
HAL Id: hal-00520207
https://hal.science/hal-00520207v2

Submitted on 9 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Polynomial Multiplication in Chebyshev Basis
Pascal Giorgi

To cite this version:
Pascal Giorgi. On Polynomial Multiplication in Chebyshev Basis. IEEE Transactions on Computers,
2012, 61 (6), pp.780-789. �10.1109/TC.2011.110�. �hal-00520207v2�

https://hal.science/hal-00520207v2
https://hal.archives-ouvertes.fr


On Polynomial Multiplication in Chebyshev Basis

Pascal Giorgi ∗

September 9, 2013

Abstract

In a recent paper, Lima, Panario and Wang have provided a new method to multiply poly-

nomials expressed in Chebyshev basis which reduces the total number of multiplication for

small degree polynomials. Although their method uses Karatsuba’s multiplication, a quadratic

number of operations is still needed. In this paper, we extend their result by providing a com-

plete reduction to polynomial multiplication in monomial basis, which therefore offers many

subquadratic methods. Our reduction scheme does not rely on basis conversions and we demon-

strate that it is efficient in practice. Finally, we show a linear time equivalence between the

polynomial multiplication problem under monomial basis and under Chebyshev basis.

1 Introduction

Polynomials are a fundamental tool in mathematics and especially in approximation theory where
mathematical functions are approximated using truncated series. One can think of the truncated
Taylor series to approximate a function as a polynomial expressed in monomial basis. In general,
many other series are preferred to the classical Taylor series in order to have better convergence
properties. For instance, one would prefer to use the Chebyshev series in order to have a rapid
decreasing in the expansion coefficients which implies a better accuracy when using truncation
[1, 2]. One can also use other series such as Legendre or Hermite to achieve similar properties. It is
therefore important to have efficient algorithms to handle arithmetic on polynomials in such basis
and especially for the multiplication problem [3, 4].

Polynomial arithmetic has been intensively studied in the past decades, in particular following
the work in 1962 of Karatsuba and Ofmann [5] who have shown that one can multiply polynomials
in a subquadratic number of operations. Let two polynomials of degree d over a field K be given in
monomial basis, one can compute their product using Karatsuba’s algorithm in O(nlog2 3) operations
in K. Since this seminal work, many other algorithms have been invented in order to asymptotically
reduce the cost of the multiplication. In particular, one can go down to O(nlog

r+1(2r+1)) operations
in K with the generalized Toom-Cook method [6, 7] for any integer r > 0. Finally, one can even
achieve a quasi-linear time complexity using techniques based on the so-called FFT [8] (one can
read [9] or [10] for a good introduction and [11] for a study of fast polynomial multiplication over
arbitrary algebras). One of the main concern of this work is that all these algorithms have been
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designed for polynomials given in monomial basis, and they do not directly fit the other basis, such
as the Chebyshev one. This is particularly true for the Karatsuba’s method.

In this work, we extend the result of Lima, Panario and Wang [12] who have partially succeeded
in using Karatsuba’s algorithm [5] within the multiplication of polynomials expressed in Chebyshev
basis. Indeed, even if the method of [12] uses Karatsuba’s algorithm, its asymptotic complexity
is still quadratic. Our approach here is more general and it endeavors to completely reduce the
multiplication in Chebyshev basis to the one in monomial basis. Of course, one can already achieve
such a reduction by using back and forth conversions between the Chebyshev and the monomial basis
using methods presented in [13, 14]. However, this reduction scheme is not direct and it implies at
least four calls to multiplication in monomial basis: three for the back and forth conversions and one
for the multiplication of the polynomials. In this work, we present a new reduction scheme which
does not rely on basis conversion and which uses only two calls to multiplication in monomial basis.
We also demonstrate that we can further reduces the number of operations by slightly modifying
this reduction for the case of DFT-based multiplication algorithm. Considering practical efficiency,
we will see that our reduction scheme will definitively compete with implementations of the most
efficient algorithms available in the literature.

Organization of the paper. Section 2 recalls some complexity results on polynomial multiplication
in monomial basis and provides a detailed study on arithmetic operation count in the case of
polynomials in R[x]. In Section 3 we give a short review on the available methods in the literature
to multiply polynomials given in Chebyshev basis. Then, in Section 4 we propose our new method
to perform such a multiplication by re-using multiplication in monomial basis. We analyze the
complexity of this reduction and compare it to other existing methods. We perform some practical
experimentations of such a reduction scheme in Section 5, and then compare its efficiency and give
a small insight on its numerical reliability. Finally, we exhibit in Section 6 the linear equivalence
between the polynomial multiplication problem in Chebyshev basis and in monomial basis with
only a constant factor of two.

2 Classical Polynomial Multiplication

It is well-known that polynomial multiplication of two polynomials in K[x] with degree d = n− 1
can be achieved with less than O(n2) operations in K, for any field K (see [9, 11]), if polynomials are
given in monomial basis. Table 1 exhibits the arithmetic complexity of two well-known algorithms
in the case of polynomials in R[x]. One is due to Karatsuba and Ofman [5] and has an asymptotic
complexity of O(nlog2 3) operations in K; the other one is based on DFT computation using complex
FFT and it has an asymptotic complexity of O(n logn) operations in K, see [9, algorithm 8.16] and
[11, 15] for further details. One can see [16, 17] for more details on complex FFT. We also give in
Table 1 the exact number of operations in R for the schoolbook method. From now on, we will use
logn notation to refer to log2 n.

