
HAL Id: hal-00520112
https://hal.science/hal-00520112v1

Submitted on 23 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstracting the differential semantics of rule-based
models: exact and automated model reduction

Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jean Krivine

To cite this version:
Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jean Krivine. Abstracting the dif-
ferential semantics of rule-based models: exact and automated model reduction. Logic in Computer
Science, 2010, Edinburgh, United Kingdom. pp.362-381. �hal-00520112�

https://hal.science/hal-00520112v1
https://hal.archives-ouvertes.fr

Abstracting the differential semantics of rule-based models:

exact and automated model reduction (revised version)

Vincent Danos1,4, Jérôme Feret2, Walter Fontana3, Russell Harmer3,4, and Jean

Krivine4

1University of Edinburgh
2LIENS, INRIA-ENS-CNRS

3Harvard Medical School
4CNRS, Université Paris-Diderot

July 26, 2010

Abstract

Rule-based approaches (as in our own Kappa [18,22], or the BNG language [26],
or many other propositions allowing the consideration of “reaction classes”) offer
new and more powerful ways to capture the combinatorial interactions that are typ-
ical of molecular biological systems. They afford relatively compact and faithful de-
scriptions of cellular interaction networks despite the combination of two broad types
of interaction: the formation of complexes (a biological term for the ubiquitous non-
covalent binding of bio-molecules), and the chemical modifications of macromolecules
(aka post-translational modifications).

However, all is not perfect. This same combinatorial explosion that pervades
biological systems also seems to prevent the simulation of molecular networks using
systems of differential equations. In all but the simplest cases the generation (and
even more the integration) of the explicit system of differential equations which is
canonically associated to a rule set is unfeasible (eg, see Ref. [19,43] for examples).
So there seems to be a price to pay for this increase in clarity and precision of the
description, namely that one can only execute such rule-based systems using their
stochastic semantics as continuous time Markov chains, which means a slower if
more accurate simulation.

In this paper, we take a fresh look at this question, and, using techniques from the
abstract interpretation framework [17], we construct a reduction method which gener-
ates (typically) far smaller systems of differential equations than the concrete/canonical
one. We show that the abstract/reduced differential system has solutions which are
linear combinations of the canonical ones. Importantly, our method: 1) does not re-
quire the concrete system to be explicitly computed, so it is intensional, 2) nor does
it rely on the choice of a specific set of rate constants for the system to be reduced,
so it is symbolic, and 3) achieves good compression when tested on rule-based models
of significant size, so it is also realistic.

1

1 Introduction

One of the major conceptual shift in modern biology is the gradual realization that pro-
teins often decompose into clearly identifiable independent substructures called domains
(among which specific recognition sites), which when suitably combined into a protein
will determine a particular set of molecular functions [54]. There is a hitherto hidden
alphabet of relatively few domain families that combine into the amazing variety of pro-
teins and functions thereof (and incidentally, the archeology of domains has confirmed
that innovation is by and large obtained by recombination of existing domains). As the
ways in which domains interact within and between these modular proteins become bet-
ter known, rudimentary forms of engineering of protein networks become possible (eg see
Refs. [2, 55, 61] where in vivo rewirings of protein networks based on domain recombi-
nations are investigated). Clearly this new ontology of the universe of biomolecules has
fundamental consequences on the way protein networks should be formally described
and modelled, and perhaps more importantly on the fashion in which they should be
conceptualized as a computing medium. In particular, in order to express interactions
in terms of domains, one needs another and more flexible mechanism than traditional
reactions (aka Petri nets, or multiset rewriting). Because domain interactions will define
whole classes of reactions at once, and because one wants to make these classes first class
objects, one needs to be able to stipulate interactions at a refined level of granularity.
That is the common idea at the heart of the various attempts at rule-based modelling
languages.

In our own particular approach [23] (or that of the BNG language [4]), one has agents
with sites that can be used to hold internal states and/or bind other sites - modelling
both binding domains and chemically modifiable ones. Species, which within this paper
will be taken to mean any complex structure that one can obtain by binding basic
agents, now have an explicit internal structure. As a result, elements of the dynamics
can be defined by a modeller without having to spell out a complete description of the
species it applies to. To do so she/he writes rules specifying conditions under which
elementary bindings and modifications happen. It must be noted that several similar
agent-based languages have been proposed, some of them derived from the tradition
of process algebras [12, 56, 58, 59]. In practice using process-centric approaches requires
some ingenuity and results in a measure of encoding which makes further static analyses
difficult (another potential limiting factor is that process calculi allow for the expression
of many artefactual systems that have no meaning in terms of biochemical interactions).
From that point of view, Kappa and BNGL strike a nice trade-off offering both process-
algebraic conciseness and a straightforward expression of the domain combinatorics,
that ultimately facilitates the analysis of networks [33]. It is also worth spelling out that
Kappa is but an idealization of the relevant phenomenology of biomolecular networks as
it leaves aside lower-scale effects such a steric hindrance, conformational changes etc, or
phenomena relating to spatial organization such as diffusion, transport and membrane-
related interactions.

2

1.1 The problem with rules

Now to the point of the paper. Systems of ordinary differential equations (ODEs) are
widely used to probe the dynamics of biomolecular networks. As might be expected from
the above explanations, the design of ODE models (usually based on systems of reac-
tions) is a time-consuming process, as combinatorial complexity is avoided by deploying
ad hoc successive approximations such as neglecting certain species or quotienting oth-
ers [43]. This makes the resulting models hard to document, as this necessary complexity
avoidance manoeuvering can only be based on intuitions and is therefore not an integral
part of the description of the model - and in addition one has no means of controlling
its impact on the dynamics. (In fact, one wonders what the quality of an intuition that
one must have is!) By the same token, such models are even harder to modify, since any
modification propagates throughout the model. Besides, the very process ties the choice
of parameters to the preliminary approximation step, which is tantamount to foregoing
a mechanistic interpretation of the said parameters. Yet, there is also an upside to their
simplicity, as they can be simulated efficiently. Not so for rule-based models, as in all
but the simplest cases, the explicitation of the underlying differential semantics is com-
pletely unfeasible (either because the differential system is infinite, or finite but too large
to ever be written). It seems one has to pay a price for the use of rules, and forego their
manipulation and study via a deterministic dynamics.

The object of this paper is to prove that this does not need to be the case, as
it describes a method to generate a reduced differential semantics of any rule-based
model. This reduced differential semantics is based on a linear change of variables, the
computation of which is driven by the set of rules constituting the model (which is to say,
it is sensitive to the presentation of the implicit dynamics as usual in static analysis).
To find our reduction, we develop an analysis to detect which parts of our agents can
influence the behaviour of other parts in the context of a given rule set. This mode of
reasoning is reminiscent of dependency detection techniques used to prove that sensitive
data does not depend on less sensitive data [1]. This analysis is then used to break
down species (of which there are too many) into (typically) far fewer fragments, the
behaviour of which can be self-consistently described by a reduced differential system.
The derivation of the reduced system is proved to be sound by abstract interpretation:
trajectories of the reduced systems are the projection of the trajectories of the original
one (which is never explicitly computed). There is no approximation involved, and in
particular the actual rate constants of the rules in the rule set are treated symbolically.

The algorithm that finds a set of fragments for a rule set is implemented (and down-
loadable together other Kappa related tools at kappalanguage.org). While we prove
the correctness of our method, it comes with no guarantee that the reduced system will
be smaller than the original one, and it is actually easy to construct examples that will
defeat the analysis and result in no compression at all. So the question of the value of
the method is a delicate one that cannot be decided by a theorem. However there is evi-
dence that on actual models, the method performs well. Specifically, we have tried many
examples among which the largest is a pilot model of a large and detailed section of the
EGF system involving about species. The analysis produces about fragments

3

- few enough to yield a differential semantics of the model which is executable. The
fragmentation process itself lasts about ′ in this example, and since it is independent
of the rate constants of the rules, it is enough to run it only once per rule set. Another
consequence of the reduction being symbolic is that one can complement the exact re-
duction we propose with traditional approximate ones and obtain far better reductions
when rate constants are known or posited. Further examples and explanations about the
wider relevance of the present work to modelling in a biological context can be found in
Ref. [31] (and its supplementary information).

1.2 Related work

Abstract interpretation has been widely used to approximate qualitative properties such
as the potential configurations of biological systems [21, 28, 30, 39, 53] or their temporal
properties [40]. In this paper, however, we consider quantitative properties as we abstract
the system of differential equations/dynamical systems attached to such systems. In
particular, the analysis we present here is different from our own reachability analysis
in Ref. [21] which focuses on qualitative properties, and unlike the present one, can deal
with dependencies only within a single agent.

Having said that, many quantitative static analysis methods already exist. Typically
one tries to over-approximate the ranges of variables in continuous or discrete differential
systems. In Refs. [7, 37, 38], discrete integration methods are proposed. In the field of
reactive systems, suitable abstractions deal with ranges of variables: in Refs. [27, 29],
abstract domains which discover and prove inductive invariants on output ranges of linear
recursive filters are introduced; in Ref. [8] a framework allows to handle accurately the
differential specification of numerical inputs of reactive systems; and static analyses are
proposed in Ref. [11] to bound the error due to numerical integration. Our abstraction
differs from all of the above as it does not attempt to abstract numerical values, but to
find a reduced dynamical system.

The field of biomathematics has seen several propositions with the same ambitions,
building on the actual particular structures of dynamical systems generated by reactions.
In Ref. [6,16], invertible changes of variables are used to block-diagonalize ODEs. Yet it
is clearly preferable to avoid computing the starting ODEs at all, and our method indeed
computes the reduced ODEs directly from the set of rules. The approach proposed in
Ref. [15] does not presuppose an explicit ODE system, however, it is not automated and
suffers from a combinatorial blow-up in the (rather common) case of chains of agents
and site modifications that propagate through bindings [14, p. 82–83]. One can solve
this problem by neglecting certain species, but then the dynamics of the system is not
preserved. The framework in Ref. [5], for automatically reducing the ODEs of protein
networks, suffers from the same lack of soundness when site modifications propagate
through bindings. Our approach deals efficiently with this case.

Finally, abstract interpretation has also been used to analyse stochastic semantics.
In [49, 50], a generic framework has been introduced in order to lift numerical domains
to probabilistic semantics featuring non-determinism. This framework has inspired work
for the abstraction of Markov chains generated by systems of ground reactions [13].

4

Our generic framework has stronger similarities with Ref. [24] which aims at abstracting
stochastic distributions. However, our framework deals with differential semantics and,
more to the point, is applied to a particular range of models that are of direct relevance.

1.3 Outline

We first discuss a system reduction performed on a simple set of reactions (§2). This
example is the occasion to introduce the main intuitions and some of the terminology
used further in the paper. Then, we introduce a notion of reduction for a differential
system (§3) using concepts familiar from the framework of abstract interpretation. Once
this is in place, we define Kappa formally -which means we have to deal with the un-
avoidable syntax of rules and rule application (§4), after which we can turn to the
definition of its ground/concrete differential semantics (§5). After that we turn to the
key construction, namely the dependency analysis on which the reduction method relies
(§6) and which returns a set of new variables or fragments. From there we can define
our abstract/fragment-based differential semantics (§7), and prove its soundness (not an
easy proof!). Some numerical experimental results are reported (§8) - while these are
not strictly necessary, we felt that they added to the end-to-end quality of the work we
present here, which goes from a rather theoretical premise to the concrete results of an
implementation.

