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Introduction

The background of this work is the guidance of a robot by visual servoing 12,1]. In this framework, a basic issue is to determine the spatial relationship between a camera mounted onto a robot end-e ector (Fig. 1) and the ende ector itself. This spatial relationship is a rigid transformation, a rotation and a translation, known as the hand-eye transformation. The determination of this transformation is called hand-eye calibration.

The goal of this paper is to discuss a technique allowing the hand-eye calibration to be performed in the working site. In practice, this requires that:

No calibration jig will be allowed.

A calibration jig is a very accurately manufactured 3d object holding targets as visual features. Mobile robots and space applications of robotics are typical examples where a calibration jig cannot be used. During their mission, such robots may nevertheless need to be calibrated again. However, as a ordable on-board weight is limited, they Figure 1: Some cameras mounted on our 5 DOF robot.

can not carry a calibration object and should use their surrounding environment instead. Thus, the availability of a hand-eye self-calibration method is mandatory. Special and/or large motions are di cult to achieve and hence should beavoided.

Indeed, since the hand-eye system must be calibrated on-site, the amount of free robot workspace is limited and the motions have therefore to be of small amplitude. Therefore, the self-calibration method must be able to handle a large variety o f motions, including small ones.

Hand-eye calibration was rst studied a decade ago [START_REF] Tomasi | Factoring image sequences into shape and motion[END_REF][START_REF] Samson | Robot Control : The Task Function Approach[END_REF]. It was shown that any solution to the problem requires to consider both euclidean ende ector motions and camera motions1 . While the end-e ector motions can be obtained from the encoders, the camera motions are to be computed from the images. It was also shown, both algebraically 30] and geometrically 4], that a su cient condition to the uniqueness of the solution is the existence of two calibration motions with non-parallel rotation axes.

Several methods were proposed 30, 8 , 1 5 , [START_REF] Samson | Robot Control : The Task Function Approach[END_REF][START_REF] Chen | A screw motion approach to uniqueness analysis of head-eye geometry[END_REF][START_REF] Tsai | A new technique for fully autonomous and e cient 3d robotics hand/eye calibration[END_REF] to solve for hand-eye calibration under the assumption that both end-e ector and camera motions were known. They di er by the way they represent Euclidean motions, but all have two points in common: (i) rotation is represented by a minimal parameterization and (ii) all proposed methods use pose algorithms to estimate the camera motion relatively to the xed calibration jig. Pose algorithms require the 3d Euclidean coordinates of the jig targets to beknown together with their associated 2d projections onto each image.

Moreover, as the proposed methods use reduced representations of the rotation and since these are ill-de ned when rotation angle is small, the calibration motions must beas large as possible: a rule for such a choice of large calibration motions is even given in 30].

Another approach is proposed by Wei et al. 32], who perform simultaneously hand-eye calibration and camera calibration without any calibration jig. However, this requires a complex non-linear minimization and the use of a restrictive class of calibration motions. Moreover, no algebraic analysis of the problem is given.

With regard to the existing approaches, we propose a di erent hand-eye self-calibration method which exploits two main ideas. The rst idea is that a speci c algebraic treatment is necessary to handle small rotations, since minimal parameterizations of rotations are not de ned for small angles and are therefore ill-conditioned. The second idea is that camera motion can becomputed from structure-from-motion algorithms rather than from pose algorithms, in order to avoid the use of the calibration jig. Our contributions can be summerized in the following. Firstly, hand-eye calibration is reformulated in order to take i n to account the estimation of camera motions from structure-from-motion algorithms. Indeed, camera motions are thus obtained up to an unknown scale factor, which i s i n troduced in the formulation. Secondly, a linear formulation, based on the representation of rotations by orthogonal matrices, is proposed which enables small calibration motions. Thirdly, an algebraic study of this linear solution is performed which shows that partial calibration can nevertheless be performed when the su cient condition for the uniqueness of the solution is not ful lled. Fourthly, indepth experiments are conducted with comparison to other methods.

The remainder of this paper is organized as follows. Section 2 recalls the classical formulation of hand-eye calibration and the structure-from-motion paradigm. Section 3 gives contains the formulation of the linear hand-eye self-calibration method. Section 3.3 contains its algebraic analysis. Finally, Section 4 gives some experimental results and Section 5 concludes this work.

Background

In this section, after de ning the notation used in this article, we brie y present the classical formulation of hand-eye calibration with a short description of three methods that will be used as references in the experimental section (Section 4). We then describe the estimation of camera motions, concluding in favor of Euclidean reconstruction rather than pose computation.

Notation

Matrices are represented by upper-case bold-face letters (e.g. R) a n d v ectors by lower-case bold-face letters (e.g. t).

Rigid transformations (or, equivalently, Euclidean motions) are represented with homogeneous matrices of the form:

0 B @ R t 0 0 0 1 1 C A
where R is a 3 3 rotation matrix and t is a 3 1 translation vector. This rigid transformation will be often referred to as the couple (R t).

