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Abstract

The method we propose simpli�es the practical procedure for hand�

eye calibration� Indeed� no more calibration jig is needed and small

calibration motions can be used�

Without calibration jig� camera motions are computed� up to an

unknown scale factor� through structure�from�motion algorithms rather

than pose estimation�

�This work was supported by the European Community through the Esprit�IV reactive
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The unknown scale factor is then included in a linear formula�

tion� parameterizing rotations with orthogonal matrices� which han�

dles both large and small motions�

The algebraic analysis of the linear formulation determines whether

calibration is partial or complete according to the motions nature�

Finally� in�depth experiments are conducted� with comparison to

other methods�

� Introduction

The background of this work is the guidance of a robot by visual servoing ����

��� In this framework� a basic issue is to determine the spatial relationship

between a camera mounted onto a robot end�e�ector 	Fig� �
 and the end�

e�ector itself� This spatial relationship is a rigid transformation� a rotation

and a translation� known as the hand�eye transformation� The determination

of this transformation is called hand�eye calibration�

The goal of this paper is to discuss a technique allowing the hand�eye

calibration to be performed in the working site� In practice� this requires

that�

� No calibration jig will be allowed�

A calibration jig is a very accurately manufactured �d object hold�

ing targets as visual features� Mobile robots and space applications of

robotics are typical examples where a calibration jig cannot be used�

During their mission� such robots may nevertheless need to be cali�

brated again� However� as a�ordable on�board weight is limited� they
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Figure �� Some cameras mounted on our 
 DOF robot�

can not carry a calibration object and should use their surrounding en�

vironment instead� Thus� the availability of a hand�eye self�calibration

method is mandatory�

� Special and�or large motions are di�cult to achieve and hence should

be avoided�

Indeed� since the hand�eye system must be calibrated on�site� the amount

of free robot workspace is limited and the motions have therefore to be

of small amplitude� Therefore� the self�calibration method must be able

to handle a large variety of motions� including small ones�

Hand�eye calibration was �rst studied a decade ago ���� ���� It was shown

that any solution to the problem requires to consider both euclidean end�

e�ector motions and camera motions�� While the end�e�ector motions can

be obtained from the encoders� the camera motions are to be computed from

the images� It was also shown� both algebraically ���� and geometrically ����

that a su�cient condition to the uniqueness of the solution is the existence

of two calibration motions with non�parallel rotation axes�

�Notice that this requirement may be implicit as in 	��
�
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Several methods were proposed ���� �� �
� ��� 
� ��� to solve for hand�eye

calibration under the assumption that both end�e�ector and camera motions

were known� They di�er by the way they represent Euclidean motions� but

all have two points in common� 	i
 rotation is represented by a minimal pa�

rameterization and 	ii
 all proposed methods use pose algorithms to estimate

the camera motion relatively to the �xed calibration jig� Pose algorithms re�

quire the �d Euclidean coordinates of the jig targets to be known together

with their associated �d projections onto each image�

Moreover� as the proposed methods use reduced representations of the

rotation and since these are ill�de�ned when rotation angle is small� the

calibration motions must be as large as possible� a rule for such a choice of

large calibration motions is even given in �����

Another approach is proposed by Wei et al� ����� who perform simulta�

neously hand�eye calibration and camera calibration without any calibration

jig� However� this requires a complex non�linear minimization and the use of

a restrictive class of calibration motions� Moreover� no algebraic analysis of

the problem is given�

With regard to the existing approaches� we propose a di�erent hand�eye

self�calibration method which exploits two main ideas� The �rst idea is that

a speci�c algebraic treatment is necessary to handle small rotations� since

minimal parameterizations of rotations are not de�ned for small angles and

are therefore ill�conditioned� The second idea is that camera motion can

be computed from structure�from�motion algorithms rather than from pose

algorithms� in order to avoid the use of the calibration jig� Our contribu�

tions can be summerized in the following� Firstly� hand�eye calibration is
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reformulated in order to take into account the estimation of camera motions