An earlier version of our results appeared in Ref. [31]. The present paper however is
of a more technical nature, and is the first which has a complete proof of the soundness
of the reduction method. The proof and its setup are rather dense, and perhaps not as
perspicuous as they could be, but hopefully the few ideas behind the construction will
be clear to the reader.

2 Prologue

We describe in this section a simple reaction system and explain how the induced dif-
ferential system can be decomposed into smaller ones. In the remainder of the paper,
we will generalize in a non trivial way this kind of compression to differential systems
induced by sets of Kappa rules, and show how one can derive a general algorithm to
discover and perform such compressions.

Consider an agent B able to bind reversibly and simultaneously agents A and C. This
means we have 6 possible species, A, B, C, and AB, BC, ABC. Let us also suppose
that B is introduced into the system at some rate σ. This gives us the following set of
reactions (rate constants are indicated next to each reaction; for reversible binding rules
the first constant is the association one, the second is the dissociation one):

→ B σ
A,B ↔ AB kA, k

′
A

A,BC ↔ ABC kA, k
′
A

B,C ↔ BC kC , k
′
C

AB,C ↔ ABC kC , k
′
C

5

Figure 1: The time course of [ABC]; one sees that the system eventually reaches larger
concentrations of B where ABCs are diluted away. (The initial state consists of 100 As
and Cs, and zero Bs; all rate constants are set to 1, as well as the volume correction;
the plots are obtained using Maple.).

The mass action principle states that a reaction’s rate is given by its rate constant
times the concentrations of its reactants. For instance the rate at which A binds B is
kA[A][B], where [A] is the traditional notation for the concentration of A (the number
of As per unit volume). This gives us the associated differential system describing the
time derivative of each of the 6 possible species:

[A]′ = k′A([AB] + [ABC])− kA[A]([B] + [BC])
[C]′ = k′C([BC] + [ABC])− kC [C]([B] + [AB])
[B]′ = σ + k′A[AB] + k′C [BC]− [B](kA[A] + kC [C])

[AB]′ = kA[A][B] + k′C [ABC]− [AB](k′A + kC [C])
[BC]′ = kC [B][C] + k′A[ABC]− [BC](k′C + kA[A])
[ABC]′ = kA[A][BC] + kC [AB][C]− [ABC](k′A + k′C)

Note that the differential system is autonomous, meaning that the time derivatives of
variables do not explicitly depend on time. Fixing some values for the rate constants,
and the initial state of the system, we can integrate it. Fig. 1 gives an illustration of
the non-monotonic time course of [ABC]. We have assumed that the association and
dissociation rate constants of A and B, kA and k′A, are the same whether or not B is
bound to C, and similarly for the association and dissociation rate constants kC , k′C of B
and C. We can exploit this symmetry and split the system into an A and a C subsystem

6

by introducing the following new variables:

[AB?] := [AB] + [ABC]
[B?] := [B] + [BC]

and we get the following differential system for the A subsystem:

[A]′ = k′A[AB?]− kA[A][B?]
[AB?]′ = [AB]′ + [ABC]′ = kA[A][B?]− k′A[AB?]
[B?]′ = [B]′ + [BC]′ = σ + k′A[AB?]− kA[A][B?]

The point of this (linear) change of variables is that it produces a system where the
derivatives of [A], [AB?], [B?] can be expressed as functions of themselves. We say that
our new set of variables is self-consistent, and we call these new variables fragments (a
name which is supposed to remind the reader that fragments are partial species). In a
similar fashion one can write a self-consistent differential system for the C subsystem
using the variables [C], [?BC] := [BC] + [ABC], and [?B] := [B] + [AB]. Now, if we are
interested in the time course of any of the above fragments/new variables, all we need to
know is the three equations subsystem the fragment belongs to. Thus, we have achieved
an exact reduction of the original system.

One could ask conversely if the information contained in the A and C subsystems
is enough to reconstruct the original system. Specifically, is there a way to express (any
of) [ABC], [AB] or [BC], as a function of the new variables. It is easy to see that
the linear mapping of the six old variables to the 6 new ones is of rank 5, and so not
invertible. Nevertheless, one could think of reconstructing non-linearly the old variables
by exploiting the idea that whether a B is bound to an A is independent of whether it
is bound to a C. Suppose we set [?B?] := [?BC] + [?B] = [AB?] + [B?] for the total
concentration of B, we can then express the fraction of Bs with:
- both an A and a C attached as [ABC]/[?B?],
- an A attached as [AB?]/[?B?],
- and with a C attached as [?BC]/[?B?].
If bindings are independent, the first expression is the product of the two remaining ones.
Equivalently, one has [ABC][?B?] = [AB?][?BC], which means [ABC] (and hence all
the other old variables) can be expressed in terms of the new variables. But Fig. 2 shows
(for some arbitrary values of the various needed parameters) that the reconstruction is
wrong - ie, there is a correlation between the B bindings.

We can look further into this simple example and define χ := [ABC][?B?]−[AB?][?BC]
as a measure of non-independence. When χ > 0, the presence of A and C correlate pos-
itively. A bit of symbol-pushing gives a closed formula for the time derivative of χ:

χ′ = σ[ABC]− χ(kA[A] + kC [C] + k′A + k′C)

Clearly, and unless σ = 0, χ will not be everywhere zero. Although there is no apparent
constraint between B’s bindings, knowing if B is bound to an A does give information
about when that B was created, which affects how likely it is that it is also bound to a

7

Figure 2: The time course of a variant of the occupancy correlation on B, defined as
[ABC] − [AB?][?BC]/[?B?]. If B’s bindings were independent, it should be identically
zero, and we do see a tiny deviation from zero which lags behind the production of ABC
and eventually washes away for large times.

C. One could say, by analogy with problems of non-interference, that there is an implicit
information flow [1] which induces a correlation - here measured by χ. Yet, the set of
reactions defining the differential system never observes that correlation.

This example, to which we will return, teaches us two things. Firstly, and most
importantly, one can exploit structural features of a given differential system to identify
sets of fragments, ie specific linear combinations of the system variables that have a
self-consistent dynamics - seeing how this can be done in the case where the dynamics
is described by rules, and not just reactions, is the main goal of this paper. As we will
see, working with rules is an advantage here, as one can read directly the reduction
from the rules without having to ever explicitly consider the ground set of reactions the
rules correspond to. Secondly, even though a set of fragments is independently solvable,
in general its behaviour (in our example the time courses of the subsystem variables
[A], [AB?], [B?], etc.) is not enough to recover that of the original system - perhaps
unsurprisingly, some information can be lost in the reduction.

3 Exact reduction of differential systems

Before we turn to the syntax of rules, we need to define the specific notion of linear
reduction of an autonomous differential system that we will use in the remainder of

8

the text. It is inspired by the methodology of abstract interpretation (AI), a general
framework for approximating the semantics of programs [17]. Hence, it might be worth
pointing out the correspondence with traditional AI concepts: our notion of reduction
(defined below) can be seen as an abstraction map, that is to say a transformation going
from a concrete state space (here the concentrations of all species) to an abstract one
(here the concentrations of all fragments). The reduced dynamics corresponds to that of
a backward complete counterpart [35, 36] to the concrete dynamics.

Let V be a finite set.
Maps from V to R form a normed vector space with norm:

‖ρ‖ := maxX∈V |ρ(X)|

where | | denotes the absolute value. For U a subset of V → R
+, define ‖U‖ = supρ∈U ‖ρ‖ ≤

+∞.
If V is a set of species, and ρ(X) the concentration of X, then ‖ρ‖ controls the total

number (per unit volume) of species in the system.
A ρ such that for all X ∈ V, ρ(X) ≥ 0 is called a state, and we write simply ρ ≥ 0.

We write ρ[X → r] for the state that maps X to r ≥ 0 and otherwise is as ρ.
Consider another finite set V ′, and a map ψ from V → R to V ′ → R, we say ψ is:

- positive if for all ρ ≥ 0, ψ(ρ) ≥ 0;
- expansive if for all subset U of V → R

+, ‖ψ(U)‖ <∞ implies ‖U‖ <∞.

Definition 3.1. A (positive autonomous) differential system over V is a map F from
V → R to V → R:
- which is continuously differentiable, and for which
- there exists ǫ > 0, and a family of positive and continuous maps GX from V → R to
V → R such that, for all ρ ≥ 0, and X in V, if ρ(X) < ǫ then:

−ρ(X) ·GX(ρ[X → 1]) ≤ F(ρ)(X)

By the Cauchy-Lipschitz theorem [42], F defines for any initial state ρ0, a unique
maximal differentiable f : [0, T) → V → R such that f(0) = ρ0, and f ′ = F ◦ f , with
T ≤ +∞. This unique f is called a solution of F, sometimes written fρ0 to make the
dependency in the initial state explicit.

Note that it may be that T < +∞: consider reaction 2A→ 3A, one has f ′(t) = k[A]2

and the maximal solution f(t) = 1/(A0 − kt) is only defined on [0, A0/k).
The GX family ensures that, starting from a positive initial state, if ρ(X) gets close

enough to zero, its derivative F(X)(ρ) becomes bounded below, so can’t get too negative,
so that ρ(X) never reaches negative values.

In our application, V is the set of species generated by a molecular network, and F

is given by mass action (as in §2). The repelling property is clearly satisfied since any
negative contribution to F(ρ)(X) comes from a reaction that consumes X, and therefore
must be of the form −k · ρ(X) · ρ(Y1) . . . ρ(Yn).

9

Definition 3.2. A reduction of a differential system F over V is a commuting square:

R
V F //

ψ

◦

R
V

ψ

◦

R
V♯ F

♯
//
R
V♯

where V♯ is a finite set of (abstract) variables, ψ is a positive, expansive and linear map
from V → R to V♯ → R, and F

♯ is a differential system over V♯.

Note that since ψ is positive, by definition, it maps states to states. Nevertheless, we
need values in R and not just R

+ so that we can apply the abstraction function ψ also
to vectors of derivatives F(ρ) which are not positive.

We can infer a strong form of soundness for our notion of reduction:

Theorem 3.3 (soundness). T = T ♯ and f ♯
ψ(ρ0) = ψ ◦ fρ0.

Proof. For t < T , one has:

(ψ ◦ fρ0)
′(t) = ψ(f ′ρ0(t))

= ψ(F(fρ0(t)))
= F

♯((ψ ◦ fρ0)(t))

because ψ is linear (first equation), fρ0 is a solution of F (second equation), and ψ ◦F =
F
♯◦ψ by assumption. Hence ψ◦fρ0 is differentiable on [0, T), and it is a (unique) solution

of F
♯ for the initial condition ψ(fρ0(0)) = ψ(ρ0) on [0, T). In other words, on [0, T), we

have:
ψ ◦ fρ0 = f ♯

ψ(ρ0)

It follows that T ≤ T ♯. But, in fact, T = T ♯. To see this, suppose T <∞, then ‖fρ0(t)‖
diverges as t tends to T , and ψ being expansive, so does ‖ψ(fρ0(t))‖.