In the linear formulation of the problem, we will use the linear operator vecand the tensor product, also known as Kronecker product. The vec operator was introduced in 21] and reorders (one line after the other) the coe cients o f a ( m n) matrix M into the mn vector vec(M) = ( M 11 : : : M 1n M 21 : : : M mn ) T The Kronecker product 2, 3] is noted . From two matrices M and N with respective dimensions (m n) a n d ( o p), it de nes the resulting (mo np) matrix:

M N = 0 B B B B @ M 11 N : : :M 1n N . . . . . . . . . M m1 N : : : M mn N 1 C C C C A (1)

Hand-eye problem formulation

We present here the classical approach [START_REF] Tomasi | Factoring image sequences into shape and motion[END_REF][START_REF] Brewer | Kronecker and matrix calculus in system theory[END_REF][START_REF] Cui | Recursive-batch estimation of motion and structure from monocular image sequences[END_REF][START_REF] Hager | X vision: A portable substrate for realtime vision applications[END_REF][START_REF] Samson | Robot Control : The Task Function Approach[END_REF][START_REF] Chen | A screw motion approach to uniqueness analysis of head-eye geometry[END_REF][START_REF] Tsai | A new technique for fully autonomous and e cient 3d robotics hand/eye calibration[END_REF] which states that, when the camera undergoes a motion A = (R a t a ) and that the cor- responding end-e ector motion is B = ( R b t b ), then they are conjugated by the hand-eye transformation X = ( R x t x ) (Fig. 2). This yields the following homogeneous matrix equation:

AX = XB (2)
where A is estimated, B is assumed to be known and X is the unknown.

Equation (2), applied to each motion i, splits into:

R ai R x = R x R bi (3) R ai t x + t ai = R x t bi + t x (4) 
In the method proposed in 30], the rst equation is solved by leastsquare minimization of a linear system obtained by using the axis/angle representation of the rotations. Once R x is known, the second equation is also solved with linear least squares techniques.

To avoid this two-stage solution which propagates the error on the rotation estimation onto the translation, a non-linear minimization method based on the representation of the rotations with unit quaternions was proposed 

Computing the camera motions

In the prior work [START_REF] Tomasi | Factoring image sequences into shape and motion[END_REF][START_REF] Brewer | Kronecker and matrix calculus in system theory[END_REF][START_REF] Cui | Recursive-batch estimation of motion and structure from monocular image sequences[END_REF][START_REF] Hager | X vision: A portable substrate for realtime vision applications[END_REF][START_REF] Samson | Robot Control : The Task Function Approach[END_REF][START_REF] Chen | A screw motion approach to uniqueness analysis of head-eye geometry[END_REF][START_REF] Tsai | A new technique for fully autonomous and e cient 3d robotics hand/eye calibration[END_REF], camera motions were computed considering images one at a time, as follows. First, 2d-to-3d correspondences were established between the 3d targets on the calibration jig and their 3d projections onto each image i. Then, from the 3d coordinates of the targets, their 2d projections and the intrinsic camera parameters, the pose(i.e. position and orientation) of the camera with respect to the calibration jig is estimated P i = ( R i t i ). Finally, the camera motion between image i;1 a n d image i A i = ( R ai t ai ) is hence obtained by simple composition (Fig. 3): Alternatively, one may simultaneously consider all the images that were collected during camera motion. Thus, one may use the multi-frame structurefrom-motion paradigm (see 17] for a review). The advantage of structurefrom-motion over pose algorithms is that the former does not require any knowledge about the observed 3d object. Indeed, structure-from-motion only relies on 2d-to-2d correspondences. These are more easily obtained since they depend on the image information only. There are two classes of (semi-)automatic methods to nd them: a discrete approach, known as matching 13], and a continuous approach, known as tracking 14].

A i = ( R i R T i;1 t i ; R i R T i;1 t i;1 )
A relevant class of structure-from-motion methods is known as the Euclidean reconstruction 7, [START_REF] Shiu | Calibration of wrist mounted robotic sensors by solving homogeneous transform equations of the form AX=XB[END_REF][START_REF] Neudecker | A note on Kronecker matrix product and matrix equation systems[END_REF][START_REF] Taylor | Structure and motion in two dimensions from multiple images: A least squares approach[END_REF][START_REF] Thomas | Dealing with noise in multiframe structure from motion[END_REF][START_REF] Chou | Finding the position and orientation of a sensor on a robot manipulator using quaternions[END_REF]. It assumes that the camera is calibrated (i.e. the camera intrinsic parameters are known). From this knowledge, one can reconstruct the structure of the scene and the motion of the camera up to an unknown scale factor (Fig. 4) using various methods (see Figure 5: Once the scale factor is resolved between the rst two images, the second camera position is uniquely de ned with respect to the rst one and consequently, the following camera positions are also uniquely de ned.

below). This unknown scale factor is the global scale factor of the observed scene and is the same for all the camera motions in the sequence (Fig. 5). Therefore, the estimated camera motions are of the form:

A i ( ) = 0 B @ R ai u a i 0 0 0 1 1 C A (5)
where R ai is the rotation of the camera between image i ; 1 and image i, is the unknown scale factor and u a i is a vector, parallel to the camera translation t ai and such that t ai = u ai [START_REF] Chou | Finding the position and orientation of a sensor on a robot manipulator using quaternions[END_REF] Taking, without loss of generality, the rst motion as a motion with non zero translation allows to arbitrarily choose u a1 as a unit vector. Hence, = kt a1 k. Consequently, the u ai 's are related by: u ai = t ai =ku a1 k and can beinterpreted as the unknown norm of the rst translation.

In summary, camera rotations are completely recovered while camera translations are recovered up to a single unknown scale factor.

