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Abstract This work is a synthesis of our experience over parallel kinematic
machine control, which aims at changing the standard conceptual approach
to this problem. Indeed, since the task space, the state space and the mea-
surement space can coincide in this class of mechanisms, we came to redefine
the complete modeling, identification and control methodology. Thus, it is
shown in this paper that, generically and with the help of sensor-based con-
trol, this methodology does not require any joint measurement, thus opening
a path to simplified mechanical design and reducing the number of kinematic
parameters to identify. This novel approach is illustrated on the reference par-
allel kinematic mechanism (the Gough-Stewart platform) with vision as the
exteroceptive sensor.

Keywords Parallel robots · Visual servoing · Robot calibration · Control

1 Introduction

There is a huge amount of literature devoted to parallel kinematic machines,
which we will not reference here, except for Merlet (2000) which is a good
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starting point in the area. However, to our knowledge, only little work is
devoted to control and among these, none has addressed the problem of
their control having in mind the serial/parallel duality exhibited by Waldron
and Hunt (1991). Instead, as far as we know, all published work applies di-
rectly the standard control techniques coming from serial robotics to parallel
robotics.

Consequently, in this introduction, we mainly want to remind the differ-
ences between serial and parallel kinematic mechanisms, then to point out
the fundamental consequence thereof concerning control, which is the start-
ing point of the present work.

The end-effector pose X of a serial kinematic mechanism can be expressed
in closed form from the joint values q using the so-called forward kinematic
model:

X = FKM(q, ξ) (1)

where ξ is the set of kinematic parameters. The actual expression of this
relation may vary according to the representation which is chosen for the
end-effector pose X.

From this expression, one can obtain the differential forward kinematic
model, expressing the end-effector Cartesian velocity from the joint velocities,
through formal time derivation:

τ = D(q, ξ)q̇ (2)

where τ is expressed at any convenient point and in any reference frame, but
usually at the end-effector frame origin and either in the base or end-effector
frame (i.e. bτe or eτe).

Thus, for serial kinematic mechanisms, the models depend only on the
joint values. Consequently, the state of a serial kinematic mechanism is the

joint value vector.
On the other hand, most parallel kinematic mechanisms have an inverse

kinematic model, giving a closed-form expression of the relation from the
end-effector pose to the joint values:

q = IKM(X, ξ) (3)

Time differentiating (3), one can similarly obtain the differential inverse
kinematic model, expressing the joint velocities from the end-effector Carte-
sian velocity:

q̇ = Dinv(X, ξ)τ (4)

Thus, for parallel kinematic mechanisms, the models depend on the end-
effector pose. Consequently, the state of a parallel kinematic mechanism is

any representation of the end-effector pose X.
Notice, once again, that the differential inverse kinematic model, which

is the heart of Cartesian control, has a closed-form expression for parallel
kinematic mechanisms while it has to be numerically evaluated for serial
kinematic mechanisms. Consequently, it should be more natural to perform
Cartesian control for parallel kinematic mechanisms than for serial ones,
provided that one has a correct estimate or measure of the end-effector pose.
This was shown earlier in Dallej et al (2006) but, to be sure that a joint-free
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Fig. 1 A Gough-Stewart platform observed by a camera.

control is feasible, one has to check that the kinematic parameters used for
that control can also be obtained without joint sensing.

The purpose of this paper is therefore to show that modeling, identifi-
cation and control of parallel kinematic mechanisms can be derived without
making any use of the joint values, since their state space coincides with the
task space. In fact, in the parallel case, the three spaces (task, state and
measurement spaces) needed for controling a robot can coincide, which is
impossible in the serial case. Indeed, there exist several technologies for exte-
roceptive sensing, that is to perform measurement directly in the task space,
among which the most versatile is computer vision.

As stated above, this paper is essentially a synthesis of our experience on
kinematic control of parallel kinematic mechanisms and is based on previous
work. Namely, the work in Dallej et al (2006) dealing with control is reformu-
lated in the common joint sensor-free framework, while the joint sensor-free
identification part is, if not of a high novelty, newly elaborated from the
litterature state-of-the-art to give the missing element in a complete joint
sensor-free use of parallel kinematic mechanisms. Indeed, the work in Dallej
et al (2006) did not address at all whether joint sensor-free control could be
performed without needing joint sensing at calibration time or not.