To perform fast polynomial multiplication using DFT-based method on real inputs, one need to
compute 3 DFT with 2n points, n pointwise multiplications with complex numbers and 2n multipli-
cations with the real constant 1

2n . Note that we do not need to perform 2n pointwise multiplications
since the DFT on real inputs has an hermitian symmetry property. Using Split-Radix FFT of [17]
with 3/3 strategy for complex multiplication (3 real additions and 3 real multiplications), one can
calculate the DFT with n points of a real polynomial with n

2 logn − 3n
2 + 2 real multiplications

and 3n
2 logn− 5n

2 + 4 additions. Adding all the involved operations gives the arithmetic operation
count given in Table 1. Note that one can even decrease the number of operations by using the
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Table 1: Exact number of operations to multiply two polynomials over R[x] of degree n − 1 in
monomial basis with n = 2k

Algorithm nb. of multiplications nb. of additions

Schoolbook n2 (n− 1)2

Karatsuba nlog 3 7nlog 3 − 7n+ 2

DFT-based(∗) 3n log 2n− 4n+ 6 9n log 2n− 12n+ 12

(*) using real-valued FFT of [17] with 3/3 strategy for complex multiplication

modified split-radix FFT of [16], yielding an overall asymptotic complexity of 34
3 n log 2n instead of

12n log 2n.
In the following, we will use the function M(n) to denote the number of operations in R to

multiply polynomials of degree less than n when using the monomial basis. For instance, M(n) =
O(nlog 3) with Karatsuba’s algorithm. In order to simplify the notations, we assume throughout
the rest of the paper that polynomials are of degree d = n− 1 with n = 2k.

3 Polynomial Multiplication in Chebyshev Basis

Chebyshev polynomials of the first kind on the interval [−1, 1] are defined by

Tk(x) = cos(k arcos(x)), k ∈ N
∗ and x ∈ [−1, 1].

According to this definition, one can remark that these polynomials are orthogonal polynomials.
The following recurrence relation holds:







Tk(x) = 2xTk−1(x)− Tk−2(x)
T0(x) = 1
T1(x) = x

It is obvious from this relation that the i-th Chebyshev polynomial Ti(x) has degree i in x.
Therefore, it is easy to show that (Ti(x))i≥0 form a basis of the R-vector space R[x]. Hence, every
polynomial f ∈ R[x] can be expressed as a linear combination of Ti(x). This representation is
called the Chebyshev expansion. In the rest of this paper we will refer to this representation as the
Chebyshev basis.

Multiplication in Chebyshev basis is not as easy as in the classical monomial basis. Indeed, the
main difficulty comes from the fact that the product of two basis elements spans over two other
basis elements. The following relation illustrates this property:

Ti(x) Tj(x) =
Ti+j(x) + T|i−j|(x)

2
, ∀i, j ∈ N. (1)
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3.1 Quadratic Algorithms

According to (1), one can derive an algorithm to perform the product of two polynomials given
in Chebyshev basis using a quadratic number of operations in R. This method is often called the
“direct method”. Let two polynomials a, b ∈ R[x] of degree d = n− 1 expressed in Chebyshev basis
:

a(x) =
a0

2
+

d
∑

k=1

akTk(x) and b(x) =
b0

2
+

d
∑

k=1

bkTk(x).

The 2d degree polynomial c(x) = a(x) b(x) ∈ R[x] expressed in Chebyshev basis can be computed
using the following formula [18]:

c(x) =
c0

2
+

2d
∑

k=1

ckTk(x)

such that

2ck=



















































a0b0 + 2

d
∑

l=1

albl, for k = 0,

k
∑

l=0

ak−lbl +

d−k
∑

l=1

(albk+l+ ak+lbl), for k = 1, ..., d−1,

d
∑

l=k−d

ak−lbl, for k = d, ..., 2d.

(2)

The number of operations in R to compute all the coefficients of c(x) using (2) is exactly [18, 12]:

• n2 + 2n− 1 multiplications,

•
(n− 1)(3n− 2)

2
additions.

Lima et al. recently proposed in [12] a novel approach to compute the coefficient of c(x) which
reduces the number of multiplications. The total number of operations in R is then:

•
n2 + 5n− 2

2
multiplications,

• 3n2 + nlog 3 − 6n+ 2 additions.

The approach in [12] is to compute the terms
∑

ak−lbl using Karatsuba’s algorithm [5] on
polynomial a(x) and b(x) as if they were in monomial basis.