In practice, which structure-from-motion algorithm should we choose ? A ne camera models [START_REF] Neudecker | A note on Kronecker matrix product and matrix equation systems[END_REF][START_REF] Taylor | Structure and motion in two dimensions from multiple images: A least squares approach[END_REF][START_REF] Thomas | Dealing with noise in multiframe structure from motion[END_REF] yield simple linear solutions to the Euclidean reconstruction problem, based on matrix factorization. However, a ne models are rst-order approximations of the perspective m o d e l . Hence, only approximations of the Euclidean camera motions can beobtained. Besides, solutions exist 7, 2 8 ], based on the perspective model, that o er some Euclidean information on the camera motions, but are non linear. Our choice lies in fact between these two classes of methods: we propose a method for Euclidean reconstruction by successive a ne approximations of the perspective model 6], which combines the simplicity of a ne methods and the accuracy of non linear methods.

In summary, in order to estimate camera motions, structure-from-motion methods are more exible than pose computation methods, since no 3d model is needed. The drawback of lowering this constraint is that camera motions are estimated up to an unknown scale factor which w e m ust take i n to account in the hand-eye self-calibration method. to an unknown scale factor , the camera motions A i ( ).

Using structure-from-motion

For using structure-from-motion to estimate camera motions, we h a ve t o t a k e into account the unknown scale factor . Indeed, the homogeneous equation (2) becomes (compare Fig. 3 and Fig. 6):

A i ( )X = XB i [START_REF] Christy | Euclidean shape and motion from multiple perspective views by a ne iterations[END_REF] where A i ( ) i s t h e ith estimated camera motion. From ( 5) and ( 6), we thus obtain a set of two equations, similar to (3){( 4):

R ai R x = R x R bi (8) 
R ai t x + u a i = R x t bi + t x [START_REF] Daniilidis | The dual quaternion approach to hand-eye calibration[END_REF] where the unknowns are now R x , t x and .

Linear formulation

We propose a new formulation which handles rotations of any kind. Its underlying idea is to embed the rotation part of the problem, intrinsically lying in S O (3), in a larger space in order to deliberately free ourselves from the non-linear orthogonality constraint. This allows us to easily nd a subspace of matrices verifying (2). Then, the application of the orthogonality constraint selects, in this subspace, the unique rotation which is solution to the problem. This general idea is very powerful here since, as we will see, the non-linear orthogonality constraint reduces to a linear norm constraint.

The new formulation is inspired by the similarity of ( 8) with the Sylvester equation: UV + VW = T. This matrix equation, which often occurs in system theory 3], is usually formulated as a linear system 25, 16, 9]:

(U I + I W)vec(V) = vec(T) (10) 
One fundamental property of the Kronecker product is 3]:

vec(CDE) = ( C E T )vec(D) (11) 
where C,D,E are any matrices with adequate dimensions. Applying this relation to equation (8) yields:

(R ai R bi )vec(R x ) = vec(R x ) (12) 
Introducing the notation vec(R x ) in equation ( 9), we obtain:

(I 3 (t b T i ))vec(R x ) + ( I 3 ; R ai )t x ; u a i = 0 (13) 
We can then state the whole problem as a single homogeneous linear system:

0 B @ I 9 ; R ai R bi 0 9 3 0 9 1 I 3 (t b T i ) I 3 ; R ai ;u a i 1 C A 0 B B B B @ vec(R x ) t x 1 C C C C A = 0 B @ 0 9 1 0 3 1 1 C A ( 14 
)
The question is now: \What is the condition for this system to have a unique solution ?" and a subsequent one is: \What occurs when this condition is not ful lled ?"

Algebraic analysis

From earlier work on hand-eye calibration 30, 4], we know that two motions with non-parallel rotation axes are su cient to determine the hand-eye transformation. We will show in this section, that our new linear solution owns the same su cient condition but also allows us to identify what can be obtained when such a su cient condition is not ful lled (the so-called partial calibration).

Hence, let us determine what can be obtained using various combinations of end-e ector motions by successively considering: pure translations, pure rotations, planar motions (i.e. containing the same rotational axis and independent translations) and nally general motions. The results of this study are gathered up in Table 1. Notice that by inverting the roles of the ende ector and the camera, we obtain the same results for the recovery of the eye-hand transformation (i.e. the inverse of the hand-eye transformation).

Motion 1 Motion 2 Translation R B = I t B 6 = 0 Rotation R B 6 = I t B = 0 General motion R B 6 = I t B 6 = 0 Translation R B = I t B 6 = 0 R x R x t x ( ) R x t x ( ) Rotation R B 6 = I t B = 0 R x t x ( ) R x t x ( ) Decoupled solution R x t x General solution General motion R B 6 = I t B 6 = 0 R x t x ( ) R x t x General solution R x t x General solution
Table 1: Summary of the results for two independent motions.

Pure translations

Recall from equation ( 3), that when end-e ector motions are pure translations (i.e. R bi = I 3 ), then camera motions are pure translations too (i.e. R ai = I 3 ). Hence, equation (4) becomes t ai = R x t bi [START_REF] Hager | X vision: A portable substrate for realtime vision applications[END_REF] Consequently, the amplitude of camera motion is the same as the amplitude of end-e ector motion, which is not the case when rotations are involved. One can therefore keep control of the camera displacements and guarantee that a small end-e ector motion will not generate an unexpected large camera motion. Concerning calibration, we have the following result:

Proposition 1 Three independent pure translations yield a linear estimation of hand-eye rotation R x and of the unknown scale factor . Hand-eye translation can not be observed.