This paper is hence organized as follows. Section II addresses the kine-
matic modeling of parallel kinematic mechanisms when an exteroceptive sen-
sor is a priori chosen to be used for control. Notice that this a priori choice
is not usual in robotics since usually models are derived independently from
which control (joint, model-based or sensor-based) will be implemented fi-
nally. Then, Section III is devoted to the most straightforward control which
can be derived from the models in Section II and Section IV shows that cal-
ibration can also be performed without using any joint reading. Section V
checks the validity of the approach on the much studied Gough-Stewart plat-
form (Figure 1 and Gough and Whitehall (1962); Stewart (1965)). Finally,
the paper ends on a discussion in Section VI.
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2 Exteroceptive sensor-based kinematic modeling

When deriving the kinematic model of any mechanism, the representation
of the end-effector pose X is usually expressed at the origin of the end-
effector frame Fe and in the base frame Fb. If one uses a homogeneous matrix
representation of X, this means that one expresses the inverse kinematic
model as a function of bTe.

However, both the base frame and the end-effector frame are arbitrary.
Usually, they are chosen such that they can be easily interpreted by a human
being and especially with regards to the task to be performed. Most often,
this means a materialisation associated to the base on the one hand and to
the end-effector on the other hand.

For instance, for a 6R serial kinematic mechanism, the base frame is
usually located at the origin of the first joint and oriented such that it fits
with the second body frame when the first joint is in its zero position. As for
the end-effector frame, it is located at the center of the wrist.

However, if this is easy to represent physically the reference frames (al-
though it remains a convenient approximation: who can say where precisely
is the center of a wrist ?), it is not that easy for a human being to estimate
the end-effector pose with respect to the base frame. Therefore, another con-
venient way of choosing a base frame, which is not related anymore to the
physical base of the robot, is known as the zero-reference point method (see
for instance Ruf and Horaud (1999)): the base frame and the end-effector
frames coincide in a given reference configuration of the robot. In this case,
it becomes more intuitive to program the robot trajectory since the latter is
now a relative path rather than an absolute one.

Thus, the humanly interpretable choice is not necessary for control and
it might be wise to choose the frames such that control and calibration are
simplified. In fact, there is more freedom in the choice of the base frame than
in the choice of the end-effector frame, since the latter must be coherent with
the task to be performed.

In the case where an exteroceptive sensor is used (laser+retroflective cube,
camera+pattern, ...), the base frame and the reference frame can generically
be chosen as the sensor reference frame Fr and the sensor target frame Ft

(or vice-versa), depending on whether the sensor is mounted on the mobile
platform (eye-in-hand configuration, Fig. 2) or attached to the base (eye-to-
hand configuration, Fig. 3). To deal generically with the two configurations,
let us introduce a sensor mobile frame Fm (which is the moving frame of the
sensor+target couple) and a sensor fixed frame Ff (Figure 4).

Notice also that this systematic choice implies to calibrate the robot, since
now, the physical measurements are not enough.

Consequently, in a totally generic manner, provided nevertheless that it
exists, the inverse kinematic model can be expressed as a function of the
pose of the sensor mobile frame Fm with respect to the sensor fixed frame
Ff and of the kinematic parameters, expressed with respect to the latter
frames, ξf,m:

q = IKM(fTm, ξf,m) (5)
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Fig. 2 A Gough-Stewart platform in eye-in-hand configuration, where a camera
is attached to the mobile platform and observes a pattern tied to the base.
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Fig. 3 A Gough-Stewart platform in eye-to-hand configuration, where a retrore-
flective cube is attached to the mobile platform and is tracked by a laser tracker
fixed with respect to the base.

Thus, the joint sensors deliver an indirect observation of the state of a parallel
kinematic mechanism, instead of a direct one in the serial case.

Notice that, most often, the above expression can be splitted in indepen-
dent expressions for each leg:

∀i = 1..n, qi = IKMi(
fTm, ξi,f,m) (6)
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Fig. 4 Generic configuration for parallel kinematic mechanisms

exhibiting a specific subset ξi,f,m of the kinematic parameters for each leg,
without intersection with the subsets associated to the other legs.