A simple consequence is that for t ∈ [0, T) = [0, T ♯):

0 ≤ f ♯
ψ(ρ0)(t)

Thus our reduction guarantees that: 1) trajectories of abstract variables can be computed
directly in the abstract domain without loss of information; 2) positivity is preserved; 3)
the life-time of the system is also preserved. (This is in contrast with syntactic program
slicing that may not preserve non-termination - see eg [10,34]).

3.1 Back to the example of §2

We can return to the example of §2, to illustrate the above definitions. The set V of
concrete variables is A, B, C, AB, BC, and ABC, while the differential system F is
given in new notation as:

F(ρ)(A) = −kA · ρ(A)(ρ(B) + ρ(BC)) + k′A(ρ(AB) + ρ(ABC))

10

and similarly for the other terms.
The set V♯ of abstract variables is A, AB?, B?, C, ?B, and ?BC, and the linear map

ψ is given by:
ψ(ρ)(A) = ρ(A)
ψ(ρ)(AB?) = ρ(AB) + ρ(ABC)
ψ(ρ)(B?) = ρ(B) + ρ(BC)

and similarly for other terms. The abstract counterpart to F, written F
♯, is given by (we

write ρ♯ for an abstract state, that is to say a map from V♯ to R
+):

F
♯(ρ♯)(A) = k′A · ρ

♯(AB?)− kA · ρ
♯(A) · ρ♯(B?)

and similarly for the other terms. And one can check the commutativity condition which
expresses the self-consistency of ψ. If we verify it for A, we get:

ψ(F(ρ))(A) = F(ρ)(A)
= −kA · ρ(A) · (ρ(B) + ρ(BC)) + k′A · (ρ(AB) + ρ(ABC))
= −kA · ψ(ρ)(A) · ψ(ρ)(B?) + k′A · ψ(ρ)(AB?)
= F

♯(ψ(ρ))(A)

4 Kappa

We now introduce Kappa, which, in essence, is a certain type of graph rewriting system.
We are going to introduce both a process-algebra notation (as in Ref. [23]), and a straight
graphical notation. The former simplifies the presentation of the qualitative operational
semantics, especially regarding finer notions of matching (using wildcards and binding
types, see below) and the notion of inverting a rule - both of which we will need. It
is also closer to our actual implementation. However, as for any process notation, and
despite the fact that Kappa is a rather simple formalism, it can become cumbersome
when it comes to the quantitative semantics where combinatorics and counting come
to the fore. This is best done with a plain geometric/graphical view. Thus, we also
introduce an equivalent graph-theoretical/graphical notation that is best suited to define
the (concrete) differential semantics, as it allows an easier manipulation of the central
notion of embedding (see definition below), and other constructions of a more geometric
nature such as pushouts. We also present a notion of rule refinement which we will need in
the construction of our reduced/abstract differential semantics (§7). We note in passing
that a purely categorical presentation of the central tenets of Kappa was developed
to handle the refinement problem [51]. In the longer term, it might be interesting to
work in the framework of general graph transformation systems [25] and/or adhesive
categories [46] - but exactly how much of the current theory and algorithmics [20] of
Kappa can be extended to a more general setting remains to be seen.

11

4.1 Qualitative semantics

4.1.1 Expressions

We fix a finite set of agent types A, a finite set of sites S, and a signature map Σ
from A to finite subsets of S assigning a set of sites to each agent type. As said in the
introduction, in Kappa, sites can also hold modifiable internal states. This is convenient
in practice but adds no difficulty to the theoretical side of affairs, so we will leave these
aside (the implementation does consider them). With this simplification, the syntax of
agents and expressions is given below:

E ::= ε | a,E (expression)
a ::= ∅ | A(σ) (agent)
σ ::= ε | s,σ (interface)
s ::= xλ (site)
λ ::= ǫ | i | A@x | − (binding state)

with A ∈ A, x ∈ S, and i ∈ N a natural number.
An expression is a (possibly empty) sequence of agents. An agent is either a proper

agent or a ghost agent ∅; a proper agent is a name in A and an interface. An interface is
a (possibly empty) sequence of sites with binding states; one writes xλ for a site x with
binding state λ. When the binding state of x is ǫ, we say x is free; otherwise x is bound.
In examples, we generally omit the ǫ indicating a free site. (Be careful not to confuse ε
the empty expression, or interface, and ǫ which denotes a free site.)

Note that the syntax distinguishes three types of bound sites. First, we have binding
labels, i ∈ N, when we know the binding partner (which is also bearing the same i);
second, we have binding types, A@x, when we know the partner is the site x of some
agent of type A; and last, we have wildcards ‘−’ when we only know that a site is
bound but have no further information about its partner. One can think of wildcards as
semi-edges. (In practice, binding types and wildcards are key for obtaining more efficient
compressions, using rule simplification techniques developed in Ref. [21]; more about this
in the last section.)

A structural equivalence, which we use to tidy up an expression and match it against
another one, is defined as the smallest equivalence relation on expressions such that:

E,A(σ,s,s′,σ′), E′ ≡ E,A(σ,s′,s,σ′), E′

E, a, a′, E′ ≡ E, a′, a, E′

E ≡ E, ∅
i, j ∈ N ∧ i does not occur in E ⇒ E[i/j] ≡ E

i ∈ N ∧ i occurs once in E ⇒ E[ǫ/i] ≡ E

This equivalence says that: the order of sites in interfaces and of agents in expressions
does not matter; ghost agents can be erased, binding labels can be injectively renamed
and dangling bonds (ie binding labels that occur once) removed.

We now define useful classes of expressions.

12

Definition 4.1. A pattern is an expression E such that:
- (i) a site x occurs at most once in any agent A(σ) in E;
- (ii) if x occurs in A(σ) then x ∈ Σ(A);
- (iii) each binding label i in E occurs exactly twice (there are no dangling bonds).

A pattern E is said to be: proper if it has only proper agents; disconnected if E ≡
E′, E′′ for some non-empty proper patterns E′, E′′ (in which case E′ and E′′ share no
binding labels by condition (iii)). A pattern component is just a connected pattern. A
mixture E is a non-empty proper pattern that is fully specified, ie each agent occurrence
A in E documents its full interface Σ(A), and sites can only be free or bear a binding
label i ∈ N. Finally, a species is a fully specified non-empty pattern component, or,
equivalently, a connected mixture.

4.1.2 Rules

A rule is an ordered pair of patterns Eℓ, Er, sometimes written Eℓ → Er (mostly in
examples), with additional constraints (explained below). The left hand side (lhs) Eℓ
of a rule describes the agents taking part in it and various conditions on their binding
states for the rule to apply. The right hand side (rhs) describes what the rule does. Ghost
agents are used for agent creation in the lhs and agent removal in the rhs. A rule where
both sides Eℓ, Er are fully specified proper patterns is a reaction. The key additional
flexibility offered by rules, is that one does not have to use fully specified patterns, ie
they can be left partial (see below for an illustration).

Definition 4.2 (constraints on rules). In a rule Eℓ, Er, the pattern Er must be obtainable
from the pattern Eℓ in the following stepwise fashion (the order matters):
- some wildcards and pairs of binding labels are removed (edge deletion);
- some ghost agents in Eℓ are replaced by agents with full free interface (as specified by
Σ) (agent creation);
- some agents with only free sites are replaced with ghost agents (agent deletion);
- some free sites are bound using fresh labels in N (edge creation).

It follows from the above constraint that both sides Eℓ = a1, . . . , an, and Er =
a′1, . . . , a

′
n must have the same number n(r) ≥ 0 of agents (which is the reason for having

have ghost agents in the syntax). Thus, there is a canonical bijective correspondence
between agent occurrences in Eℓ and Er. Any two proper agents in correspondence have
the same name and their interfaces must exhibit the same sites (possibly with different
binding states). Another consequence of the above, is that rules are invertible except for
the agent deletion steps. In this case, unless the deleted agent has a full free interface,
we cannot recover in the inverse rule its exact binding context at the time of deletion.

Definition 4.3. Let r be a rule with left hand side Eℓ = a1, . . . , an. A site x is said to
be tested by r at position i, or (r, i)-tested, if x occurs in the interface of ai in Eℓ. A site
x is said to be modified by r at position i, or (r, i)-modified, if one of the following holds:
- ai = ∅, a′i = A(σ′), x ∈ σ′ (x is created)

13

- ai = A(σ), a′i = ∅, x ∈ σ (x is deleted)
- ai = A(σ), a′i = A(σ′), x ∈ σ, x ∈ σ′, and x has a different binding state in σ and σ′.

Note that according to the constraint above (Def. 4.2), binding types can only be
tested, not modified (although we will use this slight extension sometimes in examples).

A system is an initial mixture and a finite set of rules R.

4.1.3 Prologue (continued)

As an illustration, we can refactor in Kappa the §2 example by introducing one site in
B for each binding partner A, C, so that they can bind concurrently to B. Specifically,
we set A = {A,B,C}, S = {a, b, c}, Σ(A) = {b}, Σ(B) = {a, c}, and Σ(C) = {b}. The
species ABC is now written A(b1), B(a1, c2), C(b2), and the rules emulating the earlier
reactions are (rate constants are added to the right as in the case of reactions):

∅ → B(a, c) σ
A(b), B(a)↔ A(b1), B(a1) kA, k

′
A

B(c), C(b)↔ B(c1), C(b1) kC , k
′
C

If one compares the last two rules with the corresponding four reactions, one sees that
the rules are making the rate independence assumption explicit by, eg, not mentioning
B’s binding site c (resp. a) in the A (resp. C) to B binding rule.

4.1.4 Qualitative Semantics

We have now to explain how to apply a rule r = Eℓ, Er to a mixture E.
The first step is to “align” E with Eℓ, ie, to use structural congruence to bring the

participating agents to the front of E with their sites ordered as in Eℓ, renaming binding
labels and introducing ghost agents as necessary (for agents created by r). This yields
an equivalent expression E′ ≡ E that matches the rule lhs, written E′ |=Eℓ (definition
below). Note that, in so doing, one only uses structural equivalence on E, not on Eℓ.

The actual notion of matching we use is straighforward. If E′ and Eℓ were plain
graphs, to say that E matches Eℓ would mean that Eℓ is an induced subgraph of E
(an NP-complete problem in general, but not in our case, that of site graphs, because of
Prop. 4.4 below). The only slightly subtle point is the matching of a binding type by a
binding label. For a binding label i in an agent A(xi) belonging to E′ to match a binding
type A(xB@y) in Eℓ, the unique other binding label i in E′ must be of the form B(yi) (if
there is no other binding label i, the match fails). To this effect, we use a partial look-up
function πE which given (A, x, i) returns the binding type of i’s other occurrence in E
if any. That is to say, πE(A, x, i) = B@y if y in B is the (unique) site in E with label i
distinct from site x in A.