from structure�from�motion algorithms� Indeed� camera motions are thus

obtained up to an unknown scale factor� which is introduced in the formula�

tion� Secondly� a linear formulation� based on the representation of rotations

by orthogonal matrices� is proposed which enables small calibration motions�

Thirdly� an algebraic study of this linear solution is performed which shows

that partial calibration can nevertheless be performed when the su�cient

condition for the uniqueness of the solution is not ful�lled� Fourthly� in�

depth experiments are conducted with comparison to other methods�

The remainder of this paper is organized as follows� Section � recalls the

classical formulation of hand�eye calibration and the structure�from�motion

paradigm� Section � gives contains the formulation of the linear hand�eye

self�calibration method� Section ��� contains its algebraic analysis� Finally�

Section � gives some experimental results and Section 
 concludes this work�

� Background

In this section� after de�ning the notation used in this article� we brie�y

present the classical formulation of hand�eye calibration with a short de�

scription of three methods that will be used as references in the experimental

section 	Section �
� We then describe the estimation of camera motions� con�

cluding in favor of Euclidean reconstruction rather than pose computation�






��� Notation

Matrices are represented by upper�case bold�face letters 	e�g� R
 and vectors

by lower�case bold�face letters 	e�g� t
�

Rigid transformations 	or� equivalently� Euclidean motions
 are repre�

sented with homogeneous matrices of the form��
B� R t

� � � �

�
CA

where R is a �� � rotation matrix and t is a �� � translation vector� This

rigid transformation will be often referred to as the couple 	R� t
�

In the linear formulation of the problem� we will use the linear operator

vec and the tensor product� also known as Kronecker product� The vec

operator was introduced in ���� and reorders 	one line after the other
 the

coe�cients of a 	m� n
 matrixM into the mn vector

vec	M
 � 	M��� � � � �M�n�M��� � � � �Mmn

T

The Kronecker product ��� �� is noted �� From two matricesM and N with

respective dimensions 	m�n
 and 	o� p
� it de�nes the resulting 	mo�np


matrix�

M�N �

�
BBBB�
M��N � � � M�nN

���
� � �

���

Mm�N � � � MmnN

�
CCCCA 	�


��� Hand�eye problem formulation

We present here the classical approach ���� �� �� �
� ��� 
� ��� which states

that� when the camera undergoes a motion A � 	Ra� ta
 and that the cor�

�
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Figure �� End�e�ector 	represented here by a gripper
 and camera motions

are conjugated by the hand�eye transformation X�

responding end�e�ector motion is B � 	Rb� tb
� then they are conjugated by

the hand�eye transformation X � 	Rx� tx
 	Fig� �
� This yields the following

homogeneous matrix equation�

AX � XB 	�


where A is estimated� B is assumed to be known and X is the unknown�

Equation 	�
� applied to each motion i� splits into�

RaiRx � RxRbi 	�


Raitx � tai � Rxtbi � tx 	�


In the method proposed in ����� the �rst equation is solved by least�

square minimization of a linear system obtained by using the axis�angle

representation of the rotations� Once Rx is known� the second equation is

also solved with linear least squares techniques�

To avoid this two�stage solution which propagates the error on the rota�

tion estimation onto the translation� a non�linear minimizationmethod based

on the representation of the rotations with unit quaternions was proposed

�
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Figure �� Hand�eye calibration from pose estimation