Of course, this does not give all the terms needed in (2). However, by reusing all partial results
appearing along the recursive structure of Karatsuba’s algorithm, the authors are able to compute
all the terms albk+l + ak+lbl with less multiplication than the direct method. Even if the overall
number of operations in R is higher than the direct method, the balance between multiplication
and addition is different. The author claims this may have an influence on architectures where
multiplier’s delay is much more expensive than adder’s one.
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3.2 Quasi-linear Algorithms

One approach to get quasi-linear time complexity is to use the discrete cosine transform (DCT-I).
The idea is to transform the input polynomials by using forward DCT-I, then perform a pointwise
multiplication and finally transform the result back using backward DCT-I. An algorithm using
such a technique has been proposed in [18] and achieves a complexity of O(n logn) operations in
R. As mentioned in [12], by using the cost of the fast DCT-I algorithm of [19] one can deduce the
exact number of operations in R. However, arithmetic operation count in [12] is partially incorrect,
the value should be corrected to:

• 3n log 2n− 2n+ 3 multiplications,

• (9n+ 3) log 2n− 12n+ 12 additions.

DCT-I algorithm of [19] costs n
2 logn − n + 1 multiplications and 3n

2 logn − 2n + logn + 4
additions when using n sample points. To perform the complete polynomial multiplication, one
needs to perform 3 DCT-I with 2n points, 2n pointwise multiplications and 2n multiplications by
the constant 1

2n . Adding all the operations count gives the arithmetic cost given above.

4 Reduction To Monomial Basis Case

4.1 Using Basis Conversions

One can achieve a reduction to the monomial basis case by converting the input polynomials given
in Chebyshev basis to the monomial basis, then perform the multiplication in the latter basis and
finally convert the product back. Hence, the complexity directly relies on the ability to perform
the conversions between the Chebyshev and the monomial basis. In [14], authors have proved that
conversions between these two basis can be achieved in O(M(n)) operations for polynomials of
degree less than n. Assuming such reductions have a constant factor greater than or equal to one,
which is the case to our knowledge, the complete multiplication of n−term polynomials given in
Chebyshev basis would requires an amount of operation larger or equal to 4M(n): at least 3M(n)
for back and forth conversions and 1M(n) for the multiplication in the monomial basis. In the
next section, we describe a new reduction scheme providing a complexity of exactly 2M(n) +O(n)
operations.

4.2 Our Direct Approach

As seen in Section 3.1, Lima et al. approach [12] is interesting since it introduces the use of
monomial basis algorithms (i.e. Karatsuba’s one) into Chebyshev basis algorithm. The main idea
in [12] is to remark that the terms

∑

ak−lbl in (2) are convolutions of order k. Hence, they are
directly calculated in the product of the two polynomials

ā(x) = a0 + a1x+ a2x
2 + ...+ adx

d,

b̄(x) = b0 + b1x+ a2x
2 + ...+ bdx

d. (3)

This product gives the polynomials

f̄(x) = ā(x) b̄(x) = f0 + f1x+ f2x
2 + ...+ f2dx

2d.
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Each coefficient fk of the polynomial f̄(x) corresponds to the convolution of order k. Of course, this
polynomial product can be calculated by any of the existing monomial basis algorithms (e.g. those
of Section 2). Unfortunately, this gives only a partial reduction to monomial basis multiplication.
We now extend this approach to get a complete reduction.

Using coefficients f̄(x) defined above one can simplify (2) to

2ck =







































f0 + 2

d
∑

l=1

albl, for k = 0,

fk +

d−k
∑

l=1

(albk+l + ak+lbl), for k = 1, ..., d− 1,

fk, for k = d, ..., 2d.

(4)

In order to achieve the complete multiplication, we need to compute the three following sum-
mation terms for k = 1 . . . d− 1 :

d
∑

l=1

albl ,

d−k
∑

l=1

albk+l and

d−k
∑

l=1

ak+lbl. (5)

Let us define the polynomial r̄(x) as the reverse polynomial of ā(x):

r̄(x) = ā(x−1)xd = r0 + r1x+ r2x
2 + . . .+ rdx

d.

This polynomial satisfies ri = ad−i for i = 0 . . . d. Let the polynomial ḡ(x) be the product of the
polynomials r̄(x) and b̄(x). Thus, we have

ḡ(x) = r̄(x) b̄(x) = g0 + g1x+ g2x
2 + . . .+ g2dx

2d.

The coefficients of this polynomial satisfy the following relation for k = 0 . . . d :

gd+k =

d−k
∑

l=0

rd−lbk+l and gd−k =

d−k
∑

l=0

rd−k−lbl.

According to the definition of r̄(x) we have:

gd+k =

d−k
∑

l=0

albk+l and gd−k =

d−k
∑

l=0

ak+lbl. (6)

All the terms defined in (5) can be easily deduced from the coefficients gd+k and gd−k of the
polynomial ḡ(x). This gives the following simplification for (4)

2ck=































f0 + 2(gd − a0b0), for k = 0,

fk + gd−k + gd+k − a0bk − akb0, for k = 1, ..., d−1,

fk, for k = d, ..., 2d.

(7)

Applying (7), one can derive an algorithm which satisfies an algorithmic reduction to polynomial
multiplication in monomial basis. This algorithm is identified as PM-Chebyshev below.

6



Algorithm 1: PM-Chebyshev

Input : a(x), b(x) ∈ R[x] of degree d = n− 1 with a(x) =
a0

2
+

d
∑

k=1

akTk(x) and

b(x) =
b0

2
+

d
∑

k=1

bkTk(x).