Proof: In the case of pure translations, the upper part of the system in [START_REF] Gruen | Adaptative least squares correlation: a powerful image matching technique[END_REF] vanishes and its lower part simpli es into: [START_REF] Horaud | Hand-eye calibration[END_REF] This implies that hand-eye translation t x can not be estimated. However, the nine coe cients of the hand-eye rotation R x can be obtained as we s h o w below. This was also demonstrated in 33] in the particular case where is known.

; I 3 (t b T i ) vec(R x ) = u ai
Let us assume temporarily that is known. If t bi 6 = 0, then I 3 (t b T i ) has rank 3 since

I 3 (t b T i ) = 0 B B B B @ t b T i 0 1 3 0 1 3 0 1 3 t b T i 0 1 3 0 1 3 0 1 3 t b T i 1 C C C C A (17)
Consequently, three linearly independent pure translations yield a full rank (9 9) system:

0 B B B B @ I 3 (t b T 1 ) I 3 (t b T 2 ) I 3 (t b T 3 ) 1 C C C C A | {z } M vec(R x ) = 0 B B B B @ u a1 u a2 u a3 1 C C C C A (18) of which the solution Rx is such that vec( Rx ) = M ;1 0 B B B B @ u a1 u a2 u a3 1 C C C C A (19) Since (A B)(C D) = AC BD 2],
it is easy to verify that the analytic form of the inverse of M is: M ;1 = 1 I 3 (t b2 t b3 ) I 3 (t b3 t b1 ) I 3 (t b1 t b2 ) [START_REF] Li | Kinematic calibration of an active head-eye system[END_REF] where denotes the cross-product and = det(t b1 t b2 t b3 ). This allows the rewriting of [START_REF] Koenderink | A ne structure from motion[END_REF] in closed form: vec( Rx ) = (I 3 (t b2 t b3 )u a1 + I 3 (t b3 t b1 )u a2 + I 3 (t b1 t b2 )u a3 ) [START_REF] Murray | A Mathematical Introduction to Robotic Manipulation[END_REF] Applying (11) yields vec( Rx ) = vec ; u a1 (t b2 t b3 ) T + u a2 (t b3 t b1 ) T + u a3 (t b1 t b2 ) T [START_REF] Neudecker | A note on Kronecker matrix product and matrix equation systems[END_REF] and from the linearity of the vecoperator, we nally obtain: Rx = ; u a1 (t b2 t b3 ) T + u a2 (t b3 t b1 ) T + u a3 (t b1 t b2 ) T [START_REF] Poelman | A paraperspective factorization method for shape and motion recovery[END_REF] Let us analyze this result and prove now that Rx is equal to R x , when measurements are exact. To d o that, rst recall that R x t bi = u ai . Hence,

Rx = 1 R x ; t b1 (t b2 t b3 ) T + t b2 (t b3 t b1 ) T + t b3 (t b1 t b2 ) T | {z } N ( 24 
)
Recalling that R x is orthogonal and verifying that N = I 3 , we obtain that Rx = R x .

This analysis proves that even if is unknown the column of Rx , estimated from [START_REF] Poelman | A paraperspective factorization method for shape and motion recovery[END_REF], are orthogonal to each other. Thus, only the unity constraint (i.e. det( Rx ) = 1) remains to be veri ed by Rx . From (23) again, the unity constraint immediately gives . Consequently, the hand-eye rotation can berecovered from three linearly independent translations.

2

Proposition 2 A minimum of 2 linearly independent pure translations are intrinsically enough to estimate the hand-eye rotation R x and the unknown scale factor .

Proof: The solution is not linear any more and comes in two steps.

Scale factor estimation

As R x is orthogonal, it preserves the norm. Hence, for each pure translation i, we have: kR x t bi k = kt bi k Applying ( 15) and ( 6) on the left-hand side of this expression gives for all i: ku ai k = kt bi k where u ai and t bi are known.

Hand-eye rotation estimation

Remark that if t b1 and t b2 are two linearly independent vectors, then t b1 t b2 is linearly independent from them. Moreover, one can prove that R x (t b1 t b2 ) = ( R x t b1 ) (R x t b2 ) Therefore, we can form the following full-rank (9 9) system:

0 B B B B @ I 3 (t b T 1 ) I 3 (t b T 2 ) I 3 ((t b1 t b2 ) T ) 1 C C C C A vec(R x ) = 0 B B B B @ u a1 u a2 (u a1 u a2 ) 1 C C C C A (25)
Since is now known, R x can be obtained by inverting this system and the orthogonality of the solution is guaranteed by the proof of Proposition 1. 

Pure rotations

By \pure rotations", we mean motions of the end-e ector such that t bi = 0 .

In practice, these motions can be realized by most of the robotic arms, since the latter are usually built in such a manner that their end-e ector reference frame is centered on a wrist (i.e. the intersection of the last three revolute joint axes). For similar reasons, pan-tilt systems may also bene tfrom the subsequent analysis.

In such a case, we can state the following proposition Proposition 3 If the robot end-e ector undergoes at least two pure r otations with non-parallel axes, then one can linearly estimate the hand-eye rotation R x and the hand-eye translation up to the unknown scale factor t x = . These two estimations are decoupled.

Notice that, in the case where camera motion is obtained through pose computation, is known and the hand-eye translation can thus be fully recovered, as does Li 19].