in ��
�� Similarly� a method based on the unit dual quaternion representa�

tion of Euclidean motions was developed in ��� to solve simultaneously for

hand�eye rotation and hand�eye translation�

��� Computing the camera motions

In the prior work ���� �� �� �
� ��� 
� ���� camera motions were computed

considering images one at a time� as follows� First� �d�to��d correspondences

were established between the �d targets on the calibration jig and their �d

projections onto each image i� Then� from the �d coordinates of the targets�

their �d projections and the intrinsic camera parameters� the pose 	i�e� po�

sition and orientation
 of the camera with respect to the calibration jig is

estimated Pi � 	Ri� ti
� Finally� the camera motion between image i�� and

image i Ai � 	Rai� tai
 is hence obtained by simple composition 	Fig� �
�

Ai � 	RiR
T
i��� ti �RiR

T
i��ti��


�



Image 1 Image 2 Image 2

Figure �� Scale factor ambiguity on the Euclidean reconstruction� which one

of the two camera positions on the right and which one of the two sets of �d

points were used to generate the second image �

Alternatively� one may simultaneously consider all the images that were

collected during camera motion� Thus� one may use the multi�frame structure�

from�motion paradigm 	see ���� for a review
� The advantage of structure�

from�motion over pose algorithms is that the former does not require any

knowledge about the observed �d object� Indeed� structure�from�motion

only relies on �d�to��d correspondences� These are more easily obtained

since they depend on the image information only� There are two classes

of 	semi�
automatic methods to �nd them� a discrete approach� known as

matching ����� and a continuous approach� known as tracking �����

A relevant class of structure�from�motion methods is known as the Eu�

clidean reconstruction ��� ��� ��� ��� ��� ��� It assumes that the camera

is calibrated 	i�e� the camera intrinsic parameters are known
� From this

knowledge� one can reconstruct the structure of the scene and the motion of

the camera up to an unknown scale factor 	Fig� �
 using various methods 	see

�



Image 1 Image 2 Image 2

Image 3

Figure 
� Once the scale factor is resolved between the �rst two images� the

second camera position is uniquely de�ned with respect to the �rst one and

consequently� the following camera positions are also uniquely de�ned�

below
� This unknown scale factor is the global scale factor of the observed

scene and is the same for all the camera motions in the sequence 	Fig� 

�

Therefore� the estimated camera motions are of the form�

Ai	�
 �

�
B� Rai �uai

� � � �

�
CA 	



where Rai is the rotation of the camera between image i � � and image i�

� is the unknown scale factor and uai is a vector� parallel to the camera

translation tai and such that

tai � �uai 	�


Taking� without loss of generality� the �rst motion as a motion with non

zero translation allows to arbitrarily choose ua� as a unit vector� Hence�

� � kta�k� Consequently� the uai�s are related by� uai � tai�kua�k and �

can be interpreted as the unknown norm of the �rst translation�

��



In summary� camera rotations are completely recovered while camera

translations are recovered up to a single unknown scale factor�

In practice� which structure�from�motion algorithm should we choose �

A�ne camera models ���� ��� ��� yield simple linear solutions to the Eu�

clidean reconstruction problem� based on matrix factorization� However�

a�ne models are �rst�order approximations of the perspective model� Hence�

only approximations of the Euclidean camera motions can be obtained� Be�

sides� solutions exist ��� ���� based on the perspective model� that o�er some

Euclidean information on the camera motions� but are non linear� Our choice

lies in fact between these two classes of methods� we propose a method for Eu�

clidean reconstruction by successive a�ne approximations of the perspective

model ���� which combines the simplicity of a�ne methods and the accuracy

of non linear methods�

In summary� in order to estimate camera motions� structure�from�motion

methods are more �exible than pose computation methods� since no �dmodel

is needed� The drawback of lowering this constraint is that camera motions

are estimated up to an unknown scale factor which we must take into account

in the hand�eye self�calibration method�

� A new linear formulation

In this section� we �rst modify the formulation of hand�eye calibration in

order to take into account the use of Euclidean reconstruction to compute

camera motions� Then� we give a solution to this problem which handles

small rotations�

��



unknown scene

camera
gripper

X

X

X

A�	�


B�

Figure �� From images of an unknown scene and the knowledge of the intrin�

sic parameters of the camera� structure�from�motion algorithms estimate� up

to an unknown scale factor �� the camera motions Ai	�
�

��� Using structure�from�motion

For using structure�from�motion to estimate camera motions� we have to take

into account the unknown scale factor �� Indeed� the homogeneous equation

	�
 becomes 	compare Fig� � and Fig� �
�

Ai	�
X � XBi 	�


where Ai	�
 is the ith estimated camera motion� From 	

 and 	�
� we thus

obtain a set of two equations� similar to 	�
�	�
�

RaiRx � RxRbi 	�


Raitx � �uai � Rxtbi � tx 	�


where the unknowns are now Rx� tx and ��

��



��� Linear formulation

We propose a new formulation which handles rotations of any kind� Its un�

derlying idea is to embed the rotation part of the problem� intrinsically lying

in SO	�
� in a larger space in order to deliberately free ourselves from the

non�linear orthogonality constraint� This allows us to easily �nd a subspace

of matrices verifying 	�
� Then� the application of the orthogonality con�

straint selects� in this subspace� the unique rotation which is solution to the

problem� This general idea is very powerful here since� as we will see� the

non�linear orthogonality constraint reduces to a linear norm constraint�

The new formulation is inspired by the similarity of 	�
 with the Sylvester

equation� UV � VW � T� This matrix equation� which often occurs in

system theory ���� is usually formulated as a linear system ��
� ��� ���

	U� I� I�W
vec	V
 � vec	T
 	��


One fundamental property of the Kronecker product is ����

vec	CDE
 � 	C�ET 
vec	D
 	��


where C�D�E are any matrices with adequate dimensions� Applying this

relation to equation 	�
 yields�

	Rai �Rbi
vec	Rx
 � vec	Rx
 	��


Introducing the notation vec	Rx
 in equation 	�
� we obtain�

	I� � 	tb
T
i 

vec	Rx
 � 	I� �Rai
tx � �uai � � 	��


��



We can then state the whole problem as a single homogeneous linear system�

�
B�I� �Rai �Rbi ���� ����

I� � 	tb
T
i 
 I� �Rai �uai

�
CA
�
BBBB�
vec	Rx


tx

�

�
CCCCA �

�
B�����
����

�
CA 	��


The question is now� �What is the condition for this system to have

a unique solution �� and a subsequent one is� �What occurs when this

condition is not ful�lled ��

��� Algebraic analysis

From earlier work on hand�eye calibration ���� ��� we know that two mo�

tions with non�parallel rotation axes are su�cient to determine the hand�eye

transformation� We will show in this section� that our new linear solution

owns the same su�cient condition but also allows us to identify what can be

obtained when such a su�cient condition is not ful�lled 	the so�called partial

calibration
�

Hence� let us determine what can be obtained using various combinations

of end�e�ector motions by successively considering� pure translations� pure

rotations� planar motions 	i�e� containing the same rotational axis and inde�

pendent translations
 and �nally general motions� The results of this study

are gathered up in Table �� Notice that by inverting the roles of the end�

e�ector and the camera� we obtain the same results for the recovery of the

eye�hand transformation 	i�e� the inverse of the hand�eye transformation
�

��



Motion �

Motion �

Translation

RB � I

tB �� �

Rotation

RB �� I

tB � �

General motion

RB �� I

tB �� �

Translation

RB � I

tB �� �

Rx� �
Rx� �

tx	�


Rx� �

tx	�


Rotation

RB �� I

tB � �

Rx� �

tx	�


Rx� tx	�


Decoupled

solution

Rx� tx� �

General

solution

General motion

RB �� I

tB �� �

Rx� �

tx	�


Rx� tx� �

General

solution

Rx� tx� �

General

solution

Table �� Summary of the results for two independent motions�

�




����� Pure translations

Recall from equation 	�
� that when end�e�ector motions are pure transla�

tions 	i�e� Rbi � I�
� then camera motions are pure translations too 	i�e�

Rai � I�
� Hence� equation 	�
 becomes

tai � Rxtbi 	�



Consequently� the amplitude of camera motion is the same as the amplitude

of end�e�ector motion� which is not the case when rotations are involved� One

can therefore keep control of the camera displacements and guarantee that

a small end�e�ector motion will not generate an unexpected large camera

motion� Concerning calibration� we have the following result�

Proposition � Three independent pure translations yield a linear estima�

tion of hand�eye rotation Rx and of the unknown scale factor �� Hand�eye

translation can not be observed�

Proof� In the case of pure translations� the upper part of the system

in 	��
 vanishes and its lower part simpli�es into�

�
I� � 	tb

T
i 

�
vec	Rx
 � �uai 	��


This implies that hand�eye translation tx can not be estimated� However�

the nine coe�cients of the hand�eye rotation Rx can be obtained as we show

below� This was also demonstrated in ���� in the particular case where � is

known�

��



Let us assume temporarily that � is known� If tbi �� �� then I� � 	tb
T
i 


has rank � since

I� � 	tb
T
i 
 �

�
BBBB�
tb
T
i ���� ����

���� tb
T
i ����

���� ���� tb
T
i

�
CCCCA 	��


Consequently� three linearly independent pure translations yield a full rank

	�� �
 system�

�
BBBB�
I� � 	tb

T
�



I� � 	tb
T
�



I� � 	tb
T
�



�
CCCCA

� �z �
M

vec	Rx
 � �

�
BBBB�
ua�

ua�

ua�

�
CCCCA 	��


of which the solution �Rx is such that

vec	 �Rx
 � �M��

�
BBBB�
ua�

ua�

ua�

�
CCCCA 	��


Since 	A�B
	C�D
 � AC�BD ���� it is easy to verify that the analytic

form of the inverse of M is�

M�� �
�

 