To define matching, set E |=Eℓ := E |=EEℓ (auxiliary arguments are needed for the

14

inductive definition), and then define inductively E′ |=EEℓ as follows.

xλ |=A
E xλ

xi |=A
E x

xi |=A
E xπE(A,x,i)

σ |=A
E ε

s |=A
E sℓ ∧ σ |=

A
E σℓ ⇒ s, σ |=A

E sℓ, σℓ
σ |=A

E σℓ ⇒ A(σ) |=EA(σℓ)

∅ |=E ∅
E |=E ε

a |=E aℓ ∧ E
′ |=EEℓ ⇒ a,E′ |=E aℓ, Eℓ

Note that matching can succeed in at most one way - all the non-determinism being
handled by the ‘alignment’ phase. (Recall that mixtures do not use binding types or
wildcards, so we do not need to consider such cases in the inductive definition above.)

The second step, once a match is realized, is to replace in E′ the lhs Eℓ by the rhs
Er. We write E′[Er] for the result of this substitution. This may produce dangling bonds
(if r unbinds a wildcard bond or deletes an agent on one side of a bond, there is a “side-
effect” as the other side of the bond needs to be erased as well) and/or ghost agents (if
r deletes agents), which one can clean up using ≡ afterwards.

Substitution is defined inductively as below.

λr = i, ǫ ⇒ xλ[xλr] = xλr

λr = A@x,− ⇒ xλ[xλr] = xλ

σ[ε] = σ
(s, σ)[sr, σr] = s[sr], σ[σr]
A(σ)[A(σr)] = A(σ[σr])

∅[ar] = ar
a[∅] = ∅
E[ε] = E

(a,E)[ar, Er] = a[ar], E[Er]

Finally, we can define the transition system generated by a set of rules R. Suppose
E0, E1 are mixtures, r = Eℓ → Er is a rule in R, E0 ≡ E′

0, E
′
0 |=Eℓ, and E′

0[Er] ≡ E1,
then we write E0 →r E1, and say that E0 can be rewritten into E1. Transitions are
labelled by the rule they use.

4.1.5 An example

Here is a simple example:

r := B(cC@b)→ B(c)
E := A(b1), B(a1, c2), C(b2)

15

A C

B

b b

ca

(a) A(b1), B(a1, c2), C(b2)

B B

A

→c
C@b

c

(b) B(cC@b)→ B(c)

Figure 3: Graphical notation for a species (left) and for a rule (right).

In order to apply the rule r to the expression E, we rewrite E to the equivalent form E′ =
B(c2, a1), A(b1), C(b2); then we check E′ |= B(cC@b) which is true since πE′(B, c, 2) =
C@b; so we can proceed to the second step:

E′[B(c)] = B(c2, a1)[B(c)], A(b1), C(b2)
= B(c2[c], a1), A(b1), C(b2)
= B(c, a1), A(b1), C(b2)
≡ B(c, a1), A(b1), C(b)

This particular rule has the side-effect of half-erasing an edge, and hence creates a
dangling bond, which we can get rid of using ≡ to recover a mixture.

4.2 Site graphs

As said, patterns (and mixtures) can be presented as site graphs, that is to say undi-
rected graphs where typed nodes have sites, and edges form a partial matching on sites
(meaning a site can be used in one edge only). Fig. 3 shows an example of the site
graph corresponding to the ABC species from §2, as well as the graphical version of
the rule we have examined in the example above. With this change of representation,
a pattern component is simply a connected site graph, a mixture is a site graph where
every node shows a full interface (according to the global signature Σ) and no binding
type or wildcard occurs, and a species is a connected mixture.

4.2.1 Embeddings

Our notion of matching can be reformulated as a notion of site graph embedding. Suppose
Z, Z ′, Zℓ are proper patterns such that Z ≡ Z ′ |=Zℓ. Decompose Z, Z ′, Zℓ as sequences
of (proper) agents:

Z = A1, . . . , Am,
Z ′ = A′

1, . . . , A
′
m

Zℓ = B1, . . . , Bn

where necessarily 0 < n ≤ m. In the absence of ghost agents the derivation of Z ≡ Z ′

preserves the number of agents, and hence, it defines a unique permutation π mapping
A′
i to Aπ(i) for 0 < i ≤ m. The restriction φ of π to 0 < i ≤ n is called an embedding

of Zℓ into Z. There may be several embeddings between Zℓ and Z - we write [Zℓ, Z] for
the set of such embeddings.

16

With the notations just above, ι ∈ [Zℓ, Z
′] with ι the canonical injection of {1, . . . , n}

into {1, . . . ,m}, π ∈ [Z ′, Z], and πι ∈ [Zℓ, Z]. Thus, matches are special embeddings,
corresponding to canonical injections, and the alignement procedure to produce a match
can be seen as the factorization of an embedding φ as φ = πι. Working directly with
embeddings results in more perspicuous arguments as we will see.

One can extend the notion of embedding to patterns with ghost agents by defining
φ ∈ [Z1, Z2] if φ ∈ [Ẑ1, Ẑ2], where Ẑ ≡ Z is Z where all ghost agents have been removed.
Patterns and embeddings then form a category (analogous to the category of plain
graphs, where morphisms are embeddings as induced subgraphs). One says that φ is an
isomorphism (iso) between Z1 and Z2 if φ has an inverse. It is easy to see that every
φ in [Z,Z] is an iso, usually called an automorphism (aka a symmetry) of Z. We write
|[Z,Z]| for the number of such automorphisms.

The graphical representation carries over nicely to rules. One can now apply a rule
r = Eℓ, Er directly to a Z given φ ∈ [Eℓ, Z]. The result of applying r to Z according to
φ is always defined and yields a unique result, say Z ′, as well as a unique embedding
φ′ from Er into Z ′. Of course, there are, in general, many embeddings and the result
will depend, again in general, on the particular choice made (in sharp contrast with
reactions!).

For example, the pattern B(cC@b) embeds twice in the mixture

A(b1), B(a1, c2), C(b2), B(a, c3), C(b3)

So we can apply the rule B(cC@b)→ ∅ to get either of:

A(b1), B(a1, c2), C(b2), C(b)
A(b), C(b), B(a, c3), C(b3)

4.2.2 Epimorphisms

We recall an easy result which is a consequence of the strong requirements on an em-
bedding, and the fact that all sites of an agent are distinguishable (ie form a set, not a
multiset).

Lemma 4.4 (rigidity [20]). An embedding of a pattern component C into a pattern Z
is fully defined by the image of one agent. That is to say, whenever there are i, φ, and
φ′ such that φ ∈ [C,Z], φ′ ∈ [C,Z] and φ(i) = φ′(i), then φ = φ′.

In general, an epimorphism (epi) is a ψ ∈ [Z,X], such that for all φ ∈ [X,Z ′],
φ′ ∈ [X,Z ′], φψ = φ′ψ implies φ = φ′. We can describe epis neatly.

Lemma 4.5. Non-empty embeddings into a pattern component are epis. That is to say,
if C is a pattern component, ψ ∈ [Z,C] is an epi iff Ẑ is not empty.

It follows that epis enjoy a much weaker property than being surjective on nodes:

Corollary 4.6. φ ∈ [Z1, Z2] is an epi iff the image of Z1 intersects each component of
Z2.

17

X ′

ψ′2ψ′1

Z2Z1

!ψ

γ2γ1

Y

X

ψ2ψ1

(a) Pullback.

Z2Z1

!ψ

Y ′

ψ2ψ1

X

Yγ′1

γ1

γ′2

γ2

(b) Idem pushout.

Figure 4: Overlap: a commutative square of embeddings which is both a pullback and an
idem pushout.

One says that φ1 ∈ [X,Z1], φ2 ∈ [X,Z2] are isomorphic, if φ1 = φφ2, with φ an
isomorphism in [Z1, Z2]. If both φis are epis, then φ is unique.

One says that φ ∈ [Z1, Z2] is a straight epi if Ẑ1, and Ẑ2 can be decomposed in two
sequences of pattern components of equal length (possibly zero):

Ẑ1 = C1, . . . , Cn
Ẑ2 = D1, . . . , Dn

and φ can be written as a (possibly empty) disjoint sum of φi ∈ [Ci, Di].
Clearly, straight epis are epis. Any epi in [Z1, Z2] must preserve the number of com-

ponents, and is therefore canonically isomorphic to a straight one (just permute the
components Di). That isomorphism is unique because of the remark above.

4.2.3 Overlaps

We would like now to define the notion of overlap between patterns which will be central
to our soudness argument. Since patterns might overlap in more than one way, to define
an overlap unambiguously one has to provide additional data that one can think of as
explicit glueing instructions.

Definition 4.7 (overlap). An overlap between patterns Z1 and Z2 is a commuting square
X,ψ1, ψ2, γ1, γ2, Y with ψi ∈ [X,Zi], γi ∈ [Zi, Y], which is both a pullback and an idem
pushout (See Fig. 4).

The triple X,ψ1, ψ2 is called a span and indicates a region common to Z1 and Z2,
whereas the triple γ1, γ2, Y is called a co-span and indicates a way to glue Z1 and Z2.

18

The commuting square condition namely γ1ψ1 = γ2ψ2 (see Fig. 4) expresses the fact
that the common region defined by the span is identified by the glueing defined by the
co-span.

Given a co-span γ1, γ2, Y , there is always a span X,ψ1, ψ2 which makes the diagram
commute. In fact there is always a universal such, called the pullback of γ1, γ2, Y . (It is
universal in the sense that for any other solution X ′, ψ′

1, ψ
′
2 there is a unique embedding

ψ ∈ [X ′, X] such that ψ′
1 = ψ1ψ, ψ′

2 = ψ2ψ. This implies that the pullback is unique up
to unique isomorphism.)

Conversely, given a span X,ψ1, ψ2 there might be no co-span that ‘closes the span’
(ie, forms a commutative square), since away from the common region so defined, the
patterns Z1 and Z2 might make incompatible choices. However, given any such a closing
co-span, say γ′1, γ

′
2, Y

′, there is a universal compatible closing co-span say γ1, γ2, Y . In
the particular case of a cospan which closes the span and is its own minimal compatible
closing cospan (meaning that γ′1, γ

′
2, Y

′ is isomorphic to γ1, γ2, Y), one says the obtained
square is an idem pushout [47].

We say the overlap is non trivial if X is not empty. We only consider non trivial
overlaps in the rest of the paper, and for counting purposes, we fix a representative in
each isomorphism class.

4.2.4 Overlaps (examples)

We consider first an example of two patterns Z1 and Z2 that can be glued in two (non-
trivial) ways:

Z1 = R(r1, s), R(r1),
Z2 = R(a)

Depending on which agents R one chooses to identify we obtain two glueings. The first
glueing is obtained using span R(), φ1, φ2 and co-span φ3, φ4, R(r1, s, a), R(r1) where φ1,
φ2, φ3, φ4 are identical maps. The other glueing is obtained using span R(), φ′1, φ

′
2 and

co-span φ′3, φ
′
4, R(r1, s), R(r1, a), where φ′1 and φ′4 map 1 to 2, and φ′2 and φ′3 are identical

maps. In both cases the obtained square is an overlap. This tells us, concretely, that we
definitely need glueing instructions (ie a span) to know what to do.

Here is another, more subtle, example of two idem pushouts (and overlaps) on the
same initial span (maps are uniquely definable so we omit them):

Z1 = A(x1), B(x1)← A()→ A(y1), B(y1) = Z2

Z1 → A(x1, y2), B(y2), B(x1)← Z2

Z1 → A(x1, y2), B(y2, x1)← Z2

Concretely, this means that there are essentially different ways to execute glueing in-
structions specified by a span - so in effect, we need not just a span but a complete square.
In the sequel, such constructions will always be made in a context where a commuting
square is given (as in Fig. 6, 7), so it will not be a problem.