Proof: With pure rotations, the system in ( 14) is block-diagonal and decouples into: [START_REF] Samson | Robot Control : The Task Function Approach[END_REF] With at least two rotations with non parallel axes, we form a system with equations similar to [START_REF] Samson | Robot Control : The Task Function Approach[END_REF] which has then full rank and yields a 1-dimensional solution subspace: t x = t x0 [START_REF] Shiu | Calibration of wrist mounted robotic sensors by solving homogeneous transform equations of the form AX=XB[END_REF] where t x0 is solution to the system: (I 3 ; R ai ) t x = u ai i = 1 ::n Notice that the parameter of the subspace is the unknown scale factor. This is not surprising since pure rotations of the robot do not contain metric information.

(I 9 ; R ai R bi ) vec(R x ) = 0 9 1 (26) (I 3 ; R ai ) t x = u ai
Let us now study the rst subsystem [START_REF] Rotella | Explicit solution of Sylvester and Lyapunov equations[END_REF]. One of the properties of the Kronecker product is that the eigenvalues of M N are the product of the eigenvalues of M by those of N. In our case, R ai and R bi have the same eigenvalues: f1 e i i e ;i i g and thus the eigenvalues of R ai R bi are: f1 1 1 e i i e i i e ;i i e ;i i e 2i i e ;2i i g. Consequently, when the angle of rotation i is not a multiple of , then the (9 9) matrix of (26) I 9 ; R ai R bi has rank 6. Hence, the solution R x lies in a 3-dimensional manifold. Using the two orthogonality constraints, the solution manifold dimension can only be reduced to 1, which con rms the need for two rotations.

In the case of two or more independent rotations, we can state the following lemma (see the proof in Appendix A):

Lemma 1 If the robot end-e ector undergoes at least 2 pure r otations of non parallel axes, then system (26) has rank 8, its null space K is 1-dimensional and the hand-eye rotation R x is equal to: R x = sign(det(V)) j det(V)j 1 3 V [START_REF] Taylor | Structure and motion in two dimensions from multiple images: A least squares approach[END_REF] where sign() returns the sign of its argument, V = vec ;1 (v) and v is any vector of the null space K. 

2

In practice, v can bedetermined using a Singular Value Decomposition (SVD) which i s k n o wn to accurately estimate the null space of a linear mapping.

Planar motions

Some robots are restricted to move on a plane, such as car-like robots. In this case, all the robot and camera rotations have the same axis n b (resp. n a = R x n b ), which is orthogonal to the plane of motion. Then, we can demonstrate that Lemma 2 One planar motion with non-identity rotation and one non-zero pure translation (which is not parallel to the rotation axis of the planar motion, see Fig. 7) are intrinsically enough to recover the hand-eye rotation R x and the unknown scale factor . The hand-eye translation can only be estimated up to an unknown height along the normal to the camera plane of motion (Fig. 8). Notice that this Lemma is not limited to the planar motion case, since the pure translation is not restricted to lie in the plane of motion.

Proof: Assume without loss of generality that the rst motion is a pure translation (R a1 = R b1 = I 3 , t b1 2 < 3 ) and the second is a planar motion with non-identity rotation such that its rotation axis n b is not parallel to t b1 (Fig. 7). Then, the general system ( 14 which is equivalent to the following two equations 0 B @

I 9 ; R a2 R b2 0 9 1 I 3 (t b T 1 ) ;u a1 1 C A 0 B @ vec(R x ) 1 C A = 0 12 1 (31) 
(I 3 ; R a2 )t x = ; u a2 [START_REF] Wang | Extrinsic calibration of a robot sensor mounted on a robot[END_REF] ; ; I 3 (t b T

As in the proof of Proposition 2.

Hand-eye estimation

Recall that the camera axis of rotation n a and the robot axis of rotation n b are related by: R x n b = n a which is similar to [START_REF] Hager | X vision: A portable substrate for realtime vision applications[END_REF]. Since t b1 and n b are assumed to be nonparallel, they are linearly independent. Therefore, we obtain, as in the proof of Proposition 2, a full-rank (9 9) system where R x is the only

unknown: 0 B B B B @ I 3 (t b T 1 ) I 3 (n T b ) I 3 ((t b1 n b ) T ) 1 C C C C A vec(R x ) = 0 B B B B @ u a1 n a (u a1 n a ) 1 C C C C A (33)

Hand-eye translation estimation

We can insert the estimated R x and into (32) and obtain a system, where only t x is unknown. This system is always under-constrained.

Hence, it admits as solution any vector of the form t x ( ) = t ? + n a (34) where is any scalar value and t ? is a solution in the plane of the camera motion. The latter vector is unique since I 3 ;R a1 has rank 2 and the plane of motion is 2-dimensional. In practice, t ? can beobtained by an SVD of I 3 ; R a1 23, x2.6].

2

The previous Lemma serves as a basis to the case of planar as: Proposition 4 Two planar motions allow the estimation of the hand-eye rotation R x and the unknown scale factor if one the following three sets of conditions is ful lled: the two motions are linearly independent pure translations one of the two motions is a non-zero pure translation the two motions contain a non-identity rotation and (I 3 ; R b2 )t b1 ; (I 3 ; R b1 )t b2 6 = 0

In the last two cases, the hand-eye translation can only be estimated u p t o a n unknown height along the normal to the camera plane of motion (Fig. 8).

Proof: The rst set of conditions falls back into the pure translation case and Proposition 2 apply. The second set of conditions is contained in Lemma 2.