Output: c(x) ∈ R[x] of degree 2d with c(x) = a(x) b(x) =
c0

2
+

2d
∑

k=1

ckTk(x).

begin
let ā(x) and b̄(x) as in (3)

f̄(x) := ā(x) b̄(x)

ḡ(x) := ā(x−1)xd b̄(x)

c0 :=
f0

2
+ gd − a0b0

for k = 1 to d− 1 do

ck :=
1

2
(fk + gd−k + gd+k − a0bk − akb0)

for k = d to 2d do

ck :=
1

2
fk

return c(x)

4.3 Complexity Analysis

Algorithm PM-Chebyshev is exactly an algorithmic translation of (7). Its correctness is thus imme-
diate from (4) and (6).

Its complexity is O(M(n)) +O(n) operations in R. It is easy to see that coefficients fk and gk
are computed by two products of polynomials of degree d = n − 1 given in monomial basis. This
exactly needs 2M(n) operations in R. Note that defining polynomials ā(x), b̄(x) and r̄(x) does not
need any operations in R. The complexity of the algorithm is therefore deduced from the number
of operations in (7) and the fact that d = n− 1. The exact number of operations in R of Algorithm
PM-Chebyshev is 2M(n)+8n−10. The extra linear operations are divided into 4n−4 multiplications
and 4n− 6 additions.

Looking closely to (5) and (6), one can see that these equations only differ by the terms a0b0,
a0bk and akb0. This explains the negative terms in (7) which corrects these differences. Assuming
input polynomials have constant coefficients a0 and b0 equal to zero, then it is obvious that (5)
and (6) will give the same values. Considering this remark, it is possible to decrease the number of
operations in Algorithm PM-Chebyshev by modifying the value of the constant coefficient of ā(x)
and b̄(x) to be zero (i.e. a0 = b0 = 0) just before the computation of ḡ(x). Indeed, this removes all
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the occurrences of a0 and b0 in (6) which gives the following relation:

gd+k =

d−k
∑

l=1

albk+l and gd−k =

d−k
∑

l=1

ak+lbl, (8)

and therefore simplifies (7) to

2ck=































f0 + 2gd, for k = 0,

fk + gd−k + gd+k, for k = 1, ..., d− 1,

fk, for k = d, ..., 2d.

(9)

Embedding this tricks into Algorithm PM-Chebyshev leads to an exact complexity of 2M(n) +
4n − 3 operations in R, where extra linear operations are divided into 2n − 1 multiplications and
2n− 2 additions.

Table 2: Arithmetic operation count in Algorithm PM-Chebyshev

M(n) nb. of multiplication nb. of addition

Schoolbook 2n2 + 2n− 1 2n2 − 2n

Karatsuba 2nlog 3 + 2n− 1 14nlog 3 − 12n+ 2

DFT-based(∗) 6n log 2n− 6n+ 11 18n log 2n− 22n+ 22

(*) using real-valued FFT of [17] with 3/3 strategy for complex arithmetic

Table 2 exhibits the exact number of arithmetic operation needed by Algorithm PM-Chebyshev

depending on the underlying algorithm chosen to perform monomial basis multiplication. We
separate multiplications from additions in order to offer a fair comparison to [12] and we use results
in Table 1 for M(n) costs.

4.4 Special Case of DFT-based Multiplication

When using DFT-based multiplication, we can optimize the Algorithm PM-Chebyshev in order to
further reduce the number of operations. In particular, we can remark that Algorithm PM-Chebyshev

needs two multiplications in monomial basis using operands ā(x), b̄(x) and ā(x−1)xd, b̄(x). There-
fore, applying the generic scheme of Algorithm PM-Chebyshev, we compute twice the DFT transform
of b̄(x) on 2n points. The same remark applies to the DFT transform of ā(x) and r̄(x) = ā(x−1)xd

which can be deduced one from the other at a cost of a permutation plus O(n) operations in R.
Indeed, we have

DFT2n(ā) = [ ā(wk) ]k=0...2n−1,

DFT2n(r̄) = [ ā(w−k) ωkd ]k=0...2n−1.
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Since ω = e
−2iπ

2n by definition of the DFT, we have ω2n = 1 and therefore :

ωk = ωk−2n and ω−k = ω2n−k for k ∈ N.

This gives :
DFT2n(r̄) = [ ā(w2n−k) ωdk ]k=0...2n−1.

Considering the DFT as an evaluation process, we have

r̄(wk) = (ωd)
k ā(w2n−k) for k = 0 . . . 2n− 1

where ωd = ωd = e
−2iπd

2n . We can easily see that computing DFT2n(r̄) is equivalent to reverse the
values of DFT2n(ā) and multiply them by the adequate power of ωd. This process needs exactly a
permutation plus 4n− 2 multiplications in C, which costs O(n) operations while a complete FFT
calculation needs O(n log n) operations.

Even if this method allows to decrease the number of operations, it needs extra multiplications
with complex numbers which unfortunately makes the code numerically unstable (see the prelimi-
nary version of this work for a more detailed study [20]). As pointed out by one of the anonymous
referees, this can be circumvent by slightly modifying the algorithm PM-Chebyshev.