	
I� � 	tb� � tb�
 I� � 	tb� � tb�
 I� � 	tb� � tb�




	��


where � denotes the cross�product and  � det	tb�� tb�� tb�
� This allows the

rewriting of 	��
 in closed form�

vec	 �Rx
 �
�

 
	I� � 	tb� � tb�
ua� � I� � 	tb� � tb�
ua� � I� � 	tb� � tb�
ua�


	��


��



Applying 	��
 yields

vec	 �Rx
 �
�

 
vec

�
ua�	tb� � tb�


T � ua�	tb� � tb�

T � ua�	tb� � tb�


T
�
	��


and from the linearity of the vec operator� we �nally obtain�

�Rx �
�

 

�
ua�	tb� � tb�


T � ua�	tb� � tb�

T � ua�	tb� � tb�


T
�

	��


Let us analyze this result and prove now that �Rx is equal to Rx� when

measurements are exact� To do that� �rst recall that Rxtbi � �uai� Hence�

�Rx �
�

 
Rx

�
tb�	tb� � tb�


T � tb�	tb� � tb�

T � tb�	tb� � tb�


T
�

� �z �
N

	��


Recalling that Rx is orthogonal and verifying that N �  I�� we obtain that

�Rx � Rx�

This analysis proves that even if � is unknown the column of �Rx� esti�

mated from 	��
� are orthogonal to each other� Thus� only the unity con�

straint 	i�e� det	 �Rx
 � �
 remains to be veri�ed by �Rx� From 	��
 again� the

unity constraint immediately gives �� Consequently� the hand�eye rotation

can be recovered from three linearly independent translations� �

Proposition � A minimum of � linearly independent pure translations are

intrinsically enough to estimate the hand�eye rotation Rx and the unknown

scale factor ��

Proof� The solution is not linear any more and comes in two steps�

�� Scale factor estimation

��



As Rx is orthogonal� it preserves the norm� Hence� for each pure trans�

lation i� we have�

kRxtbik � ktbik

Applying 	�

 and 	�
 on the left�hand side of this expression gives for

all i�

�kuaik � ktbik

where uai and tbi are known�

�� Hand�eye rotation estimation

Remark that if tb� and tb� are two linearly independent vectors� then

tb� � tb� is linearly independent from them� Moreover� one can prove

that

Rx	tb� � tb�
 � 	Rxtb�
� 	Rxtb�


Therefore� we can form the following full�rank 	�� �
 system�

�
BBBB�

I� � 	tb
T
�



I� � 	tb
T
�



I� � 		tb� � tb�

T 


�
CCCCA vec	Rx
 � �

�
BBBB�

ua�

ua�

�	ua� � ua�


�
CCCCA 	�



Since � is now known� Rx can be obtained by inverting this system

and the orthogonality of the solution is guaranteed by the proof of

Proposition ��

�

��



����� Pure rotations

By �pure rotations�� we mean motions of the end�e�ector such that tbi � ��

In practice� these motions can be realized by most of the robotic arms� since

the latter are usually built in such a manner that their end�e�ector reference

frame is centered on a wrist 	i�e� the intersection of the last three revolute

joint axes
� For similar reasons� pan�tilt systems may also bene�t from the

subsequent analysis�

In such a case� we can state the following proposition

Proposition � If the robot end�e�ector undergoes at least two pure rotations

with non�parallel axes� then one can linearly estimate the hand�eye rotation

Rx and the hand�eye translation up to the unknown scale factor tx��� These

two estimations are decoupled�

Notice that� in the case where camera motion is obtained through pose

computation� � is known and the hand�eye translation can thus be fully

recovered� as does Li �����

Proof� With pure rotations� the system in 	��
 is block�diagonal and

decouples into�

	I� �Rai �Rbi
 vec	Rx
 � ���� 	��


	I� �Rai
 tx � �uai 	��


With at least two rotations with non parallel axes� we form a system with

equations similar to 	��
 which has then full rank and yields a ��dimensional

solution subspace�

tx � �tx� 	��


��



where tx� is solution to the system�

	I� �Rai
 tx � uai� i � ���n

Notice that the parameter of the subspace is the unknown scale factor� This

is not surprising since pure rotations of the robot do not contain metric

information�

Let us now study the �rst subsystem 	��
� One of the properties of

the Kronecker product is that the eigenvalues of M � N are the product

of the eigenvalues of M by those of N� In our case� Rai and Rbi have the

same eigenvalues� f�� ei�i� e�i�ig and thus the eigenvalues of Rai �Rbi are�

f�� �� �� ei�i� ei�i � e�i�i� e�i�i� e�i�i � e��i�ig�

Consequently� when the angle of rotation �i is not a multiple of �� then

the 	�� �
 matrix of 	��
 I��Rai�Rbi has rank �� Hence� the solution Rx

lies in a ��dimensional manifold� Using the two orthogonality constraints�

the solution manifold dimension can only be reduced to �� which con�rms

the need for two rotations�

In the case of two or more independent rotations� we can state the fol�

lowing lemma 	see the proof in Appendix A
�

Lemma � If the robot end�e�ector undergoes at least � pure rotations of non

parallel axes� then system ���	 has rank 
� its null space K is ��dimensional

and the hand�eye rotation Rx is equal to�

Rx �
sign	det	V



j det	V
j
�
�

V 	��


where sign	
 returns the sign of its argument� V � vec��	v