19

5 Concrete differential semantics

We turn now to the definition of the concrete differential semantics of a rule set -
which eventually will serve as our reference semantics for the soundness of our reduction
method. That is to say, we need to define a differential system F as in Def. 3.1. As we
have seen in the prologue, this is a simple operation if one starts from a set of reactions.
In the case of rules, one needs a first step to map the rule set at hand into a set of reac-
tions. To do this effectively, we introduce a key technical notion, that of rule refinement
(studied at length in Ref. [52]).

5.1 Rule refinements

Fix a rule r = Eℓ, Er. Suppose Z is a pattern such that Z |= Eℓ, we define the left
refinement of r by Z, written Z{r}, as the rule Z,Z[Er]. Similarly, suppose Z is such
that Z |= Er, we define the right refinement of r by Z, written {r}Z, as the rule
[Eℓ;Er]Z,Z using inverse substitution as defined inductively below.

[ǫ; ǫ]E = E
[aℓ, Eℓ; ar, Er](a,E) = [aℓ; ar]a, [Eℓ;Er]E

[aℓ; ∅]∅ = aℓ
[∅; ar]a = ∅
[A(σℓ);A(σr)]A(σ) = A([σℓ;σr]σ)
[ǫ; ǫ]σ = σ
[sℓ, σℓ; sr, σr]s, σ = [sℓ; sr]s, [σℓ;σr]σ

[xλℓ ;xλr]xλ = xλℓ if λℓ = ǫ, i ∈ N

[xA@x;xA@x]xλ = xλ

[x ;x]xλ = xλ

[x ;xλr]xλ = x if λr 6= −

It is easy to see that [Eℓ;Er]Er = Eℓ as it should. Note that inverse substitution
depends not only on Eℓ, but also on Er. In fact, we need Er only in the last two
equations below to test whether the wildcard x is deleted by r or not. This is different
from substitution (defined earlier in §4.1.4) which only depends on Er.

It is perhaps useful to give an example of left/right refinement where this is used:

r = A(x), ∅ → A(x1), B(x1)
Zr = A(x1, y), B(x1)
Zℓ = A(x , y)
{r}Zr = A(x , y), ∅ → A(x1, y), B(x1) = Zℓ{r}

Refinements extend in a straightforward way (by factoring embeddings via match-
ings) to the more general case where we have an embedding of Z (instead of just a
matching) into the lhs or the rhs of the rule of interest.

20

We write:
- (Z, φ){r} for the left refinement of r along φ ∈ [Eℓ, Z]
- {r}(Z,ψ) for the right refinement of r along ψ ∈ [Er, Z]

If either φ or ψ is a canonical injection ι, we get the earlier notion, ie (Z, ι){r} = Z{r},
and {r}(Z, ι) = {r}Z. We say two refinements (left or right) are isomorphic if their
defining embeddings are.

Definition 5.1. Let r be a rule, and φ be a straight epi in [Eℓ,M] where M is a mixture.
The pair φ, rφ where rφ is the left refinement

rφ := (M,φ){r}

is called the ground refinement of r along φ.

In the above definition, it is important to keep track of the embedding that generates
the refinement rφ, since there can be many φ that produce the same rφ. Note also that
the requirement that φ is a straight epi implies that Eℓ and M have the same number of
components (whereas an epi could, in general, see the number of components decrease).

If Eℓ consists only of empty agents, then there is only one refinement, the empty
map (which is a straight epi!), and Er is necessarily a sequence of species (by Def. 4.2).

Proposition 5.2. Consider {r}(Z, γ) =: E′
ℓ, Z the right refinement of a rule r = Eℓ, Er

along γ ∈ [Er, Z]. Suppose that γ is an epi, then the induced γ′ ∈ [Eℓ, E
′
ℓ] is also an

epi, and if γ′ preserves the number of components, every ground refinement of {r}(Z, γ)
determines injectively a ground refinement of r.

Proof. In order to extend Er with an epi γ, one must extend the interface of agents
in Er (Cor. 4.6). Such ‘extended’ agents cannot be created by r, since created agents
get a maximal interface (Def. 4.2). It follows that every interface extension will transfer
by inverse subsitution to the left hand side, hence γ′ is an epi. If, in addition, E′

ℓ has
the same number of components as Eℓ, then any straight epi in [E′

ℓ,M], ie any ground
refinement of {r}(Z, γ), gives rise to an embedding ψγ′ ∈ [Eℓ,M] which also preserves the
number of components, and is therefore canonically isomorphic to a ground refinement
of r. Because γ′ is an epi, this correspondence is 1-1.

We are not saying that γ′ must always preserve the number of components. Here is
an example:

A(x), A(x)→ A(x1), A(x1)
γ : A(x1), A(x1)→ A(x1, y2), A(x1, y2)
γ′ : A(x), A(x)→ A(x, y2), A(x, y2)

5.2 Concrete differential semantics

5.2.1 The concrete domain

To obtain the concrete differential semantics of a rule set R we need to choose a finite
set of species V closed under the rules in R, which contains all species present in the

21

system’s initial state, and has at most one representative per species isomorphism class.
(By closed under r, we mean that any application of r to a sequence of species in V
produces a sequence of species in V.)

How do we choose V in practice? We cannot always take all species as defined by the
signature Σ, as there might be countably many. A better choice is to use the efficient
symbolic description of a V closed under R and containing any given set of initial species
obtained in Ref. [21,30]. Having said that, in this theoretical development, we just assume
we have a proper V. (The finiteness assumption is a limitation discussed again in the
conclusion.)

Following §3, a state ρ will be a map from V to R
+, mapping each S ∈ V to its

concentration ρ(S) ≥ 0.

5.2.2 The concrete differential system

Suppose now each rule r in R is equipped with a rate constant k(r) (a positive real
number).

We construct the differential system F in a piecewise fashion, by defining for each
rule r in R, each ground refinement φ of that r (up to iso, and with all components in
V), and each species S in V, the positive and negative contributions of the pair r, φ to
F(ρ)(S) in a state ρ.

Pick a rule r = Eℓ, Er in R, and a straight epi φ from Eℓ into some mixture M =
R1, . . . , Rn over V. Decompose the ground refinement φ, rφ into components:

rφ := R1, . . . , Rn → P1, . . . , Pm

where the ‘products’ Pj are the species in V produced by the application of φ, rφ to
R1, . . . , Rn. The Pjs are in V because the ‘reactants’ Ri are also in V, and V is closed
under rules, by assumption.

Define (following §3) the activity of rφ (aka flux, rate, velocity, etc.) in a state ρ as

γ(r)
∏
i ρ(Ri)

with γ(r) = k(r)/|[Eℓ, Eℓ]|. Recall |[Eℓ, Eℓ]| stands for the number of automorphisms of
Eℓ. This predivision of the rate constant of the rule by its number of automorphisms is
the usual convention (see the discussion below).

The activity of each rφ contributes to the consumption and production of species in
V as follows:

F(ρ)(Ri)
+
= −γ(r)ρ(R1) · · · ρ(Rn) for 1 ≤ i ≤ n

F(ρ)(Pj)
+
= γ(r)ρ(R1) · · · ρ(Rn) for 1 ≤ j ≤ m

Note that monomials can accumulate for different values of j or k. Eg for the ground
rule:

rφ = R,R→ P

we find that F(ρ)(R)
+
= −2γ(r)ρ(R)2, that is to say the rule contributes twice to the

consumption of R.

22

Since V and R are finite, so is the number of ground refinements of rules in R (up
to iso), and hence the total number of contributions is finite as well. So F(ρ)(S) is a
well-defined finite sum of monomials of the above form for each S ∈ V.

This F constitutes the concrete differential system or semantics of R, and will be the
reference for proving the soundness of reductions.

5.2.3 Discussion

It might be useful to point at the relationship of the above definition with the usual
notion of activity from chemical kinetics. Suppose r is already a reaction, that is to say
r’s lhs can be written S1, . . . , Sn with Si ∈ V. Then r has

∏
i |[Si, Si]| ground refinements,

which are all identical.
By our definition above the joint activity of r’s ground refinements is:

∏
i |[Si, Si]| · k(r)/|[Eℓ, Eℓ]| · ρ(S1) · · · ρ(Sn)

Now if the Sis are considered as pure names as in chemical kinetics (aka Petri nets,
multiset rewriting), the activity of the corresponding reaction is:

k(r)/τ · ρ(S1) · · · ρ(Sn)

where τ is the number of multiset automorphisms of S1, . . . , Sn.
Clearly τ = |[Eℓ, Eℓ]|/

∏
i |[Si, Si]|, since the internal structure is hidden, which is to

say that the joint activity of the ground refinements of r is the same as its usual activity
as a flat reaction.

A point worth noticing is that the differential semantics we have just defined ignores
rule applications where two pattern components of Eℓ embed into two distinct areas of
the same species - since we have required ground refinements φ to preserve the number
of connected components. In the stochastic semantics, one can allows for such rule in-
stances. It does not matter in the sense that the differential semantics is the expected
behaviour of the stochastic one when both the initial mixture size and the volume di-
verge with a constant ratio [44,45] - in which case, ground refinements with lower arities,
corresponding to epis which do not preserve the number of components, are negligible
anyway.

6 Fragments: the abstract domain

We now turn to the construction of the abstract/reduced semantics. The first step is to
define a family of suitable pattern components called fragments, that will be the basis
of our abstract domain and enable the definition of a (backward complete) counterpart
F
♯ to F (next section). To define our fragments, we will use an annotated contact map

(defined below) which over-approximates the correlations that can be observed by the
rules.

Throughout this section and the next we suppose fixed a rule set R, an initial state,
and a finite superset of reachable species V, forming the basis of our concrete domain -
as discussed in §5.2.1.

23

SHC

SOS

GRB2

EGF

EGFR
Y48

Y68

l

r

r

a

b

d

Y7

c

(a) Contact map.
SHC

SOS

GRB2

EGF

EGFR
Y48

Y68

l

r

r

a

b

d

Y7

p

(b) Annotated contact map.

Figure 5: Maps for the early EGF model.

The contact map associated to V is a summary of the bindings found in the species
of V. Specifically, the nodes of the contact map are the agent types occurring in V with
their full set of sites according to the signature Σ, with an edge between two sites iff
these two sites form a bond in some species in V. Therefore, any species in V projects
uniquely to the contact map.

To lighten the notations we will suppose that Σ maps different agent types to disjoint
set of sites - or in other words, that a site can only belong to one type of agent. An
example of a contact map is given in Fig. 5(a). As one can see, sites in the contact map
may be connected to several sites, which implies a competition between two binding
states; indeed, an agent can even be connected to itself (via the same, or different, sites).
(This means that the contact map is not a site graph in general - one can rather think
of it as a type for a set of site graphs.)

A parsimonious covering of a set X is a set C of subsets of X such that ∪C = X and,
for no X1, X2 ∈ C, X1 ⊂ X2 (strict inclusion); the elements of C are referred to as classes
of C. Hence a covering is not necessarily a partition, and we will use this flexibility. One
can define a partial order on coverings by setting C1 ⊑ C2 if for any X1 ∈ C1, there exists
X2 ∈ C2 such that X1 ⊆ X2.