Example

For instance, the kinematics of the well-known Delta robot pre-
sented in Clavel (1991) is usually obtained by writing the so-called
implicit kinematic model as:

∀i = 1..3, L2

i = ‖bRe
eBi + bte −

bAi − li cos qi
bxi − li sin qi

by
i
‖2 (7)

where Ai is the position of the actuator of leg i on the base, xi

and y
i

are a basis in the rotation plane associated to actuator i,

Bi is the attachment point of leg i onto the mobile platform, (Li, li)
are the forearm and arm lengths of the leg elements and (bRe,

bte)
are the rotation matrix and position vector associated to the rigid
transformation bTe.

However, since the norm is invariant to Euclidean changes of frames,
the implicit kinematic model becomes:

∀i = 1..3, L2

i = ‖fRm
mBi+

f tm−fAi−li cos qi
f xi−li sin qi

f y
i
‖2 (8)

From this implicit kinematic model, one obtains the inverse kinematic
model by solving a second order polynomial in t = tan qi

2
yielding an

expression of the form given in (6) where the set of the kinematic pa-
rameters (ξi,f,m = {mBi,

fAi,
f xi,

f y
i
, Li, li}) is expressed relatively

to the sensor fixed frame and the sensor mobile frame.
Now, the attachement points of the legs on the fixed base and the

associated reference vectors are to be calibrated in the sensor fixed
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frame, while the attachment points on the mobile platform are to be
calibrated in the sensor mobile frame.

A second consequence of the generic choice of the frames is that the
differential inverse kinematic model of a parallel kinematic mechanism
writes generically:

∀i, q̇i = mDinv
m,i(

fTm, ξf,m)mτm (9)

Let us now leave the Delta aside and come back to the generic case.

3 Exteroceptive sensor-based control

Since the state of a parallel kinematic mechanism is its end-effector pose
(provided that the inverse kinematic model has a closed-form expression), it
is straightforward to derive a non-linear state feedback control law. To do so,
one just needs to consider the following signal, to be servoed to 0:

ms =

(

mtm∗

muθ

)

(10)

where mtm∗ is the position error or translation between the current (Fm)
and desired (Fm∗) sensor mobile frame, while muθ is the orientation error,
decomposed as the axis mu and angle θ of the rotation mRm∗ between these
two frames. Indeed, this signal is a representation of the end-effector pose
since it is obtained from the rigid transformation mTm∗ obtained by compo-
sition of the end-effector pose, expressed in the sensor fixed frame and the
sensor mobile frame, in the current (fTm) and desired (fTm∗) state. Thus,
this control signal is a function of the end-effector pose:

ms = f(fTm) (11)

and conversely, one has a closed-form expression for the end-effector pose
given ms using the Rodrigues formula and basic composition of rigid trans-
formations.

Notice that when this signal is reconstructed from image information,
then one gets the so-called 3D pose visual servoing scheme (Thuilot et al
(2002); Wilson et al (1996)) and that expressing this signal in the current
sensor mobile frame Fm yields a complete decoupling of the translation and
orientation (Thuilot et al (2002)).

The time derivative of the control signal ms is given by:

dms

dt
= L(ms) mτm (12)

where all one needs to know in this paper about the interaction matrix L(ms)
is that it is square (Malis et al (1999); Thuilot et al (2002)) and can be for-
mally inverted (Malis et al (1999)). Then, the pseudo-control input ensuring
exponential convergence of ms is obtained by:

mτm = −λL−1(ms) ms with λ > 0 (13)
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However, from (11), one can rewrite the above pseudo-control as

mτm = −λL−1(f(fTm)) ms, λ > 0 (14)

which only depends on the end-effector pose.
Then, according to (9), this pseudo-control is casted into the actual joint

velocity control signal:

∀i, q̇i = −λmDinv
m,i(

fTm, ξf,m)L−1(f(fTm)) ms, λ > 0 (15)

Let us underline that this control law is the same for both the eye-in-
hand and the eye-to-hand configurations, provided that fTm is adequately
obtained:

Eye-to-hand configuration: Here, the sensor mobile frame Fm is the sensor
target frame Ft and the sensor fixed frame Ff is the sensor reference frame
Fr and hence the transformation fTm is directly delivered by the sensor:

fTm = rTt (16)

Eye-in-hand configuration: Here, the sensor mobile frame Fm is the sensor
reference frame Fr (e.g. the camera frame) and the sensor fixed frame Ff

is the sensor target frame Ft (e.g. the visual pattern frame) and hence the
transformation fTm is the inverse of the transformation delivered by the
sensor:

fTm = rT−1

t (17)

The above control does not make any assumption on which exteroceptive
sensor is used. It could thus as well be a vision system as a laser tracker or
a GPS-like sensor or even a serial mechanism with joint encoders (provided
yet that no force nor torque is transmitted in this redundant kinematic chain
in the parallel kinematic mechanism). Our opinion is that vision should be a
good balance between cost, versatility, accuracy and robustness to working
conditions, but this would deserve a longer discussion taking into account all
the industrial requirements and technological constraints.

In particular, the control law presented above is the most straightforward,
but requires the observation of the pose, which is not an easy task. It relies in-
deed either on very accurate mechanical realisation (laser tracker, redundant
mechanism) or on non-linear numerical solving (pose estimation by vision).
Higher performances could, on the opposite, be achieved using control laws
with other sensor signals as it will be discussed in the last section.

4 Exteroceptive sensor-based self-calibration

In summary of the last two sections, parallel kinematic mechanisms can be
modelled and controlled without any call to joint values, provided that the
kinematic parameters are expressed in the adequate frames. However, be-
cause the latter frames are not intuitively defined, this joint-free control im-
poses the system to be calibrated and can not simply use the CAD values
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of the robot (unless the CAD model includes the exteroceptive sensor). Cal-
ibration must also be done without measuring the joint values, otherwise
joint-free control is almost useless.

There are several ways to identify the kinematic parameters without using
the joint values. The purpose of this section is not to give the technical details
of a given calibration method but rather to suggest a couple of calibration
alternatives and show the feasibility of the methodology. Notice, before that,
that in the case where an exteroceptive sensor-based control is used, calibra-
tion does not need be very accurate since kinematic parameters only appear,
in the control law, in the differential model and not in the servoed error.

Since only the differential inverse kinematic model is required for control,
the most straightforward method would be to record simultaneously all the
variables in (9), namely the mobile frame pose with respect to the fixed
frame fTm, the instantaneous mobile frame Cartesian velocity mτm and the
associated joint velocities q̇, but this raises two drawbacks. The first one is
that one needs to measure simultaneously and accurately both a 3D pose
and a 3D velocity, although it is partially solved by Ait-Aider et al (2006).
The second one is that joint velocity measurements are required, which we
want to get rid of. A solution lies in applying in the same joint velocity to a
given leg i in two different configurations j and k. Thus, one can express the
ith leg joint velocity in configuration j from the differential inverse kinematic
model:

q̇i = mDinv
m,i(

fTj
m, ξf,m)mτ j

m (18)

Expressing similarly the same leg joint velocity in configuration k yields:

mDinv
m,i(

fTj
m, ξf,m)mτ j

m = mDinv
m,i(

fTk
m, ξf,m)mτk

m (19)

This constraint equation involves the unknown kinematic parameters ξf,m

as well as the measured 3D pose and 3D velocity in both configurations but
does not depend on the joint measurement. As a consequence, one can now
solve for this non linear system, for several configuration triplets (i, j, k) sat-
isfying the constraints, to calibrate the kinematic parameters. Nevertheless,
this requires that the application of a given joint velocity is sufficiently re-
peatable.