 and v is any

vector of the null space K�

��



pure translation

planar motion

Figure �� One planar motion with non�identity rotation and one non�zero

pure translation which is not parallel to the rotation axis of the planar mo�

tion�

which completes the proof of Proposition �� �

In practice� v can be determined using a Singular Value Decomposition

	SVD
 which is known to accurately estimate the null space of a linear map�

ping�

����� Planar motions

Some robots are restricted to move on a plane� such as car�like robots� In

this case� all the robot and camera rotations have the same axis nb 	resp�

na � Rxnb
� which is orthogonal to the plane of motion� Then� we can

demonstrate that

Lemma � One planar motion with non�identity rotation and one non�zero

pure translation �which is not parallel to the rotation axis of the planar mo�

tion� see Fig� �	 are intrinsically enough to recover the hand�eye rotation Rx

and the unknown scale factor �� The hand�eye translation can only be esti�

mated up to an unknown height � along the normal to the camera plane of

motion �Fig� 
	�

��



discarded positions

actual position

undistinguishable positions

Figure �� In the case of planar motions� one can not determine the altitude

of a camera which is rigidly mounted onto the base�

Notice that this Lemma is not limited to the planar motion case� since

the pure translation is not restricted to lie in the plane of motion�

Proof� Assume without loss of generality that the �rst motion is a pure

translation 	Ra� � Rb� � I�� tb� � ��
 and the second is a planar motion

with non�identity rotation such that its rotation axis nb is not parallel to tb�

	Fig� �
� Then� the general system 	��
 rewrites as��
BBBB�

I� � 	tb
T
�

 ���� �ua�

I� �Ra� �Rb� ���� ����

I� � 	tb
T
�

 I� �Ra� �ua�

�
CCCCA

�
BBBB�
vec	Rx


tx

�

�
CCCCA � ����� 	��


which is equivalent to the following two equations�
B�I� �Ra� �Rb� ����

I� � 	tb
T
�

 �ua�

�
CA
�
B�vec	Rx


�

�
CA � ����� 	��


	I� �Ra�
tx � ��ua� 	��


�
�
I� � 	tb

T
�


�
vec	Rx


The solution comes in three steps�

�� Scale factor estimation

��



As in the proof of Proposition ��

�� Hand�eye rotation estimation

Recall that the camera axis of rotation na and the robot axis of rotation

nb are related by�

Rxnb � na

which is similar to 	�

� Since tb� and nb are assumed to be non�

parallel� they are linearly independent� Therefore� we obtain� as in the

proof of Proposition �� a full�rank 	�� �
 system where Rx is the only

unknown� �
BBBB�

I� � 	tb
T
�



I� � 	n
T
b 


I� � 		tb� � nb

T 


�
CCCCA vec	Rx
 �

�
BBBB�

�ua�

na

�	ua� � na


�
CCCCA 	��


�� Hand�eye translation estimation

We can insert the estimated Rx and � into 	��
 and obtain a system�

where only tx is unknown� This system is always under�constrained�

Hence� it admits as solution any vector of the form

tx	�
 � t� � �na 	��


where � is any scalar value and t� is a solution in the plane of the

camera motion� The latter vector is unique since I��Ra� has rank � and

the plane of motion is ��dimensional� In practice� t� can be obtained

by an SVD of I� �Ra� ���� x�����

��



�

The previous Lemma serves as a basis to the case of planar motions as�

Proposition � Two planar motions allow the estimation of the hand�eye

rotation Rx and the unknown scale factor � if one the following three sets of

conditions is ful
lled�

� the two motions are linearly independent pure translations

� one of the two motions is a non�zero pure translation

� the two motions contain a non�identity rotation and

	I� �Rb�
tb� � 	I� �Rb�
tb� �� �

In the last two cases� the hand�eye translation can only be estimated up to an

unknown height � along the normal to the camera plane of motion �Fig� 
	�

Proof� The �rst set of conditions falls back into the pure translation

case and Proposition � apply� The second set of conditions is contained in

Lemma ��

Let us now show that the last set of conditions can be brought back to

the second one� To do that� consider the system which is built upon the two

planar motions�

L� �

L� �

L� �

L� �

�
BBBBBBB�

I� �Ra� �Rb� ���� ����

I� � 	tb
T
�

 I� �Ra� �ua�

I� �Ra� �Rb� ���� ����

I� � 	tb
T
�

 I� �Ra� �ua�

�
CCCCCCCA

�
BBBB�
vec	Rx


tx

�

�
CCCCA � ����� 	�



�




The block line L� and the third one L� of this system are equivalent since

both motions have the same rotation axis� Hence� we can discard the �rst

one and obtain�

L�
�
�

L�
�
�

L�
�
�

�
BBBB�

I� � 	tb
T
�

 I� �Ra� �ua�

I� �Ra� �Rb� ���� ����

I� � 	tb
T
�

 I� �Ra� �ua�

�
CCCCA

�
BBBB�
vec	Rx


tx

�

�
CCCCA � ����� 	��


Consider now the linear combination 	I��Ra�
L
�

�
�	I��Ra�
L

�

�
which gives�

�
	I� �Ra�


�
I� � 	tb

T
�


�
� 	I� �Ra�


�
I� � 	tb

T
�


��
vec	Rx
 	��


�
�
	I� �Ra�
	I� �Ra�
� 	I� �Ra�
	I� �Ra�


�
tx 	��


��
�
	I� �Ra�
ua� � 	I� �Ra�
ua�

�
� � 	��


As Ra� and Ra� have the same rotation axis� they commute and� hence�

	I� �Ra�
	I� �Ra�
� 	I� �Ra�
	I� �Ra�
 � �� Therefore� the term on

line 	��
 is null� As for the term on line 	��
� let us denote it as ua
�

�
�

Let us now consider the �rst term 	��
 and show that it can be rewritten

under the form Rxtb
�T
�
� To do that� recall that 	I� � tb

T
i 
vec	Rx
 � Rxtbi�

Hence� the �rst term equals�

	I� �Ra�
Rxtb� � 	I� �Ra�
Rxtb�

Using RaiRx � RxRbi� we then obtain�

Rx

�
	I� �Rb�
tb� � 	I� �Rb�
tb�� �z �

tb
�

�

�

Consequently� L�
�
is equivalent to�

Rxtb
�

�
� �ua

�

�

��



where we recognize the pure translation case� Hence� system 	�

 rewrites

under the same form as in 	��
 of Lemma �� Therefore� a solution exists if

the virtual robot pure translation tb
�

�
is not parallel to nb� As both tb� and

tb� are orthogonal to nb� this condition reduces to a non zero condition on

tb
�

�
� which is expressed as�

	I� �Rb�
tb� � 	I� �Rb�
tb� �� �

�

In conclusion� we exhibited su�cient conditions to obtain� from two pla�

nar motions� the hand�eye rotation and the hand�eye translation� up to a

component perpendicular to the camera plane of motion� In the case of a

car� this unknown component can be interpreted as a height with respect to

the base of the car 	Fig� �
�

����� The general case

In the case of two independent general motions with non�parallel axes� there

exists a unique solution to the hand�eye calibration problem� We obtain the

same result for our hand�eye self�calibration problem�

Proposition � If the robot end�e�ector undergoes two independent general

motions with non�parallel axes� then the hand�eye transformation 	Rx� tx


can be fully recovered� as well as the Euclidean reconstruction unknown scale

factor ��

Using our formulation� one possibility to solve the whole system in 	��


is to �nd its null space� which is a subspace of ���� The latter subspace must

��



be ��dimensional and only depend on �� according to the su�cient condition

for hand�eye calibration� Hence� the solution to hand�eye self�calibration is

a ��� � vector to be found in a ��dimensional subspace� It can therefore be

extracted from this null space by applying the unity constraint to the �rst �

coe�cients representing the hand�eye rotation� as seen in the pure translation

case�

However� Wei et al ���� remarked� in the case where camera motions are

obtained through pose computation� that the accuracy of the simultaneous

estimation of hand�eye rotation and translation is not independent of the

physical unit used for the translation� By analogy with this remark� solving

directly for the whole system may yield the same dependence� In addition�

such a solution does not guarantee that the estimated Rx is an orthogonal

matrix� Then� one has to perform a correction of the result by applying the

orthogonality constraint� However� this correction is non�linear in essence

and it is hence improbable to �nd the corresponding correction on the hand�

eye translation estimation�

On the opposite� a two�step solution� as in ����� guarantees an orthogonal

estimate of the hand�eye rotation� Indeed� the �rst step consists of the linear

estimation of the hand�eye rotation as in the case of pure rotations 	��
�

which had this property��
B�I� �Ra� �Rb�

I� �Ra� �Rb�

�
CA vec	Rx
 � � 	��


��



As for the second step� it exploits the remaining lines in 	��
�

�
B�I� �Ra� �ua�

I� �Ra� �ua�

�
CA
�
B�tx
�

�
CA �

�
B��Rxtb�

�Rxtb�

�
CA 	��


We thus have a unique linear solution to the hand�eye translation and the

scale factor�

� Experiments

In this section� we will �rst choose a distance to measure the errors between

rigid transformations since their group SE	�
 does not hold an intrinsic met�

ric ����� Second� we will show some simulation results to test the robustness

to noise of our method� compared to the reference methods� Finally� we will

give experimental results in real conditions� Notice that more experimental

results can be found in ����

In this section� we numbered the methods we compared as follows� axis�angle

method ���� 	M�
� dual quaternion method ��� 	M�
� non�linear minimiza�

tion ��
� 	M�
� our linear formulation adapted to the case where camera

motions are obtained through pose computation 	M�
� and self�calibration

	M�
�

��� Error measurement

To measure the errors in translation� we chose the usual relative error in ���

k!t� tk�ktk� where the �!� notation represents the estimated value�

For the errors in orientation� no canonical measure is de�ned� We chose

��



the quaternion norm used in ���� k!q� qk for its simplicity and its direct rela�

tion to �� the angle of the residual rotation between these two orientations�

Indeed� if !q and q are unitary� then k!q� qk � �� � cos �
�
� It is thus strictly