Instead of computing ḡ(x) = r̄(x) b̄(x), it is more suitable to compute h̄(x) = s̄(x) b̄(x) where
s̄(x) = x r̄(x). Since h̄(x) has degree 2d + 1, which is equivalent to 2n − 1, it is still computable
by applying a 2n points DFT-based multiplication. Following this, it suffices to shift coefficients of
h̄(x) by one to get the coefficients of ḡ(x) and then complete the algorithm. The trick here is that
computing DFT2n(s̄) is almost straightforward from DFT2n(ā) . Indeed, we have

DFT2n(s̄) = [ ā(w2n−k) ωnk ]k=0...2n−1.

Since ω is a 2n-th primitive root of unity, it is obvious that wn = −1 and thus we have

DFT2n(s̄) = [ ā(w2n−k) (−1)k ]k=0...2n−1.

This completely avoids the need to multiply the coefficients of DFT2n(ā) by power of ωd. Using these
considerations, one can modify Algorithm PM-Chebyshev in order to save exactly the computation
of 2 DFTs. Hence, we obtain an arithmetic cost in this case of:

• 4n log 2n+ 7 multiplications,

• 12n log 2n− 12n+ 14 additions.

These values can be deduced by removing the cost of 2 DFT on 2n points in PM-Chebyshev

cost using DFT-based multiplication (see Table 2). From now on, we will refer to this method as
PM-Chebyshev (DFT-based).

Remark 1. Instead of applying a permutation on the values of DFT2n(ā), one can use the hermitian
symmetry property of real input DFT. In other words, it is equivalent to say that ā(ω2n−k) is equal
to the complex conjugate of ā(ωk). This has no influences on the complexity analysis but considering
real implementation it replaces memory swaps by modifications of the sign in the complex numbers
structure. If data does not fit in cache, this might reduce the number of memory access and cache
misses, and therefore provide better performances.
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4.5 Comparisons With Previous Methods

We now compare the theoretical complexity of our new method with existing algorithms presented
in Section 3.

Table 3: Exact complexity for polynomial multiplication in Chebyshev basis, with degree n− 1

Algorithm nb. of operations in R

Direct method 2.5n2 − 0.5n

Lima et al. [12] 3.5n2 + nlog 3 − 3.5n+ 1

DCT-based (12n+ 3) log 2n− 14n+ 15

PM-Chebyshev (Schoolbook) 4n2 − 1

PM-Chebyshev (Karatsuba) 16nlog 3 − 10n+ 1

PM-Chebyshev (DFT-based) 16n log 2n− 12n+ 21

In Table 3, we report the exact number of operations in R for each methods. One can conclude
from this table that the asymptotically fastest multiplication is the one using DCT [18]. However,
according to the constants and the non-leading terms in each cost function, the DCT-based method
is not always the most efficient, especially when polynomial degrees tend to be very small. Further-
more, we do not differentiate the cost of additions and multiplications which does not reflect the
reality of computer architecture. For instance in the Intel R©Core microarchitecture, which equipped
the processor Intel Xeon 5330 launched in 2007, the latency for one double floating point addition
is 3 cycles while it is 5 cycles for one multiplication [21, table 2-15, page 2-35]. The same values
apply to the Intel R©Nehalem microarchitecture launched in 2010 [21, table 2-19, page 2-50].

In Figure 1, one can find the speedup of each methods compared to the Direct method. We
provide different cost models to capture a little bit more the reality of nowadays computers where
the delays of floating point addition and multiplication may differ by a factor of 4 at large. Note
that both axis use a logarithmic scale.

First, we can remark that changing cost model only affect the trade-off between methods for
small polynomials (i.e. size less than 16). As expected for large degrees, the DCT-based method is
always the fastest and our Algorithm PM-Chebyshev (DFT-based) is catching up with it since they
mostly differ by a constant factor. However, when polynomial degrees tend to be small (less than
10) the Direct method is becoming the most efficient even if it has a quadratic complexity.

As already mentioned in [12], the method of Lima et al. tends to become more efficient than
the direct method for small polynomials when the cost model assumes that one floating point
multiplication cost more than three floating point additions. However, practical constraints such
as recursivity, data read/write or cache access have an impact on performance, as we will see in
Section 5, and need to be considered.
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Figure 1: Theoretical speedup of polynomial multiplication in Chebyshev basis with different cost
models.
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5 Implementation and Experimentations

In order to compare our theoretical conclusions with practical computations, we develop a software
implementation of our Algorithm PM-Chebyshev and we report here its practical performances.
As a matter of comparison, we provide implementations for previous known methods: namely the
Direct method and the DCT-based method. For the Direct method, a naive implementation with
double loop has been done, while for the DCT-one we reuse existing software to achieve best possible
performances.