Let us now show that the last set of conditions can bebrought back to the second one. To do that, consider the system which is built upon the two planar motions:

L 1 ! L 2 ! L 3 ! L 4 ! 0 B B B B B B B @ I 9 ; R a1 R b1 0 9 3 0 9 1 I 3 (t b T 1 ) I 3 ; R a1 ;u a1 I 9 ; R a2 R b2 0 9 3 0 9 1 I 3 (t b T 2 ) I 3 ; R a2 ;u a2 1 C C C C C C C A 0 B B B B @ vec(R x ) t x 1 C C C C A = 0 15 1 (35)
The block line L 1 and the third one 3 of this system are equivalent since bothmotions have the same rotation axis. Hence, we can discard the rst one and obtain: As R a1 and R a2 have the same rotation axis, they commute and, hence, (I 3 ; R a2 )(I 3 ; R a1 ) ; (I 3 ; R a1 )(I 3 ; R a2 ) = 0 . Therefore, the term on line (38) is null. As for the term on line (39), let us denote it as u a 0

L 0 1 ! L 0 2 ! L 0 3 ! 0 B B B B @
1 . Let us now consider the rst term (37) and show that it can be rewritten under the form R x t b 0 T 1 . To do that, recall that (I 3 t b T i )vec(R x ) = R x t bi .

Hence, the rst term equals:

(I 3 ; R a2 )R x t b1 ; (I 3 ; R a1 )R x t b2
Using R ai R x = R x R bi , we then obtain: R x

; (I 3 ; R b2 )t b1 ; (I 3 ; R b1 )t b2 | {z } t b 0 1
Consequently, L 0 1 is equivalent to: R x t b 0 1 = u a 0 1 26 where we recognize the pure translation case. Hence, system (35) rewrites under the form as in (30) of Lemma 2. Therefore, a solution exists if the virtual robot pure translation t b 0 1 is not parallel to n b . As both t b1 and t b2 are orthogonal to n b , this condition reduces to a non zero condition on t b 0 1 , which is expressed as:

(I 3 ; R b2 )t b1 ; (I 3 ; R b1 )t b2 6 = 0 2
In conclusion, we exhibited su cient conditions to obtain, from two planar motions, the hand-eye rotation and the hand-eye translation, up to a component perpendicular to the camera plane of motion. In the case of a car, this unknown component can be interpreted as a height with respect to the base of the car (Fig. 8).

The general case

In the case of two independent general motions with non-parallel axes, there exists a unique solution to the hand-eye calibration problem. We obtain the same result for our hand-eye self-calibration problem: Proposition 5 If the robot end-e ector undergoes two independent general motions with non-parallel axes, then the hand-eye transformation (R x t x ) can be fully recovered, as well as the Euclidean reconstruction unknown scale factor .

Using our formulation, one possibility to solve the whole system in ( 14) is to nd its null space, which is a subspace of < 13 . The latter subspace must be 1-dimensional and only depend on , according to su cient condition for hand-eye calibration. Hence, the solution to hand-eye self-calibration is a 1 3 1 v ector to be found in a 1-dimensional subspace. It can therefore be extracted from this null space by applying the unity constraint to the rst 9 coe cients representing the hand-eye rotation, as seen in the pure translation case.

However, Wei et al 32] remarked, in the case where camera motions are obtained through pose computation, that the accuracy of the simultaneous estimation of hand-eye rotation and translation is not independent of the physical unit used for the translation. By analogy with this remark, solving directly for the whole system may yield the same dependence. In addition, such a solution does not guarantee that the estimated R x is an orthogonal matrix. Then, one has to perform a correction of the result by applying the orthogonality constraint. However, this correction is non-linear in essence and it is hence improbable to nd the corresponding correction on the handeye translation estimation.

On the opposite, a two-step solution, as in 30], guarantees an orthogonal estimate of the hand-eye rotation. Indeed, the rst step consists of the linear estimation of the hand-eye rotation as in the case of pure rotations [START_REF] Rotella | Explicit solution of Sylvester and Lyapunov equations[END_REF], which had this property:

0 B @ I 3 ; R a1 R b1 I 3 ; R a2 R b2 1 C A vec(R x ) = 0 (40)
As for the second step, it exploits the remaining lines in ( 14):

0 @ I 3 ; R a1 ;u a1 I 3 ; R a2 ;u a2 1 C A 0 B @ t x 1 C A = 0 B @ ;R x t b1 ;R x t b2 1 C A (41)
We thus have a unique linear solution to the hand-eye translation and the scale factor.

Experiments

In this section, we will rst choose a distance to measure the errors between rigid transformations since their group S E (3) does not hold an intrinsic metric 20]. Second, we will show some simulation results to test the robustness to noise of our method, compared to the reference methods. Finally, w e w i l l give experimental results in real conditions. Notice that more experimental results can befound in 1].

In this section, we n umbered the methods we compared as follows: axis/angle method 30] (M1), dual quaternion method 8] (M2), non-linear minimization 15] (M3), our linear formulation adapted to the case where camera motions are obtained through pose computation (M4), and self-calibration (M5).

Error measurement

To measure the errors in translation, we c hose the usual relative error in < 3 : k t ; tk=ktk, where the '^' notation represents the estimated value.

For the errors in orientation, no canonical measure is de ned. We chose the quaternion norm used in 8]: kq ; qk its simplicity and its direct relation to , the angle of the residual rotation between these two orientations. Indeed, if q and q are unitary, then kq ; qk = 2 ; 2 cos 2 . It is thus strictly increasing from 0 to 4 as goes from 0 to 2 . Moreover, this metric avoids the singularity i n = appearing when using geodesics 26, p.35].