Definition 6.1. An annotated contact map (aCM) is a contact map where in addition:
- (i) each agent A has a parsimonious covering CA of Σ(A);
- (ii) a subset of edges is distinguished.

Distinguished edges are called soft (represented with dashed lines in Fig. 5(b)), the
others are called solid. The idea is that a class in the covering of an agent denotes a
relationship between sites that has to be tracked in order to define the abstract dynamics
of the system. Solid edges indicate bonds that also need tracking.

24

6.1 Dependency analysis

A rule is trivial if it deletes a bond without testing or modifiying anything else, ie it has
one of the following forms:

A(a1), B(b1)→ A(a), B(b)
A(a−)→ A(a)

Let r be a rule with left hand side Eℓ. A site x is said to be a docking site for r at
position i, or an (r, i)-docking site, if x occurs at position i, and there is a path from x
leading to a modified agent. To be precise, this means that there is a finite sequence of
edges (xk, yk), k ≤ n, belonging to Eℓ such that: x = x0; yk, xk+1 are distinct sites of
the same agent in Eℓ for k < n; and yn belongs to an agent which has a site modified
by r (possibly yn itself).

Definition 6.2. An aCM is valid with respect to a rule set R if satisfies the following
constraints.

For every rule r in R, and every i ∈ N:
- (1.i) if x is an (r, i)-docking site or an (r, i)-modified one, and y is (r, i)-tested, every
covering class which contains x also contains y;
- (1.ii) the set of (r, i)-tested sites is included in a covering class.

For every non-trivial rule r in R, any edge in the aCM which (2.i) either occurs in
the lhs of r, or (2.ii) can be deleted by r must be solid. (Due to side-effects, both ends of
the edge need not actually occur in r.)

Finally, (2.iii) if a cycle in a species in V has only one soft edge, then no (trivial)
rule in R can delete it.

Note that trivial rules do not constrain the aCM, as they automatically verify (1.i),
(1.ii). Clause (2.iii) ensures that trivial rules don’t generate ambiguous production terms
on fragments (see Prop. 6.8).

The idea behind the above definition is that when no correlations are observable
between (not necessarily disjoint) subparts of a species, one can safely fragment this
species into its subparts (which is why we call them fragments!). Each valid annotated
contact map tells us how to obtain fragments. Soft edges specify where we can cut
species (using binding types), and coverings specify which sites must be kept together
in interfaces.

Definition 6.3. Given an aCM, a fragment for that aCM is a proper pattern component
F such that:
- F has no wildcard,
- F embeds in some S of V,
- (i) each agent interface in F projects to a covering class;
- (ii) each binding label in F projects to a solid edge;
- (iii) each binding type in F projects to a soft edge.

Note that clause (i) makes no obligation to choose the same class for different oc-

25

currences of the same agent type in F . This is key for the flexibility of fragments.
There are two particular valid aCMs (which may coincide). The trivial aCM arises

by taking for all agent types A the trivial covering {Σ(A)}, and taking all edges to be
solid. Its set of fragments is the set of all species in V. The minimal aCM is obtained by
choosing edges soft whenever possible, and a ⊑-minimal covering for every agent type.
(It is easy to see that there is such a minimal aCM.)

We suppose hereafter that we have fixed a valid aCM and we write V♯ for the finite set
of fragments it generates according to the definition above. By definition, every fragment
can be embedded in some species in V, so this set is finite. Typically it is much smaller
than V.

6.2 Discussion

We see that the fewer non-trivial rules one has in R, and the smaller their components,
the fewer fragments are generated by the minimal aCM. Since the efficiency of the
reduction is eventually measured by the number of fragments that are generated (the
smaller the better) one would like to minimise that number as much as possible. The
separate treatment of trivial rules obviously helps as it allows more soft edges. Another
complementary way to improve reduction is to remove redundant tests in a rule (because
of clauses (1.i), (1.ii) above). This is one application of the qualitative static analysis
proposed in Ref. [21], and we do use it in real examples. (More about efficiency matters
in the application section.) In passing, these are the reasons that have prompted us to
introduce binding types in the syntax of Kappa.

Another point worth of notice is that intermediate granularities can be useful. One
can refine the aCM if there is need to express the concentration of a pattern component
C of interest. This amounts to considering a fictitious rule C → C, which may incur
larger covering classes and fewer soft edges, and consequently less of a reduction.

6.3 Example

An example aCM obtained from a simple model of the early events in the EGF path-
way [3] is given in Fig. 5. Let us examine one of the rules, a non-trivial dissociation:

EGFR(Y481),SHC(p1,Y72),GRB2(a2, b)→
EGFR(Y48),SHC(p,Y72),GRB2(a2, b)

Since it is non-trivial, and it contains modified sites, the rule does generate constraints:
by (2.i) both the (Y48, p) and (a,Y7) edges must be solid, by (1.i) any class that contains
p (modified at position 2) must also contain Y7 (tested at position 2); again by (1.i)
any class that contains a (a docking site at position 3) must also contain b (tested at
position 3). (To see that a is indeed a docking site, we follow its edge to position 2 and
we find p modified at position 2.)

If one looks at the other rules of the model (not shown here), one sees that the sites
Y48 and Y68 are independent, but can both only be activated if the site r is bound, a
binding which only happens if the site l is bound. This determines two covering classes

26

{l , r ,Y48 } and {l , r ,Y68 } for EGFR. The edge from r to itself can be kept soft because,
in the same model, the state of one receptor in a dimer does not affect the behaviour of
the other. This is how the aCM example is derived.

6.4 Abstraction function

Having now defined our set of abstract variables V♯, the next step is to define the
abstraction function ψ from V → R into V♯ → R. We first need a couple of auxiliary
definitions related to the counting of pattern components.

Given a concrete state ρ ∈ V → R
+, we define the (real positive) number of embed-

dings ρ(C) of a pattern component C in to ρ as:

ρ(C) =
∑
S∈V ρ(S) · |[C, S]|

It is also convenient to define a version of ρ̄ which counts instances or concentrations,
that is to say embeddings up to automorphisms:

ρ̃(C) :=
ρ(C)

|[C,C]|

Clearly, [S, S′] is empty unless, S = S′ (recall that we have picked one representative
per iso class in V), so ρ(S) = ρ(S) · |[S, S]|, and ρ̃(S) = ρ(S), hence ρ̃(S) is an extension
of ρ.

By convention we set ρ(∅) := 1 = ρ̃(∅).
Finally, for any fragment F , we define:

ψ(ρ)(F) = ρ̃(F)

Clearly the function ψ is a linear mapping with positive coefficients.
We can check that it is expansive (as required in §3). Suppose one has an unbounded

subset U of V → R
+, then there must be an S ∈ V such that supρ∈U ρ(S) = +∞. Pick

such an S, and a fragment FS that embeds into S (clearly there is always one). One has:

ψ(ρ)(FS) =
∑
S′∈V ρ(S

′) · |[FS , S
′]|/|[FS , FS]|

≥ ρ(S) · |[FS , S]|/|[FS , FS]|

so supρ∈ψ(U) ψ(ρ)(S) = +∞ as well.

6.5 Fragment properties

We identify in the following the key properties of our set of fragments. These will be
sufficient for the derivation and the proof of correctness of the abstract counterpart F

♯

to F in the next section. Some of the proofs are only sketched.
We define a subfragment as a pattern component that can be embedded in a fragment.

Proposition 6.4 (growth). Let C be a subfragment, its concentration ρ̃(C) can be ex-
pressed as a linear combination of concentrations of fragments.

27

Proof. The idea is to compute ρ(C) recursively. At each step one picks a place where to
grow C, and one does it in all possible ways compatible with V. If C does not embed
into a species in V, we set ρ(C) = 0. Else:
- either we pick a solid binding type B@b in C which we replace in all the following
ways: 1) with an edge to any dual binding type in C, 2) with an edge to a new agent of
type B;
- or we add a site x to an agent in C the interface of which is included in a covering
class which contains x, both free and bearing a wildcard;
- or we pick a wildcard which we substitute with all the binding types compatible with
the CM. The recursion stops when all terms in the sum are fragments.

The growth procedure is not unique, as we can see in the example below. As an
example, consider the first step of the recursion for the derivation of the number of
embeddings of the pattern component C = R(l−, r−). Since the set {l, r} is a subset of
two classes {l, r,Y48}, and {l, r,Y68} one can grow C in two ways. If one grows C along
Y 48, one can express ρ(R(l−, r−)) as the sum:

ρ(R(l−, r−,Y48)) + ρ(R(l−, r−,Y48SHC@p))

Then the binding type SHC@p needs to be expanded, because the edge is solid in the
aCM, and so on. The non-uniqueness of the decomposition comes partly from the fact
that coverings are not partitions.

Proposition 6.5 (subfragment). Any pattern component that occurs in the lhs of a
non-trivial rule is a subfragment.

Proof. Let C be a pattern component occurring in the lhs of a non-trivial rule. By (1.ii),
each A(σ) in C has its sites contained in a class in C(A); and by (2.i), any bond in C is
solid; so by Def. 6.3, C embeds in a fragment.

The combination of Prop. 6.4 and 6.5 ensures that the concentrations of the lhs
components of all rules in R, and hence all the rule activities, can be expressed as
various functions of the concentrations of fragments.

Proposition 6.6 (left intersection). Let F be a fragment, r = Eℓ, Er be a non-trivial
rule, and C be a pattern component of Eℓ. F cannot overlap C on a site that is modified
by r.

More precisely: 1) if X,ψ1, ψ2, γ1, γ2, Y is an overlap between C and F , and the image
of X along ψ1 is modified by r, then ψ1 is an iso; and 2) if F contains a (bound) site x
that can be freed by a side-effect of r (either a wildcard or agent deletion), then F also
contains the site x is bound to.

Proof. 2) is a direct consequence of (2.ii). Let us prove 1). By assumption, F contains
an agent A with a site that is modified. By (1.i), this agent A contains in F all the sites
that are tested by the rule, and which therefore also occur in C. Since the overlap is a
pull-back, all these sites also feature in X, and since the square of the overlap commutes,

28

these sites must have compatible states in F and C. By (2.i), all edges in C are solid,
so F must contain all the bonds emanating from A that are present in C. If we follow
one, it leads us to a new agent B via a docking site x from where we can repeat our
reasoning with B, using again (1.i). Hence F contains a copy of C, so X is isomorphic
to C.

The combination of Prop. 6.4 and 6.6 ensures that one can express the concentration
of fragments that are consumed by a rule as a function of the concentration of other
fragments. For instance, this prevents situations such as the rule A(x−, y) → ∅ with
F = A(xB@b, z), which is a good thing, since in such a case, one cannot express the
rate at which r consumes F without knowing the exact correlation between the binding
states of y, and z.

Proposition 6.7 (right intersection). Let F be a fragment, r = Eℓ, Er be a non-trivial
rule, and X,ψ1, ψ2, γ1, γ2, Y an overlap between F and Er, where X is modified by r.