5.1 A Generic Code

We design a C++ code to implement Algorithm PM-Chebyshev in a generic fashion. The idea
is to take the polynomial multiplication in monomial basis as a template parameter in order to
provide a generic function. We decided to manipulate polynomials as vectors to benefit from the
C++ Standard Template Library [22], and thus benefit from genericity on coefficients, allowing the
use of either double or single precision floating point numbers. Polynomial coefficients are ordered
in the vector by increasing degree. The code given in Figure 2 emphasizes the simplicity of our
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implementation:

Figure 2: Generic C++ code achieving the reduction to monomial basis multiplication.

template<class T, void mulM( vector<T>&,
const vector<T>&,
const vector<T>&)>

void mulC( vector<T>& c ,
const vector<T>& a ,
const vector<T>& b){

s i z e t da , db , dc , i ;
da=a . s i z e ( ) ; db=b . s i z e ( ) ; dc=c . s i z e ( ) ;

vector<T> r ( da ) , g ( dc ) ;

for ( i =0; i<da ; i++)
r [ i ]=a [ da−1− i ] ;

mulM( c , a , b ) ;
mulM(g , r , b ) ;

for ( i =0; i<dc;++i )
c [ i ]∗=0.5 ;

c [0]+=g [ da−1]−a [ 0 ] ∗ b [ 0 ] ;

for ( i =1; i<da−1; i++)
c [ i ]+= 0 .5∗ ( g [ da−1+i ]+g [ da−1− i ]−a [ 0 ] ∗ b [ i ] −a [ i ]∗b [ 0 ] ) ;

}

The function mulM corresponds to the implementation of the multiplication in monomial basis
while the function mulC corresponds to the one in Chebyshev basis. The vectors a and b represent
the input polynomials and c is the output product. As expected, this code achieves a complete
reduction to any implementation of polynomial multiplication in monomial basis, assuming the
prototype of the function is compliant. In our benchmarks, we will use this code to reduce to a
homemade code implementing the recursive Karatsuba’s multiplication algorithm. Our Karatsuba’s
implementation is using a local memory strategy to store intermediate values along the recursive
calls and allocations are done directly through new/delete mechanism. We also use a threshold
to switch to naive quadratic product when polynomial degrees are small. In our benchmark, the
threshold has been set to degree 63 since it was the most efficient value.

5.2 Optimized Code Using DCT and DFT

Many groups and projects have been already involved in designing efficient implementations of
discrete transforms such as DCT and DFT. We can cite for instance the Spiral project [23] and
the FFTW library effort [24]. In order to benefit from the high efficiency of these works, we build
our DCT/DFT based codes on top of the FFTW routines. For both DCT and DFT computations
we use FFTW plans with FFTW MEASURE planning option, which offer optimized code using
runtime measurement of several transforms.

As explained in the documentation of the FFTW library, the DCT-I transform using a pre/post
processed real DFT suffers from numerical instability. Therefore, the DCT-I implementation in
FFTW is using either a recursive decomposition in smaller optimized DCT-I codelets or a real
DFT of twice the size plus some scalings. For the latter case, this means that the complexity of
the DCT-I code is not reflecting the one of [19] we used in our complexity analysis. Taking this
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into account, one should replace the 2n points DCT-I transforms of Section 3.2 by 4n points DFT
transforms plus 2n multiplications by the real constant 2. This increases the complexity of the
DCT-based method to :

• 6n log 4n− 12n+ 6 multiplications,

• 18n log 4n− 30n+ 12 additions.

Figure 3: Theoretical speedup of polynomial multiplication in Chebyshev basis.
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Considering this practical stability issue and its impact on the complexity of the DCT-based, we
can see in Figure 3 the effect on the theoretical speedups. In particular, our DFT-based reduction
is always more efficient than the DCT-based, especially when polynomial degrees are large. This
is of course explained by the difference of the constant term in the complexity: 16n log 2n for our
method and 24n log 2n for the DCT-based (via FFT).

5.3 Code Validation

As a matter of reliability, we check the validity of all our implementations. First, we check their
correctness by verifying the results of their implementations done in a symbolic way using Maple1

software.
Since we want to perform numerical computations, it is clear that the accuracy of the results

may differ from one method to another. It is therefore crucial to investigate their stability to give
good statement on the accuracy. It is not the intend of this work to give statements on the accuracy
and this task would definitively require a dedicated work. However, in order to give a small insight
we did some experiments to emphasize the relative error of every methods. Let us now give the
definition of the relative error on polynomials as given in [25].

1www.maplesoft.com
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Definition 5.1. Let a(x), b(x) be polynomials given in Chebyshev basis with double precision floating
point numbers coefficients. We define ĉ(x) to be the approximation of the product a(x)b(x) using
double precision computation (53 bits of mantissa) and c(x) to be the exact product computed over
rational numbers. Using this notation, the relative error E(ĉ(x)) is defined as

E(ĉ(x)) =
‖c(x)− ĉ(x)‖2

‖c(x)‖2

where ‖. . .‖2 represents the Euclidean norm of polynomials, i.e. ‖a(x)‖2 = (
∑d

k=0 a
2
k)

1
2 where the

ak correspond to the coefficients of a(x).

Following this definition, we have computed the relative error on polynomial products using
polynomial inputs having random floating point entries. While the numerical results are computed
in double precision floating point numbers, the exact product is computed using the arbitrary
precision rational numbers of the GMP2 library. The relative error is almost computed exactly since
only the square root is using floating point approximations, the remaining parts being computed
over the rationals. We propose in Figure 4 the measure of the relative error in our experiments.
The ordinates axis gives the average relative error of 50 products with different random double
precision floating point entries lying between −50 and 50.