A more classical approach could rely on the classical calibration method
using the inverse kinematic model (Zhuang et al (1998)), although some pa-
rameters may vanish with time differentiation. The adaptation of classical
calibration methods using joint values to a joint-free version is based on the
same principle of assigning known values to a given joint i. It is more con-
venient than in the differential case since the joint limits are two convenient
joint values, that can either be easily measured at hand or simply imposed
repeatedly. Notice that the assignment of such joint values does not need
be very accurate since calibration does not either need be very accurate.
Thereby, if a rough estimate of the joint limits can be obtained, the usual
exteroceptive sensor-based calibration (or its variation based on the implicit
kinematic model proposed by Wampler et al (1995)) can be used:

∀i, min
ξi,f,m

1

2

∑

j

‖qj
i − IKMi(

fTj
m, ξf,m)‖2 (20)
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where one minimizes the errors between the robot roughly estimated joint
values q

j
i and those obtained from the inverse kinematic model for each con-

figuration.
Alternately, one can use the same principle as in the differential case,

that is constraining one given joint i to the same joint limit while placing the
end-effector in two different poses j and k:

∀i, min
ξi,f,m

1

2

∑

j,k

‖IKMi(
fTk

m, ξf,m) − IKMi(
fTj

m, ξf,m)‖2 (21)

where one minimizes the errors between the output of the inverse kinematic
model in configuration j and the one in configuration k.

This approach is the dual to self-calibration methods in serial robotics
(Khalil and Dombre (2002)) where one applies constraints to the end-effector
in order to avoid measuring its pose. It is also a variant of the constrained cal-
ibration method proposed in Daney (1999), except that the end-effector pose
is measured rather than estimated through the Forward Kinematic Problem,
which removes much of the risk of numerical instability reported by Daney
and Emiris (2001).

Which of the above suggested methods is to be used for a given real
application depends largely on the actual set-up and can not be determined
generically yet.

Nevertheless, no joint sensor is required in any of the above methods.
Thus, the joint values can be removed both from control and from calibration
and hence, the mechanical design of parallel kinematic mechanisms can be
simplified. Since the same exteroceptive sensor is used for calibration and for
control, calibration can be performed autonomously by the robot, and can
even be done on-line during control, either to simply monitor the kinematic
parameters or to cope with slow variation of the latter.

5 Experimental validation

In the previous derivation, we did not make any assumption on which par-
allel kinematic mechanism was to be controlled, i.e. on the expression of the
inverse kinematic model. In this section, the approach is experimentally vali-
dated on a commercial Gough-Stewart platform in eye-to-hand configuration
(Figure 1).

5.1 Inverse kinematic model

The Gough-Stewart mechanism has 6 legs of varying length qi, i ∈ 1..6,
attached to the base by spherical or universal joints located in points Ai and
to the moving platform (end-effector) by spherical joints located in points
Bi. The implicit kinematic model of such an hexapod expressed in the end-
effector frame is

∀i ∈ 1..6, q2

i = e−−−→AiBi
T e−−−→AiBi (22)



11

expressing that qi is the length of vector
−−−→
AiBi. One can then trivially obtain

the inverse kinematic model expression given by Merlet (2000).
The implicit kinematic model can be expressed in the sensor mobile frame,

since the scalar product is invariant to any change of frames in the Euclidean
space:

∀i ∈ 1..6, q2

i = m−−−→
AiBi

T m−−−→
AiBi (23)

Introducing ui the unit vector pointing from Ai to Bi, we can rewrite (23)
as

qi
mui = mBi −

mRf
fAi −

mtf (24)

from which one obtains the differential inverse kinematic model

q̇ = mDinv
m

mτm (25)

with

mDinv
m =







muT
1

mB1 ×
muT

1

...
...

muT
6

mB6 ×
muT

6






(26)

and

mui =
mBi −

mRf
fAi −

mtf

‖mBi − mRf
fAi − mtf‖

(27)

In the above expressions, the fAi and the mBi are the constant kinematic
parameters to be calibrated. Notice that the joint offsets, a major source of
modeling errors, disappeared from the set of calibration parameters.

5.2 Calibration

To calibrate the robot, we used the 26 = 64 configurations where each leg
is either stretched out or tucked in. First, we used these configurations to
calibrate the robot using the joint sensor information. Thus, inserting the
joint offsets in the model in (23) and developping the expression of vector
−−−→
AiBi as in (24) yields the detailed kinematic model:

∀i = 1..6, (qi + q0i)
2 − ‖fRj

m
mBi + f tj

m − fAi‖
2 = 0 (28)

and, consequently, the following standard minimization problem:

∀i, min
ξi,f,m

1

2

64
∑

j=1

∥

∥(qi + q0i)
2 − ‖fRj

m
mBi + f tj

m − fAi‖
2
∥

∥

2

(29)

where the kinematic parameter set ξi,f,m is composed of the joint offset q0i,
the joint location on the base fAi (expressed in the fixed frame) and the
joint location on the mobile platform mBi (expressed in the mobile frame).
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Fig. 5 Initial (left) and desired (right) position of the end-effector, seen from the
camera.