Consider the right refinement r′ = {r}(Y, γ2) = Y ′, Y

X ′

ψ′

1

��

ψ′

2 // Eℓ //

γ′
2

��

Er

γ2
��

X

ψ1

��

ψ2oo

F ′
γ′
1

// Y ′ Y Fγ1
oo

If Eℓ and Y ′ have the same number of components, then any component in Y ′ is a
subfragment.

Proof. Suppose F ′, the (possibly not connected) antecedent of F in Y ′, intersects some
component C in Eℓ, then it must intersect C on a modified site. To see why, call C ′ a
component of F ′ which intersects C. If F ′ is disconnected, then C ′ must be modified by
the rule, else F would not be connected (which it is, being a fragment); if F ′ is connected,
then C ′ = F ′, and again must be modified, else F = F ′ and X is not modified by the
rule (contrary to what we assume). In both cases, C ′ is modified, which means it must
intersect Eℓ on a modified site. That site must belong to C, else C ′ is connecting C
with another component of Eℓ in Y ′, which contradicts γ′2 preserving the number of
components.

Edges in Y ′ either come from Eℓ or from F , so by (2.i) and by definition of fragments,
they are solid (recall we have assumed that r is non-trivial). Agents in Y ′ come either
from Eℓ, or F , or both (if they are merged in Y). So their sites form subsets of classes
of the aCM: by (1.ii) in the first case; by definition of a fragment in the second case;
and by (1.i) in the third case, since the agent in F contains a docking or a modified
site (by the opening observation). It follows from the definition of fragments, that any
component of Y ′ can be embedded in a fragment.

Props. 6.4 and 6.7 ensure that we can express the concentrations of the fragments
that are produced in terms of the concentrations of the other fragments.

29

Proposition 6.8 (cycles). If a fragment F contains two distinct and compatible binding
types A(aB@b), and B(bA@a), then no rule can delete an a, b bond.

Prop. 6.8 is a reformulation of (2.iii) which avoids a situation where by applying a
rule deleting an a, b bond to an F , one will free a and b in F simultaneously if a, b are
bound together in some concrete state. In this case, to compute the concentration of
fragments produced, one would need to know the proportion of F where a, b are bound
to themselves, an information which one cannot derive from the abstract state.

7 Abstract differential semantics

Using Prop. 6.4-6.8 we can now get to our main and final construction, that of our
abstract/reduced semantics F

♯. Following §3, we want to express, for any fragment F ,
ψ(F(ρ))(F) as a function F

♯ of the ψ(ρ)(Fi) where Fi are also fragments. The existence
of such a function is what we have called the self-consistency of ψ in §2.

From §6.4, ψ(ρ)(Fi) = ρ̃(Fi), and by the “growth” Prop. 6.5, we see that to con-
struct F

♯, it is enough to express ψ(F(ρ))(F) as a function of the concentration ρ̃(C) of
subfragments C.

Consider a rule r = Eℓ, Er, with Êℓ = C1, . . . , Cn, and Ci are components. In §5 we
have computed the contributions of r to F, by enumerating its ground refinements. Let
us review quickly this construction.

7.0.1 Reformulation of the goal

We consider the set r̂ of all triples:

(Ri, φRi
: 1 ≤ i ≤ n), (Pj : 1 ≤ j ≤ m), φP

with φi in [Ci, Ri], each Ri a species in V, P1, . . . , Pm the sequence of species produced
by the application of r along

∑
i φRi

, and φP the corresponding embedding between Er
and P1, . . . , Pm.

The negative and positive contributions of r to the concentration of S ∈ V are then
obtained as the respective sums:

δ−(r)(S) = γ(r) ·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
{k|S=Rk}

∏
i ρ(Ri)

δ+(r)(S) = γ(r) ·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
{k|S=Pk}

∏
i ρ(Ri)

Similarly, we consider the ways in which a fragment F ∈ V♯ can be embedded in a
species occurring (on either side) of a ground refinement of r. Thus, we introduce the
following set of 5-tuples Neg(r, F) (resp. Pos(r, F)):

(Ri, φRi
: 1 ≤ i ≤ n), (Pj : 1 ≤ j ≤ m), φP ∈ r̂,

1 ≤ k ≤ n (resp. 1 ≤ k ≤ m),
φ ∈ [F,Rk] (resp. φ ∈ [F, Pk])

30

F
φ′

Rk

φRk
φ

Ck

Figure 6: Consumption and trivial rules.

From the definition of ψ, it follows that the negative and positive contributions of r to
the concentration of F are given as the respective sums:

ψ(δ−(r))(F) =
γ(r)

|[F, F]|
·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
k,φ∈[F,Rk]

∏
i ρ(Ri)

ψ(δ+(r))(F) =
γ(r)

|[F, F]|
·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
k,φ∈[F,Pk]

∏
i ρ(Ri)

So we can rephrase our goal as that of expressing, for each F , and each r, the difference
ψ(δ+(r))(F)− ψ(δ−(r))(F) in terms of (sub-) fragments.

7.0.2 Mute contributions

Pick t = (Ri, φRi
), (Pj), φP , k, φ in Neg(r, F). We have a co-span φk, φ, Rk (see Fig. 6).

If the image of F by φ is not modified by r, we say that t is mute.
Pick t = (Ri, φRi

), (Pj), φP , k, φ in Pos(r, F). We have a co-span φPk
φ, φP , P1, . . . , Pm

(See Fig. 7), with φPk
the canonical inclusion of Pk into P1, . . . , Pm. If the image of F

by φPk
φ is not modified by r, we say that t is mute.

Negative and positive mute ts are in bijection, thus their contributions cancel pair-
wise. So, we can restrict the sums ψ(δ−(r))(F) and ψ(δ+(r))(F) to proper, ie non-mute,
tuples in Pos(r, F) and consumption ones in Neg(r, F). We write Neg′(r, F) and Pos′(r, F)
for the remaining proper contributions.

It remains to express each of these terms as functions of subfragment concentrations.
Firstly, we deal with soft edges and the two forms of trivial rules, and then with non-
trivial rules.

31

ErF

φP
φPk

P1, . . . , Pm

φ
YPk

γ1 γ2

X

ψ1 ψ2

Figure 7: Production.

7.0.3 Trivial rules

Consider the first form of trivial dissociation (possibly (A, a) = (B, b)):

r = A(a1), B(b1)→ A(a), B(b)

and suppose the edge between a and b is soft.
Pick a term t = (R1, φR1

), (Pj)j , φP , 1, φ in Neg′(r, F). Because t is not mute, and
by Prop. 6.8, F cannot overlap with both A and B, and there is a unique embedding
φ′ between either A(aB@b) or B(bA@a) and F , with φφ′ = φR1

. Conversely, if φ′ is
such an embedding, then φφ′ is in [C1, R1]. Thus, one has a bijection between [C1, R1]
and [A(aB@b), F] ∪ [B(bA@a), F]. Hence, the proper consumption of F is the sum of the
following (constant) terms:

γ(r)

|[F, F]|
·
∑
φ∈[F,R1] ρ(R1) = γ(r) · ρ̃(F)

over φ′ in [A(aB@b), F] ∪ [B(bA@a), F], and therefore, ψ(δ−(r))(F) can indeed be ex-
pressed as a function of fragment concentrations (here F ’s concentration is enough).

Pick now a t in Pos′(r, F). Similarly, by Prop. 6.8, there is a unique embedding φ′

between A(a) or B(b) and F . If we denote by F ′
φ′ the antecedent of F , that is to say

the fragment obtained by setting the binding state of site a to B@b (in the first case) or
that of site b to A@a (in the second case) in the unique agent in the range of φ′, then
the proper production of F is a sum of the following terms:

γ(r)

|[F, F]|
· ρ(F ′

φ′)

over φ′ between [A(a), F] ∪ [B(b), F], and therefore, ψ(δ+(r))(F) can also be expressed
as a function of fragment concentrations.

32

If r is the second form of trivial rule, A(a−) → A(a), one can refine r by finding in
the CM all potential bindings partners B(b). Depending on whether the refining bond is
soft or not, one ends up with a refinement as above, or below where we consider general
rules.

7.0.4 Non-trivial rules (consumption)

Let us split first the sum that expresses the proper consumption of F by r:

γ(r)

|[F, F]|
·
∑

(Ri,φRi
),(Pj),φP∈r̂

∑
k,φ∈[F,Rk]

∏
i ρ(Ri)

according to k, the index of the reactant into which F embeds. Then, we can factor each
summand by noticing that the set r̂ is in bijection with the Cartesian product:

∏
i{(Ri, φRi

) | φRi
∈ [Ci, Ri]}

and also that for a tuple t = (Ri, φRi
), (Pj), φP , k, φ, whether t is mute, only depends on

k, Rk, φRk
, and, of course, the embedding φ in [F,Rk] (Fig. 6).

This yields an equivalent expression for the proper consumption of the form:

γ(r)

|[F, F]|
·
∑
k

∏
i Θ(i, k)

For any i 6= k, Θ(i, k) is the sum of ρ(Ri) for each species Ri ∈ V and each embedding
φi in [Ci, Ri]. This sum is equal to ρ(Ci). By Prop. 6.5, Ci can be embedded into a
fragment, thus, by Prop. 6.4, ρ(Ci) can be expressed as a linear combination of fragment
concentrations.

There remains Θ(k, k). If Ck is not modified by r, we have Θ(k, k) = 0. Otherwise,
Θ(k, k) is the sum of the terms ρ(Rk), over co-spans φRk

, φ, Rk.
As in the first case of trivial rule, we build a bijection between the φRk

s such that
φRk

∈ [Ck, Rk] and the φ′s such that φ′ ∈ [Ck, F] (Fig. 6). By definition of Neg′(r, F),
there exists i, i′ such that φ(i) = φRk

(i′) (with a site in the agent φ(i) modified by r):
this defines an overlap between F and Ck, and by Prop. 6.6, there exists an embedding
φ′ ∈ [Ck, F] with φRk

= φ′φ.
By Cor. 4.5, φ′ is uniquely defined by Rk, F , φ and φRk

. Conversely, given φ and
φ′ such that φ ∈ [F,Rk] and φ′ ∈ [Ck, F], we have φφ′ ∈ [Ck, Rk]. Thus we have the
expected bijection between the φRk

s such that φRk
∈ [Ck, Rk] and the φ′s such that

φ′ ∈ [Ck, F].
As a consequence, Θ(k, k) is equal to the sum of the terms ρ(Rk) for any Rk, φ and

φ′ such that φ ∈ [F,Rk] and φ′ ∈ [Ck, F]. Hence:

Θ(k, k) =
∑
φ′∈[Ck,F]

∑
Rk,φ∈[F,Rk] ρ(Rk)

=
∑
φ′∈[Ck,F] ρ(F)

where the second equation comes by definition of ρ.

33

Putting everything together, and using |[F, F]| · ρ̃(F) = ρ(F), we get that the proper
consumption of F by r is the sum of the following terms:

γ(r) · ρ̃(F)
∏
i6=k ρ(Ci)

over k’s such that the kth component Ck of r is modified by r, and over φ′ in [Ck, F].
Every of these terms can be expressed as a function of fragment concentrations by
Prop. 6.5.