Figure 4: Experimental measure of the relative error in double precision (Intel Xeon 2GHz). Entries
lying in [−50, 50]
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One can see in this figure that Algorithm PM-Chebyshev (DFT-based) seems to offer the same
numerical quality as its DCT-based counterparts. This can be explained by the fact that both
methods shared the same computational core (i.e. DFT transforms) and no other sensible numerical

2http://gmplib.org/
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operations are performed. Even if we change a little bit the settings of our experiment, as in Figure
5 where we consider only positive floating point random entries (e.g. in [0, 50]), the numerical
stability of Algorithm PM-Chebyshev (DFT-based) is still catching up with the one of DCT-based
methods.

However, as soon as Karatsuba method is used in Algorithm PM-Chebyshev, the stability is
decreasing according to the growth of polynomial degree. This can be motivated by the nature
of Karatsuba method which replaces one multiplication by few additions, and thus may introduce
more numerical errors.

Figure 5: Experimental measure of the relative error in double precision (Intel Xeon 2GHz). Entries
lying in [0, 50]
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From these experiments we can conclude few thoughts. Algorithm PM-Chebyshev (DFT-based)
seems to offer the same numerical behavior as the DCT based method, and thus offer a concrete
alternative in practice as it will increase efficiency (see section 5.4). If one prefers to use Algorithm
PM-Chebyshev(Karatsuba), one has to be careful with the given results since its numerical behavior
sounds more unstable. Finally, a theoretical study of the numerical stability of all these methods
has to be done to give precise statements on their reliability.

5.4 Benchmarks

We now compare the practical efficiency of the different methods. We performed our benchmarks
on an architecture which represents nowadays processors: an Intel Xeon processor 5130 running at
2GHz with 2×4MB of L2 cache. We use the gcc compiler version 4.4.5 with O3 optimization. Even
if the platform is multi-core, we did not use any parallel computations and the FFTW library has
been built sequential. For each method, we measure the average running time of several polynomial
multiplications. All the computations have been done with double precision floating point numbers
and with the same data set.
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Remark 2. We only offer an average running time estimate of each algorithms since it is not
realistic on nowadays processor to estimate precise running time of computation taking few mil-
liseconds.

We report in Figure 6 the relative performances to the Direct method implementation for poly-
nomial sizes ranging from 2 to 8192. Both axis use logarithmic scale, and the ordinates axis
represents the speedup against Direct method. All times used in this figure are given in Table
4. One can also find in Figure 7 more detailed views of the Figure 6. As expected, one can see

Figure 6: Practical performances of polynomial multiplication in Chebyshev basis against direct
method - Intel Xeon 2GHz (global view).
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on these Figures that the Direct method reveals the most efficient for very small polynomials (i.e.
polynomial degrees less than 16). This is explained by the low number of operations required by
this method and its simplicity which makes possible several optimizations by the compiler (e.g.
loop unrolling). When polynomial sizes are getting larger, the methods based on discrete trans-
forms become the most efficients. In particular, we can see that DCT-based method is catching
up with its version based on FFT, which clearly illustrates that DCT-I implementation of FFTW
is using a double length FFT, as explained in Section 5.2. Therefore, as expected, our Algorithm
PM-Chebyshev (DFT-based) is the most efficient with polynomial sizes greater than 16. In particu-
lar, our PM-Chebyshev (DFT-based) implementation is gaining on average 20% to 30% of efficiency
over the DCT-based implementations. This result almost satisfies the theoretical estimates since
the complexity gain is asymptotically of 33% (taking into account only the constants of high order
terms in the complexity).

Remark 3. One could have been interested to see the practical behavior of the method of Lima et
al. [12]. However, our feelings on the efficiency of such a method lead us to be pessimistic. Even if
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this method decreases the number of multiplications, it increases the overall number of operations.
Moreover, this method needs an important amount of extra memory (i.e. O(nlog 3)) which defini-
tively increases data access and then should considerably penalize performances. Furthermore, the
method is quite complex, especially for the indices management in the separation procedure. Since
no detailed algorithm is given in [12] it is not easy to make an implementation and then offer a
fair comparison. Finally, from our benchmarks we observe that the performance of the Karatsuba
multiplication does not compete with the Direct method for small polynomials (e.g. size less than
16). Adding the storage of intermediate value within Karatsuba procedure plus the extra quadratic
operations needed by the method of Lima et al. [12] will probably make its implementation not
competitive with other existing methods.

Figure 7: Practical performances of polynomial multiplication in Chebyshev basis against direct
method - Intel Xeon 2GHz (partial view).
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6 A Note on Problems Equivalence

Let us consider the problem of multiplying two polynomials given by their coefficients in a given
basis of the R-vector space of R[x]. We denote this problem in monomial basis as Mmon and the one
in Chebyshev basis as Mche. Under this consideration, one can demonstrate the following theorem:

Theorem 6.1. Problems Mmon and Mche are equivalent under a linear time transform, Mmon ≡L

Mche, and the constant of both transforms is equal to two.

Proof. As we have shown in Section 4 the problem of multiplying polynomials in Chebyshev basis
linearly reduces to the multiplication in monomial basis, and the constant in the reduction is two.
Thus we have already demonstrate Mche ≤L Mmon.