Then, we calibrated the robot using the last method proposed above,
consisting in using, for each leg, the 32 ∗ 31 = 992 pairs of the above config-
urations with the leg in the same joint limit:

∀i, min
ξi,f,m

1

2

∑

j 6= k

qj ≈ qk

∥

∥

∥
‖fRj

m
mBi + f tj

m − fAi‖
2 −‖fRk

m
mBi + f tk

m − fAi‖
2

∥

∥

∥

2

(30)
where one minimizes the error between the squared leg length (obtained
from the inverse kinematic model) in pairs of configurations where they are
physically the same. Notice that the joint offset disappeared and that the
only unknowns in this problem are the joint locations fAi and mBi.

Both calibration methods give results1 with a maximal deviation between
the two methods of less than 0.3 mm on the positions of mBi and fAi. Thus,
as far as our control is concerned, calibrating without the joint values is
equivalent, in practice, to calibrating with the joint values. Therefore, the
theoretical opportunity of releasing the need for joint sensing is confirmed
from a practical point of view.

5.3 Control

We present here some experimental results showing that control can be per-
formed without any joint sensing either.

In the first reported experiment, the robot is asked to reach the desired
position from the initial configuration that are displayed in Figure 5. Thus,
the robot covers a large amount of its workspace.

Figure 6 not only shows that the errors converge to 0 as expected, from
an initial error to a final one displayed in Table 1, but also that the motion
in the Cartesian space is decoupled: the end-effector trajectory is a screw.

1 Notice that the exact value of the kinematic parameters before and after the
calibration are not displayed here since they depend on the relative positioning of
the sensing device with respect to the robot.
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Fig. 6 Evolution of the translation error (top, in meters) and rotation error
(bottom, in radians), with a control gain λ = 3.
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Table 1 Initial and final errors

Position error (m) Orientation error (rad)
Initial Errors 0.0942 0.312
Final Errors 0.0017 0.008

Since the platform is equipped with joint sensors, they were recorded
during the control, although not used for the control itself. Figure 7 shows
that convergence is also normally reached in the joint space. It also shows the
joints coupled behaviour, associated to the fact that the control is decoupled
in the Cartesian space.

Note that the effective accuracy of the convergence depends essentially
on the pose estimation accuracy: under perfect rigid-body, backlash- and
friction-free assumptions, this accuracy is in fact theoretically only dependent
on the latter. It is, here, rather low (in the order of 0.5mm and 0.001 rad) since
only 9 points were used on the visual pattern, but the pose estimation could
easily be improved to micrometric accuracy with state-of-the-art know-how,
but this is not needed here.

Indeed, the effective accuracy may be limited by poor mechanical prop-
erties of the platform. Our actual set-up is thus impaired by backlashes in
the spherical joints and high friction in the actuators.

To compensate for friction, one can increase the control gain (either glob-
ally or adaptively). On the one hand, Figure 8 shows the evolution of the
errors when using a control gain equal to 8 instead of 3, as above. Conver-
gence accuracy is improved to 0.6 mm and 0.003 rad (in the order of both
the implemented pose estimation and the mechanical repeatability of our
set-up), but to the cost of a little overshoot and the risk of tracking loss due
to high initial velocities. On the other hand, Figure 9 shows the evolution of
the errors when using an adaptive control gain (λ = 0.8+(8−0.8)e−200‖m

s‖).
Convergence is also improved to 0.7 mm and 0.004 rad, but then the con-
vergence is not exponential anymore. Figure 10 displays the resulting joint
errors in both cases. It shows that the residual joint errors are in the order of
a millimeter, that is the one which can be achieved in practice with a simple
joint control on this set-up.