increasing from � to � as � goes from � to ��� Moreover� this metric avoids

the singularity in � � � appearing when using geodesics ���� p��
��

��� Simulations

We �rst performed simulations to gain some insight of the numerical behavior

of our linear method 	M�
 with comparison to the reference methods 	M��

M�
� We thus tested the robustness of the methods to noise and their

accuracy with respect to the number of calibration motions in use�

����� Simulation procedure

For each simulation series and for each value of the parameter of interest

	noise� number of motions
� we followed the same methodology� First� we

de�ned a hand�eye transformation by random choice of the Roll�Pitch�Yaw

angles of its rotation matrix as well as of the coe�cients of its translation

vector� according to Gaussian laws� Second� we similarly chose a sequence

of robot motions and de�ned� from it and the hand�eye transformation� the

corresponding camera motion sequence� Third� we added noise to the cam�

era motions 	see below
� Finally� we performed hand�eye calibration with the

various methods and compared their results to the initial hand�eye transfor�

mation�

��



����� Inserting noise

We added noise to the camera translations tAi
by de�ning �tAi

� tAi
��ktAi

kn

where � is a scalar and n is a Gaussian ��vector with zero mean and unit

variance 	white noise
� As for the camera rotations� we added noise to their

Roll�Pitch�Yaw angles as �� � 	� � �r
� where � is any of these angles� � is

the same as for the translation and r is a ��dimensional white�noise� Hence�

� de�nes a signal�to�noise ratio�

����� Robustness to noise

We tested for the value of �� making it vary from � to ��" in two simulation

series� In the �rst one� we made ��� di�erent choices of hand�eye transforma�

tions and motion sequences for each noise level� These sequences contained

only two motions� with maximal amplitude of � m in translation and ���

deg in rotation� Fig� � gathers the calibration errors� It shows that Tsai and

Lenz�s method 	M�
 and ours 	M�
 obtain the highest accuracy in rotation�

For translations� they are very powerful as long as the noise level is low but

are less accurate than the dual quaternion method 	M�
 or the non linear

minimization method 	M�
 when the noise level increases�

In a second simulation series� we almost repeated the �rst one� just re�

ducing the amplitude of the calibration motions to � cm in translation and

�� deg in rotation� The results 	Fig� ��
 show that our linear formulation is

less sensitive to this reduction than the other methods�

��
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Figure ��� Calibration errors with respect to noise level using small motions

	Same conventions as in Fig� �
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����� In	uence of motion number

In this experiment� we kept the noise level constant 	� � ����
 and generated

sequences of varying length� i�e� from � to �
 calibration motions� Their

amplitude was chosen to be small 	� cm in translation and �� deg in rotation
�

For each sequence length� we proceeded to ��� random choices of hand�eye

transformations and calibration motions� The results 	Fig� ��
 show here

again a higher accuracy for our linear formulation�

��� Experiments on real data

When dealing with real data� no ground�truth value is available for compar�

ison� Therefore� we compared� for each motion i� AiX and XBi� We then

gathered all these errors into RMS errors�

����� Experiment �

To evaluate the correctness of the solution obtained by hand�eye self�calibration�

we had to compare it with those obtained by classical calibration methods

��



Figure ��� In Experiment �� the camera observes a calibration grid�

with the same data�

Hence� we took images of our calibration grid 	Fig� ��
 and performed

hand�eye calibration with the axis�angle method ���� 	M�
� the dual quater�

nion method ��� 	M�
� the non�linear minimization ��
� 	M�
 and the linear

formulation 	M�
� Finally� using the same points� extracted from the im�

ages of the calibration grid� but not their �d model� we applied the hand�eye

self�calibration method 	M�
� The Euclidean �d reconstruction method we

used is the one proposed in ����

The results obtained for a trajectory of �� positions are given in Fig� ���

These positions were chosen as far as possible from each other according to

the advice given in ����� It can be seen that 	M�
 gives the smallest error in

rotation due to the numerical e�ciency of the SVD and thus obtains also a

reduced error in translation� As for 	M�
� it gives larger errors� as expected

since the �d model is not used� However� the degradation is rather small and

can be explained by an approximative estimation of the intrinsic parameters�

From this long sequence� we used a RANSAC�like method to compute a

��
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images of a calibration grid for each method 	see text
�

Method Rotation error Translation error

M� ��������� �����

M� ��������� �����

M� ��������� �����

M� ��������� �����

M� ��������� �����

Table �� Comparison with a robust estimation of the hand�eye transformation

robust estimation of the hand�eye transformation 	see ���
� Then� we com�

pared the results obtained above to this robust estimation� We gather the

errors in Table �� It con�rms that the linear method is numerically very e��

cient� especially as far as rotation is concerned� Moreover� the self�calibration

