	  , because g is non-decreasing
		= g mEe αV 2 1

  know that lim n→+∞ M n t = M t a.s. and lim n→+∞

								M ǫ,n t	= M ǫ t a.s. Set
		U n t = sup 0≤k≤n	X ǫ kt n	+ BT k , Û ǫ,n t	= sup 0≤k≤n	X ǫ kt n	+ BT ǫ k	.
	So M n t = d U n t and M ǫ,n t	= d Û ǫ,n t . By the mean value theorem, we have
			e U n t -e	Ûǫ,n t	= U n t -Û ǫ,n t	e	Ūǫ,n t	,
	where Ū ǫ,n t	is between U n t and Û ǫ,n t . Set
		I ǫ n = E e U n t -x	Ûǫ,n
	Thus						
		I ǫ n ≤ E e U n t -e	Ûǫ,n t			
		≤ E U n t -Û ǫ,n t	e	Ūǫ,n
								Ūǫ,n t

+ -E e t -x + . t ≤ E sup 0≤k≤n BT k -BT ǫ k e

.

  So using dominated convergence, Theorem 3.7 and Lemma 2.8, we get

		1-1 p	E e pMt + e p Mǫ t	1 p .
	But		
	E e pMt + e p Mǫ t	≤ E e pMt + e pσ(ǫ) sup 0≤s≤t Ŵs e pM ǫ t
		p 2 2 σ(ǫ) 2 t Ee pM ǫ t 2 σ(ǫ) 2 t E e pMt + e pM ǫ ≤ Ee pMt + 2e ≤ 2e p 2 t

  By construction, bB t is independent of Ŷ ǫ t -bB t and of BTn -BT ǫ n . Further, 2πt is an upper bound of the probability density function of bB t . By conditioning on the pair BTn -BT ǫ n , Ŷ ǫ t -bB t , it can thus be concluded that

	Proof. Recall that R ǫ t = d	BTn and σ(ǫ) Ŵt = d	BT ǫ n . Set
	Y t = X ǫ t + BTn , Ŷ ǫ t = X ǫ t + BT ǫ n .
	Thus		
	P [X 1 √ b		

1-q β t 1 q -1,θ (ǫ) q . t ≥ x] -P Xǫ t ≥ x = P [Y t ≥ x] -P Ŷ ǫ t ≥ x = P Y t ≥ x, Ŷ ǫ t < x -P Y t < x, Ŷ ǫ t ≥ x .

It holds that

P Y t ≥ x, Ŷ ǫ t < x = P x -Y t -Ŷ ǫ t ≤ Ŷ ǫ t < x = P x -BTn -BT ǫ n ≤ bB t + Ŷ ǫ t -bB t < x .

  Hence, given θ ∈ (0, 1), by Theorem 3.7 there exists a constant C p,θ,t > 0 such thatP [Y t ≥ x] -P Ŷ ǫ t ≥ x ≤ K x,t δ + C p,θ,t

			t δ + = K x,t δ +	t E Y t -Ŷ ǫ δ p E BTn -BT ǫ p n δ p	p	.
				σ 0 (ǫ) p β t p,θ (ǫ) δ p	.
	Choosing δ = σ 0 (ǫ)	p p+1 β t p,θ (ǫ)	1 p+1 yields	
	P [Y p p+1 β t p,θ (ǫ)	1 p+1

t ≥ x] -P Ŷ ǫ t ≥ x ≤ 2 max (K x,t , C p,θ,t ) σ 0 (ǫ)

  By the assumption on M t , there exists a constant K > 0 such thatP [M t ∈ I x,δ ] < K ′x,t δ for any δ > 0. Combined with Theorem 3.7, letting n → ∞ yields for some constant C p,θ,t > 0. So as in part 2, the result follows by choosing δ = σ 0 (ǫ)

	lim n→∞	P [U n t ≥ x] -P Û ǫ,n t	≥ x ≤ K	′ x,t δ + C p,θ,t	σ 0 (ǫ) p β t p,θ (ǫ) δ p	,
	p p+1 β t p,θ (ǫ)	1 p+1 .			

3.11

. Note that

P [M t ≥ x] -P M ǫ t ≥ x = lim n→∞ P [M n t ≥ x] -P M ǫ,n t ≥ x = lim n→∞ P [U n t ≥ x] -P Û ǫ,n t ≥ x .

Let p ≥ 1 and put I x,δ = [x -δ, x + δ). Using the proof of Lemma 2.11, we have

P [U n t ≥ x] -P Û ǫ,n t ≥ x ≤ P [U n t ∈ I x,δ ] + E U n t -Û ǫ,n t p δ p ≤ P [M n t ∈ I x,δ ] + E sup 1≤k≤n BT k -BT ǫ k p δ p ,

for any δ > 0.

′ x,t REFERENCES