6 Discussion

To sum up, this paper has shown that modeling, identification and control
of parallel kinematic mechanisms, having a closed-form expression of their
inverse kinematic model (that are the vast majority of parallel kinematic
mechanisms), can be performed without any joint reading but with an ex-
teroceptive sensor measuring the end-effector pose. To do so, one needs to
express the models (and the end-effector pose) in the reference frames associ-
ated to the exteroceptive sensor, which has for consequence that calibration
also needs be performed without joint sensing.

Although the approach was applied once in a real experiment, which
shows the feasibility of the methodology, the actual efficiency of this method-
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Fig. 8 Evolution of the translation error (top, in meters) and rotation error
(bottom, in radians), with a control gain λ = 8.

ology still deserves to be assessed through complete experimental validation
on various manipulators.

Yet, it can already be foreseen that, using such an approach, mechanical
design of parallel kinematic mechanisms can be simplified since fewer com-
ponents need be assembled. Practical consequences of that should be higher
repeatability and mechanical robustness as well as reduced friction and main-
tenance. Moreover, a parallel kinematic mechanism equipped with such an
exteroceptive sensor should become able to monitor autonomously the pa-
rameters in its control model and, if necessary, perform self-calibration or
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Fig. 9 Evolution of the translation error (top, in meters) and rotation error
(bottom, in radians), with an adaptive control gain.

self-tuning control. Let us notice that these issues have recently been stud-
ied on a linear Delta equipped with an exteroceptive sensor consisting of a
Gough platform Corbel (2008).

However, the methodology proposed in this paper requires to estimate the
end-effector pose, either by inverting the simple camera projection model or
by using complex systems (laser tracker or mechanical measuring device).
Thus, the control signal might be biased through the estimation process,
which would yield a bias in the final position even though the control con-
verges. If the bias is constant over the whole workspace, this is not very
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Fig. 10 Evolution of the joint errors (in meters) when λ = 8 (top) and when
using an adaptive gain (bottom) .

troublesome since it can be easily compensated for. However, if it varies over
the workspace, then it might be necessary to head to control methods with a
“cleaner” control signal, namely sensor-based control introduced in Samson
et al (1991).

Consequently, one would use an indirect observation of the state of the
parallel kinematic mechanism, where the control signal is an image of the
state. This is actually what visual servoing (IBVS, HBVS and PBVS) is
since the camera delivers an image which is function of the end-effector pose.
Noticeably, it is also the case, in the context of parallel kinematic mechanisms,



18

for joint control where joint values are a function of the end-effector pose.
Thus, according to the serial/parallel duality, joint control becomes a sensor-
based control.

However, the choice of the indirect observation shall be chosen in order
that the estimation of the end-effector pose be simple. This discards somehow
joint control because this would bring us back to the troublesome Forward
Kinematic Problem. This also discards visual servoing methods where the
interaction matrix is taken at convergence. Indeed, to avoid internal forces
or undesired internal motions, the differential inverse kinematic model has to
be estimated properly, and hence the end-effector pose has to be estimated
at each control iteration.

A careful observation of the specific case of Gough-Stewart shows that the
inverse kinematic matrix mDinv

m only depends on the direction of the legs.
Thus, it is not necessary to estimate explicitly the end-effector pose, since a
short-cut is possible by directly measuring the directions and using them as
the control primitive as in Andreff and Martinet (2006). However, this solu-
tion still requires the reconstruction from the image of the direction, which
can be noisy. Consequently, an image-based solution consisting of servoing
the projection of the legs can be designed as in Andreff et al (2007) where
the control is done directly in the sensor space and the 3D information can
be easily reconstructed with simple algebra to feed the interaction matrix
and the inverse kinematic matrix.

In conclusion, the next step to be made is to extend this search for the best
indirect observation in a generic way for any parallel kinematic mechanism.
The following step will then be to consider “pathological” parallel kinematic
mechanisms that do not have a closed-form expression for the inverse kine-
matic model, such as the planar 3-RRR mechanism which can have several
end-effector poses associated to a given joint configuration and several joint
configurations associated to a given end-effector pose (Chablat and Wenger
(1998)). A hint is to rely on the redundant metrology paradigm (Stoughton
and Arai (1991); Merlet (1993); Baron and Angeles (2000); Marquet et al
(2002)) not only to simplify the solution of the Forward Kinematic Model as
it is used usually, but much preferably to derive a simple, yet performant,
control.
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