method yields a lower accuracy� which nevertheless remains acceptable in the

context of visual servoing �����

�




Figure ��� A sequence of � images used for hand�eye self�calibration in Ex�

periment ��

����� Experiment �

In a second experiment� we tested 	M�
 with more realistic images� Four

positions were de�ned where the images shown in Fig� �� were taken� In

the �rst image� points were extracted and then tracked during the motion

between each position of the camera� Then� hand�eye self�calibration was

performed upon the tracked points�

In a goal of comparison� the blocks were replaced by the calibration grid

and the robot was moved anew to the four prede�ned positions� Then� hand�

eye calibration was performed with the images taken there�

The results of this experiment are given in Fig� �
� They show an awful

behavior of the non linear minimization method� probably due to the small

��
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	see text
�

number of data� They also show a slightly higher degradation of the per�

formance of 	M�
 compared to the others� Nevertheless� it remains in an

acceptable ratio since the relative error in translation is close to �"�

To balance the lack of ground�truth� we also compared the results ob�

tained in this experiment to the robust estimation described in Experiment �

	Table �
� This comparison con�rms the accuracy of both the linear method

and the self�calibration scheme�

Method Rotation error Translation error

M� �������� ����

M� �������� ����

M� ���� ����

M� �������� ����

M� �������� ����

Table �� Comparison with a robust estimation of the hand�eye transformation

��



� Conclusion

We proposed a hand�eye self�calibration method which reduces the human

supervision compared with classical calibration methods� The cost of releas�

ing the human constraint is a small degradation of the numerical accuracy�

However� the obtained precision is good enough in the context of visual ser�

voing�

This method is based on the structure�from�motion paradigm� rather than

pose estimation� to compute the camera motions and its derivation includes

a new linear formulation of hand�eye calibration� The linearity of the formu�

lation allows a simple algebraic analysis� Thus� we determined the parts of

the hand�eye transformation that can be obtained from a reduced number of

motions which does not allow a complete calibration� Moreover� the linear

formulation provides improved numerical accuracy even in the case where

the camera�robot rotations have small amplitude�

However� one di�culty with the Euclidean �d reconstruction with a mov�

ing camera is to be able to �nd reliable point correspondences between im�

ages� The method proposed in ��� solves this problem by tracking points

along the motion� However� it requires that the points are tracked from the

beginning until the end of the robot trajectory� This is a hard constraint

since� in practice� one hardly obtains enough points after a long trajectory�

Stereo�vision may o�er the answer to this problem since it was shown that

Euclidean reconstruction can be performed� without any prior knowledge�

from two Euclidean motions of a stereo pair ����� This is fully in coherence

with our constraints� Moreover� this kind of method releases the constraint

��



on the presence of points along the whole sequence of images�

Finally� there is a pending question which was never answered� �What

are the motions for hand�eye 	self�
calibration that yield the higher numerical

accuracy ��

A Proof of Lemma �

A�� Preliminary results

Preliminary result � Given two similar rotation matrices R and R� �i�e�

there exists a rotation matrix Rx such that R� � RxRRx
T 	 then

�	 if v is an eigenvector of R�R�� then 	I�Rx
T 
v is an eigenvector of

R�R for the same eigenvalue�

�	 if x is an eigenvector of R �R� then 	I �Rx
x is an eigenvector of

R�R� for the same eigenvalue�

Proof� �
 Let v be an eigenvector of R � R� with eigenvalue �� Then�

	R�R�
v � �v� Replacing R� by RxRRx
T in this relation gives�

	R�RxRRx
T 
v � �v

From 	A�B
	C�D
 � 	AC
� 	BD
���� we obtain�

	I�Rx
	R�R
	I�Rx
T 
v � �v

As 	A�B
�� � A�� �B������ we derive the following relation�

	I�Rx
T 
��	R�R
	I�Rx

T 
v � �v

Hence� 	R�R
	I�Rx
T 
v � �	I�Rx

T 
v�

��



�
 Let x be an eigenvector of R�R with eigenvalue �� Then�

	R�R
x � �x

As 	I�Rx
T 
	I�Rx
 � I� we can insert it on both sides�

�R�R��I�Rx
T ��I�Rx�x � ��I�Rx

T ��I�Rx�x

which rewrites as�

�I�Rx��R �R��I�Rx
T ��I�Rx�x � ��I�Rx�x

Hence�

	R�R�
	I�Rx
x � �	I�Rx
x�

�

Preliminary result � Let R� and R� be � rotation matrices with non par�

allel axes� Let R be another rotation matrix� Then�

R� �R� vec	R
 � vec	R


R� �R� vec	R
 � vec	R



��
��
 R � I�

Proof� The previous system is equivalent to

R�R � RR�

R�R � RR�

If R satis�es the �rst equation� then either R is the identity or it has the

same rotation axis as R�� Similarly� it is either the identity or has the same

rotation axis as R�� As R� and R� have di�erent rotation axes� it must be

the identity� �

��



Preliminary result � Let R� and R� be two rotation matrices with non

parallel rotation axes� Let M �� � be a matrix such that

R� �R� vec	M
 � vec	M


R� �R� vec	M
 � vec	M


Then�

�� �� ��M � �I�

Proof� To write

R� �R� vec	M
 � vec	M


is equivalent to say that R� and M commute� Therefore� M is of the form

�R where � �� � and R is a rotation matrix which commutes with R�� This

can be easily seen by replacingM by its SVD�

Thus� M � �R where R is such that�

R�R � RR�

R�R � RR�

From Preliminary result �� we obtain R � I� and M � �I�� �

A�� Proof of Lemma �

System 	��
 is equivalent to

RA�
�RB�

v � v

RA�
�RB�

v � v

��



Under the assumption that the camera motions and the robot motions are

rigidly linked by a constant hand�eye transformation 	Rx� tx
 and from Pre�

liminary result �� this system becomes�

RB�
�RB�

v� � v�

RB�
�RB�

v� � v�

where v� � 	I � Rx
T 
v� Applying the result of Preliminary result �� we

obtain that vec��	v�
 � �I�� Using the de�nition of v
� and the properties of

the Kronecker product� we end up in�

vec��	v
Rx
T � �I�

where V � vec��	v
� Hence�

V � �Rx

Consequently� the matrix V extracted from the null space of 	��
 is pro�

portional to the hand�eye rotation� The coe�cient � is obtained from the

orthogonality constraint� det	Rx
 � �� The latter becomes det	V
 � ��

which �nally gives�

� � sgn	det	V

 jdet	V
j���

�
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