Simulations

We rst performed simulations to gain some insight o f t h e n umerical behavior of our linear method (M4) with comparison to the reference methods (M1{ M3). We thus tested the robustness of the methods to noise and their accuracy with respect to the numberof calibration motions in use.

Simulation procedure

For each simulation series and for each value of the parameter of interest (noise, number of motions), we followed the same methodology. First, we de ned a hand-eye transformation by random choice of the Roll-Pitch-Yaw angles of its rotation matrix as well as of the coe cients of its translation vector, according to Gaussian laws. Second, we similarly chose a sequence of robot motions and de ned, from it and the hand-eye transformation, the corresponding camera motion sequence. Third, we added noise to the camera motions (see below). Finally, w e performed hand-eye calibration with the various methods and compared their results to the initial hand-eye transformation.

Inserting noise

We added noise to the camera translations t A i de ning tA i = t A i + kt A i kn where is a scalar and n is a Gaussian 3-vector with zero mean and unit variance (white noise). As for the camera rotations, we added noise to their Roll-Pitch-Yaw angles as ~ = ( 1 + r ) where is any of these angles, is the same as for the translation and r is a 1-dimensional white-noise. Hence, de nes a signal-to-noise ratio.

Robustness to noise

We tested for the value of , making it vary from 0 to 20% in two simulation series. In the rst one, we made 100 di erent c hoices of hand-eye transformations and motion sequences for each noise level. These sequences contained only two motions, with maximal amplitude of 1 m in translation and 180 deg in rotation. Fig. 9 gathers the calibration errors. It shows that Tsai and Lenz's method (M1) and ours (M4) obtain the highest accuracy in rotation.

For translations, they are very powerful as long as the noise level is low but are less accurate than the dual quaternion method (M2) or the non linear minimization method (M3) when the noise level increases. In a second simulation series, we almost repeated the rst one, just reducing the amplitude of the calibration motions to 2 cm in translation and 10 deg in rotation. The results (Fig. 10) show that our linear formulation is less sensitive to this reduction than the other methods. 

In uence of motion number

In this experiment, we k ept the noise level constant ( = 0 :01) and generated sequences of varying length, i.e. from 2 to 15 calibration motions. Their amplitude was chosen to be small (1 cm in translation and 10 deg in rotation). For each sequence length, we proceeded to 100 random choices of hand-eye transformations and calibration motions. The results (Fig. 11) show here again a higher accuracy for our linear formulation.

Experiments on real data

When dealing with real data, no ground-truth value is available for comparison. Therefore, we compared, for each motion i, A i X and XB i . We then gathered all these errors into RMS errors.

Experiment 1

To e v aluate the correctness of the solution obtained by hand-eye self-calibration, we had to compare it with those obtained by classical calibration methods Figure 12: In Experiment 1, the camera observes a calibration grid.

with the same data.

Hence, we took images of our calibration grid (Fig. 12) and performed hand-eye calibration with the axis/angle method 30] (M1), the dual quaternion method 8] (M2), the non-linear minimization 15] (M3) and the linear formulation (M4). Finally, using the same points, extracted from the images of the calibration grid, but not their 3d model, we applied the hand-eye self-calibration method (M5). The Euclidean 3d reconstruction method we used is the one proposed in 6].

The results obtained for a trajectory of 33 positions are given in Fig. 13. These positions were chosen as far as possible from each other according to the advice given in 30]. It can be seen that (M4) g i v es the smallest error in rotation due to the numerical e ciency of the SVD and thus obtains also a reduced error in translation. As for (M5), it gives larger errors, as expected since the 3d model is not used. However, the degradation is rather small and can be explained by an approximative estimation of the intrinsic parameters.

From this long sequence, we used a RANSAC-like method to compute a ). Then, we compared the results obtained above to this robust estimation. We gather the errors in Table 2. It con rms that the linear method is numerically very ecient, especially as far as rotation is concerned. Moreover, the self-calibration method yields a lower accuracy, w h i c h nevertheless remains acceptable in the context of visual servoing 11]. 

Experiment 2

In a second experiment, we tested (M5) with more realistic images. Four positions were de ned where the images shown in Fig. 14 were taken. In the rst image, points were extracted and then tracked during the motion between each position of the camera. Then, hand-eye self-calibration was performed upon the tracked points.

In a goal of comparison, the blocks were replaced by the calibration grid and the robot was moved anew to the four prede ned positions. Then, handeye calibration was performed with the images taken there.

The results of this experiment are given in Fig. 15. They show an awful behavior of the non linear minimization method, probably due to the small number of data. They also show a slightly higher degradation of the performance of (M5) compared to the others. Nevertheless, it remains in an acceptable ratio since the relative error in translation is close to 3%.

To balance the lack of ground-truth, we also compared the results obtained in this experiment to the robust estimation described in Experiment 1 (Table 3). This comparison con rms the accuracy of both the linear method and the self-calibration scheme. We proposed a hand-eye self-calibration method which reduces the human supervision compared with classical calibration methods. The cost of releasing the human constraint is a small degradation of the numerical accuracy. However, the obtained precision is good enough in the context of visual servoing. This method is based on the structure-from-motion paradigm, rather than poseestimation, to compute the camera motions and its derivation includes a new linear formulation of hand-eye calibration. The linearity of the formulation allows a simple algebraic analysis. Thus, we determined the parts of the hand-eye transformation that can be obtained from a reduced numberof motions which does not allow a complete calibration. Moreover, the linear formulation provides improved numerical accuracy even in the case where the camera/robot rotations have small amplitude.