We can show that Mmon ≤L Mche by using (4). Indeed, we can see from (4) that the d + 1
leading coefficients of the product in Chebyshev basis exactly match with the ones in monomial
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basis on the same input coefficients. It is easy to show that the remaining d coefficients can be read
from the product in Chebyshev basis of the reversed inputs. Let us denote ×c the multiplication in
Chebyshev basis and × the one in monomial basis. Consider the two polynomials ā, b̄ ∈ R[x] given
in monomial basis as

ā(x) =

d
∑

k=0

akx
k and b̄(x) =

d
∑

k=0

bkx
k.

Consider the polynomials a(x), b(x), α(x) and β(x) sharing the same coefficients as ā(x) and b̄(x)
but expressed in Chebyshev basis:

a(x) =

d
∑

k=0

akTk(x) , b(x) =

d
∑

k=0

bkTk(x),

α(x) =
d

∑

k=0

ad−kTk(x) , β(x) =
d

∑

k=0

bd−kTk(x).

The coefficients ck of the polynomial c̄(x) = ā(x) × b̄(x) expressed in monomial basis can be read
from the coefficients of the polynomials

f(x) = a(x) ×c b(x) and g(x) = α(x) ×c β(x)

using the relation

ck =

{

gd−1−k for k = 0 . . . d− 1,

fk for k = d . . . 2d.

This clearly demonstrates that Mmon ≤L Mche and thus complete the proof.

7 Conclusion

We described yet another method to reduce the multiplication of polynomials given in Chebyshev
basis to the multiplication in the monomial basis. Our method decreases the constant of the problem
reduction and therefore offer a better complexity than the ones using basis conversions. Moreover,
since our method does not rely on basis conversions, it might offer more numerical stability as it
could be when converting coefficients to other basis. As we already mentioned, the problem of
numerical stability is of great interest and should be treated as a dedicated article.

Our PM-Chebyshev algorithm offers an efficient alternative to any existing quasi-linear algo-
rithms. In particular, it allows to use Fast Fourier Transform of half length of the one needed
by the specialized DCT-based method, which is an alternative when DCT codes are not available
or sufficiently efficient. In such a case, our method achieves the best performances among all the
available method for large degree polynomials.

Finally, our attention in this work has been focused only on polynomials in R[x] using Chebyshev
basis but our approach is still valid for other basis related to the Chebyshev one and other domains.
For instance, our method will work for polynomials over finite fields using a basis of Dickson
polynomials since they are a generalization of the Chebyshev polynomials (see [26]). More generally,
our method will work for any basis and any domains satisfying (1), and any variant relaxing the
constant factor.
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Although our reduction scheme using Karatsuba’s method is not as efficient as one could have
expected for polynomials of medium size, further work to optimize its implementation should be
investigated. This is of particular interest since such medium size polynomials are used in validated
computing to approximate functions using a Chebyshev Interpolation model [4]. This has also a
practical interest since Chebyshev or Dickson polynomials can be used in cryptography applications
[27, 28], which often need medium size polynomials for defining extension field (e.g. F2160).

One possible way to optimize our Karatsuba based method is to reduce the number of additions
by modifying our reduction as we did for the FFT-based approach in section 5.2. Indeed, since we
use almost the same operands within the two Karatsuba’s multiplications one can save almost half
of the additions involved in adding the higher and the lower parts of each operand. It seems also
feasible to apply this saving along the recursive calls of Karatsuba method. Another interesting way
to improve the efficiency would be to provide an implementation of Karatsuba algorithm minimizing
the extra memory as the one proposed in [29].

Acknowledgment

The author would like to thank Claude-Pierre Jeannerod, Laurent Imbert and Arnaud Tisserand
for their helpful comments and suggestions during the preparation of this article. The author is also
grateful to the anonymous referees, especially for suggesting the numerically stable optimization of
the Algorithm PM-Chebyshev (DFT-based).

References

[1] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. Boca Raton, FL: Chapman and
Hall/CRC, 2002.

[2] J. P. Boyd, Chebyshev and Fourier Spectral Methods. New York: Dover N.Y., 2001.

[3] Z. Battles and L. Trefethen, “An extension of matlab to continuous fractions and operators,”
SIAM J. Sci. Comp, 2004.
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Table 4: Times of polynomial multiplication in Chebyshev basis (given in µs) on Intel Xeon 2GHz
platform.

n Direct DCT-based DCT-based (FFT) PM-Cheby (Kara) PM-Cheby (DFT)

2 0.23 1.25 0.43 0.41 0.49

4 0.43 1.32 0.57 0.62 0.58

8 0.52 1.80 0.81 1.04 0.86

16 1.28 3.11 1.56 1.91 1.28

32 4.33 4.88 2.84 5.11 2.58

64 15.73 8.82 9.55 16.83 5.41

128 56.83 18.08 17.07 70.54 13.37

256 211.34 35.97 31.42 195.85 24.41

512 814.71 82.47 68.67 554.36 49.53

1024 3219.13 160.81 159.21 1618.37 109.74

2048 12800.30 346.95 364.82 4749.63 236.01

4096 54599.10 741.38 740.31 14268.10 556.83

8192 220627.00 1613.43 1625.43 40337.20 1176.00

PM-Cheby stands for PM-Chebyshev algorithm.
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