However, one di culty with the Euclidean 3d reconstruction with a moving camera is to beable to nd reliable point correspondences between images. The method proposed in 6] solves this problem by tracking points along the motion. However, it requires that the points are tracked from the beginning until the end of the robot trajectory. This is a hard constraint since, in practice, one hardly obtains enough points after a long trajectory.

Stereo-vision may o er the answer to this problem since it was shown that Euclidean reconstruction can be performed, without any prior knowledge, from two Euclidean motions of a stereo pair 10]. This is fully in coherence with our constraints. Moreover, this kind of method releases the constraint on the presence of points along the whole sequence of images.

Finally, there is a pending question which was never answered: \What are the motions for hand-eye (self-)calibration that yield the higher numerical accuracy ?" A Proof of Lemma 1

A.1 Preliminary results

Preliminary result 1 Given two similar rotation matrices R and R 0 (i.e. there exists a rotation matrix R x such that R 0 = R x RR x T ) then 1) if v is an eigenvector of R R 0 , then (I R x T )v is an eigenvector of R R for the same eigenvalue 2) if x is an eigenvector of R R, then (I R x )x is an eigenvector of R R 0 for the same eigenvalue.

Proof: 1) Let v be an eigenvector of R R 0 with eigenvalue . Then, (R R 0 )v = v. Replacing R 0 by R x RR x T in this relation gives:

(R R x RR x T )v = v
From (A B)(C D) = ( AC) (BD) 2], we obtain:

(I R x )(R R)(I R x T )v = v
As (A B) ;1 = A ;1 B ;1 2], we derive the following relation:

(I R x T ) ;1 (R R)(I R x T )v = v
Hence, (R R)(I R x T )v = (I R x T )v.

2) Let x bean eigenvector of R R with eigenvalue . Then, (R R)x = x As (I R x T )(I R x ) = I, we can insert it on bothsides: If R satis es the rst equation, then either R is the identity or it has the same rotation axis as R 1 . Similarly, i t i s e i t h e r t h e identity or has the same rotation axis as R 2 . As R 1 and R 2 have di erent rotation axes, it must be the identity.

2

Preliminary result 3 Let R 1 and R 2 be two rotation matrices with non parallel rotation axes. Let M 6 = 0 be a matrix such that R 1 R 1 vec(M) = vec(M) R 2 R 2 vec(M) = vec(M) Then, is equivalent to say that R 1 and M commute. Therefore, M is of the form R where 6 = 0 a n d R is a rotation matrix which commutes with R 1 . This can beeasily seen by replacing M by its SVD.

Thus, M = R where R is such that:

R 1 R = RR 1 R 2 R = RR 2
From Preliminary result 2, we obtain R = I 3 and M = I 3 .

A.Proof of Lemma 1

System [START_REF] Rotella | Explicit solution of Sylvester and Lyapunov equations[END_REF] 

is equivalent t o R A 1 R B 1 v = v R A 2 R B 2 v = v

Figure 2 :

 2 Figure 2: End-e ector (represented here by a gripper) and camera motions are conjugated by the hand-eye transformation X.

Figure 6 :

 6 Figure 6: From images of an unknown scene and the knowledge of the intrinsic parameters of the camera, structure-from-motion algorithms estimate, up
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Figure 7 :

 7 Figure 7: One planar motion with non-identity rotation and one non-zero pure translation which is not parallel to the rotation axis of the planar motion.

Figure 8 :

 8 Figure 8: In the case of planar motions, one can not determine the altitude of a camera which is rigidly mounted onto the base.
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 1011 Figure10: Calibration errors with respect to noise level using small motions (Same conventions as in Fig.9)

Figure 13 :

 13 Figure 13: RMS errors in rotation (left) and translation (right) with 33 images of a calibration grid for each method (see text).

Figure 14 :

 14 Figure 14: A sequence of 4 images used for hand-eye self-calibration in Experiment 2.

Figure 15 :

 15 Figure 15: RMS errors in rotation (left) and translation (right) with 4 images (see text).
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 3 Comparison with a robust estimation of the hand-eye transformation 5 Conclusion

Notice that this requirement m a y be implicit as in

[START_REF] Press | Numerical Recipes in C -The Art of Scienti c Computing[END_REF].

A new linear formulationIn this section, we rst modify the formulation of hand-eye calibration in order to take into account the use of Euclidean reconstruction to compute camera motions. Then, we give a solution to this problem which handles small rotations.

) vec(R x ) The solution comes in three steps:1. Scale factor estimation

Under the assumption that the camera motions and the robot motions are rigidly linked by a constant hand-eye transformation (R x t x ) and from Preliminary result 1, this system becomes:

where v 0 = (I R x T )v. Applying the result of Preliminary result 3, we obtain that vec ;1 (v 0 ) = I 3 . Using the de nition of v 0 and the properties of the Kronecker product, we end up in: vec ;1 (v)R x T = I 3 where V = vec ;1 (v). Hence, V = R x Consequently, the matrix V extracted from the null space of ( 26) is proportional to the hand-eye rotation. The coe cient is obtained from the orthogonality constraint: det(R x ) = 1. The latter becomes det(V) = 3 which nally gives: = sgn(det(V)) jdet(V)j 1=3 2