7.0.5 Non-trivial rules (production)

Pick a production tuple:

t = (Ri, φRi
), (Pj), φP , k, φ ∈ Pos′(r, F)

together with the family the canonical injection φPk
from Pk to P1, . . . , Pm, and the

co-span φPk
φ, φP , P1, . . . , Pm.

Since t ∈ Pos′(r, F), there exists i, i′ such that φPk
φ(i) = φP(i′). Thus we have a

unique overlap (up to isomorphism) ω(t) = X,ψ1, ψ2, γ1, γ2, Y between F and Er (see
Fig. 7).

We can partition Pos′(r, F) and split the proper production of F according to the
overlap ω between F and Er (we shall recall that, for counting purposes, we have fixed
a representative in each isomorphism class of overlaps).

This allows us to rewrite the proper production term as a sum over the overlaps ω
between F and Er of the following terms:

Γ(ω) =
γ(r)

|[F, F]|

∑
{t∈Pos

′(r,F)|ω(t)=ω}

∏
i ρ(Ri)

Let us fix the overlap ω = X,ψ1, ψ2, γ1, γ2, Y , and write r′ = E′
ℓ, E

′
r for the right

refinement {r}(Y, γ2) of r along γ2 (§5.1). We also write Ê′
ℓ = C ′

1, . . . , Cn′ as a sequence
of pattern components.

If the number of non-empty connected patterns in Eℓ and in E′
ℓ differ (ie n 6= n′),

there is no corresponding production triple, so Γ(ω) = 0. Likewise, if F does not overlap
with Er on a modified site, Γ(ω) = 0.

Otherwise, by Prop. 5.2, the expression Γ(ω) is equal to the sum of the
∏
i ρ(R

′
i) for

any tuple (R′
i, φR′

i
: 1 ≤ i ≤ n) where for all i, φR′

i
∈ [C ′

i, R
′
i].

Clearly, the set of such tuples is in bijection with the Cartesian product

∏
i{(R

′
i, φR′

i
) | φR′

i
∈ [C ′

i, R
′
i]}

so one has:

Γ(ω) =
γ(r)

|[F, F]|
·
∏

1≤i≤n

∑
φR′

i
∈[C′

i
,R′

i
] ρ(R

′
i)

=
γ(r)

|[F, F]|
·
∏

1≤i≤n ρ(C
′
i)

34

Putting everything together, we get that the proper production of the fragment F is
given by the sum of the expressions:

γ(r)

|[F, F]|

∏
i ρ(C

′
i)

for any overlap X,ψ1, ψ2, γ1, γ2, Y between F and Er (on a modified site), and where C ′
i

is the ith non-empty pattern component of the lhs of the right refinement {r}(Y, γ2). By
Prop. 6.7, the pattern component C ′

i can be embedded into a fragment, so by Prop. 6.4,
all terms above can be expressed as linear combinations of fragment concentrations.

7.0.6 Conclusion of the construction

We have successfully expressed ψ(F(ρ))(F) as the sum over r of the difference ψ(δ+(r))(F)−
ψ(δ−(r))(F), in the sense that in all cases we could write all non-mute contributions in
these terms as polynomial functions of the concentrations of fragments. Thus, we have
obtained a polynomial endoapplication F

♯ on the set of abstract states V♯ → R
+, which

is clearly continuously differentiable, and defines a differential system.

Theorem 7.1 (Fragmentation). The abstraction function ψ (defined in §6.4) and ab-
stract counterpart F

♯ (defined above) form a reduction (as defined in Th. 3.3) of the
differential system F.

Proof. By construction, one has ψ ◦F = F
♯ ◦ψ. Inspecting the polynomial form obtained

for F
♯(ψ(ρ))(F), one sees that production terms are polynomials with positive coeffi-

cients, while consumption ones are opposite of polynomials with positive coefficients,
where in addition one can always factor ρ(F). This implies the existence of the repelling
functions as required in Def. 3.1.

It is easy to verify that in the particular case where one chooses species as fragments
(what we called earlier the trivial aCM), the above derivation gives exactly the concrete
differential semantics.

8 Application

We have implemented a prototype of our framework in Objective Caml [48] (7, 000 lines
of code excluding the front-end and rule simplification). We have tested this prototype
on several examples: a model of the early EGF pathway [3], two models of cross-talk
between the EGF and insulin receptors (the first model, Ins1, is taken from [15, table
7] whereas the second, Ins2, is obtained by removing certain tests in the unbinding rule
for EGF receptors), and a version of our pilot study on a larger section of the EGF

pathway [3, 9, 18,60].
We give, in Fig. 8, the number of rules, the computation time for automatic rule sim-

plification [21], the exact number of dimensions and computation time of the concrete
semantics, and the number of dimensions and computation time of the abstract seman-
tics (which, we recall, is computed directly without precomputing the concrete one).

35

model EGF Ins1 Ins2 SFB

number of rules 39 76 74 69

rule simplication 0.28 0.75 0.78 0.56

concrete semantics
number of species 356 2899 2899 ≈2.1019

ODE computation 2.85 27 27 ∗

abstract semantics
number of fragments 38 208 88 ≈2.105

ODE computation 0.13 0.72 0.28 871

Figure 8: Size and computation time (in seconds) of the concrete and abstract semantics.

Computation time also includes output generation (both for Latex and Octave [57])
that takes roughly half of the computation time. These results have been obtained on
an Intel Centrino Duo, 2G RAM, 2GHz PC and show that our framework can scale to
interesting pathways.

An important factor of reduction comes from the dissection of dimers. In Fig. 5(b),
there are two classes {r , l ,Y48 } {r , l ,Y68 } for the sites of EGFR, and the bond between
the site r and itself is soft. If we assume that p species can connect to the site Y48 of
EGFR, and q species can connect to the site Y68 , there will be roughly 1

2((p+ 1)(q + 1))2

potential dimers, which are abstracted by only (p+ q+2) fragments. In the model Ins1,
the dimerization bond is solid which leads to a less efficient reduction, since one has
roughly 1

2(p+ q)2 fragments for dimers.
In Fig. 9, we show the superposition of the behaviours of the EGF model in one

stochastic simulation [20] and during integration of the abstract semantics. We have
chosen as observables the number of proteins SOS that are attached to a receptor EGFR.
The protein SOS can be attached to the receptor by two ways called the short arm and
the long arm. The two semantics match, although only the correspondence between the
concrete differential semantics and the reduced differential semantics have been explored
in this paper.

9 Conclusion

We have shown a new application for abstract interpretation by using it to reduce the
dimension of the (ordinary) differential semantics of rule-based models and prove that
the trajectories in the reduced system are projections of the trajectories in the concrete
system. In realistic examples this can make a real difference, as models with an inherently
intractable concrete semantics get a much smaller abstract semantics. This means one
can study, eg calibrate those models, using ODE integration which is faster than stochas-
tic simulation. Combined with numerical approximation, our technique should extend
significantly the reach of modelling in the context of large networks, where it is the most
needed. Note also that the abstract/reduced semantics is likely to be more accurately
related to the stochastic one, than the concrete one, as it deals with larger populations of

36

(smaller) objects. This prompts the remark that one should be able to extend the scope
of the method to encompass infinite-dimensional differential semantics [41], for which
the compressed version is nevertheless finite.

There is also scope to design more efficient approximations. To this effect, we could
detect and use symmetries between sites and potentially relax certain hypotheses on
fragments so as to obtain smaller ones. Another interesting avenue for further investi-
gation is that of the relationship between the stochastic and differential semantics in
agent-based models, as the ODE compression of a rule-based system could be shown
directly to approximate its natural stochastic semantics.

The abstraction of the stochastic semantics cannot work directly with our approach
(which was not intended for this) because, in the case of fragments with common sites,
reactions that are applied to these fragments are coupled by the correlation between the
states of sites in these fragments - which is exactly the information that our abstract does
not detect (as discussed in §2). This issue is addressed in Ref. [32], by detecting a notion
of stochastic fragment, different than the one we have used here in the deterministic
case, on the states of which reactions cannot enforce correlations.

Acknowledgment

Jérôme Feret’s contribution was partially supported by the AbstractCell ANR-Chair
of Excellence.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46:611–638,
1999.

[2] C. Bashor, N. Helman, S. Yan, and W. Lim. Using engineered scaffold interactions
to reshape map kinase pathway signaling dynamics. Science, 319(5869):1539, 2008.

[3] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. A network model of
early events in epidermal growth factor receptor signaling that accounts for combi-
natorial complexity. BioSystems, 83:136–151, Jan. 2006.

[4] M. L. Blinov, J. R. Faeder, and W. S. Hlavacek. BioNetGen: software for rule-based
modeling of signal transduction based on the interactions of molecular domains.
Bioinformatics, 20:3289–3292, 2004.

[5] N. M. Borisov, A. S. Chistopolsky, J. R. Faeder, and B. N. Kholodenko. Domain-
oriented reduction of rule-based network models. IET Syst. Biol., 2:342–351, 2008.

[6] N. M. Borisov, N. I. Markevich, B. N. Kholodenko, and E. D. Gilles. Signal-
ing through receptors and scaffolds: Independent interactions reduce combinatorial
complexity. Biophysical Journal, 89:951–966, 2005.

37

Figure 9: Concentration of proteins SOS attached to the membrane in a stochastic sim-
ulation (wiggly curves) and in the (abstract) differential semantics, via the short arm
(upper curve) and the long arm (lower curve). Units (time, concentration) and rule rate
constants are arbitrary.

[7] O. Bouissou and M. Martel. Grklib: a guaranteed Runge Kutta library. In Proc. of
SCAN ’06, page 8. IEEE Computer Society, 2006.

[8] O. Bouissou and M. Martel. Abstract interpretation of the physical inputs of em-
bedded programs. In Proc. of VMCAI’08, volume 4905 of LNCS, pages 37–51.
Springer, 2008.

[9] F. A. Brightman and D. A. Fell. Differential feedback regulation of the MAPK
cascade underlies the quantitative differences in EGF and NGF signalling in PC12
cells. FEBS Letters, 482(3):169–174, October 2000.

[10] R. Cartwright and M. Felleisen. The semantics of program dependence. In Proc. of
PLDI’89, pages 13–27, 1989.

[11] A. Chapoutot. Simulation abstraite : une analyse statique de modèles Simulink.
PhD thesis, École Polytechnique, December 2008.

[12] F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling and
analysis of biological systems. TCS, 410(33-34):3065–3084, 2009.

38

[13] A. Coletta, R. Gori, and F. Levi. Approximating probabilistic behaviors of biological
systems using abstract interpretation. ENTCS, 229(1):165–182, 2009.

[14] H. Conzelmann. Mathematical Modeling of Cellular Signal Transduction Pathways
— A Domain-Oriented Approach to Reduce Combinatorial Complexity. PhD thesis,
Institut für Systemdynamik des Universität Stuttgart, 2008.

[15] H. Conzelmann, D. Fey, and E. D. Gilles. Exact model reduction of combinatorial
reaction networks. BMC Systems Biology, 2:78, 2008.

[16] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. N. Kholodenko, and E. D. Gilles.
A domain-oriented approach to the reduction of combinatorial complexity in signal
transduction networks. BMC Bioinformatics, 7:34, 2006.

[17] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. of
POPL’77, pages 238–252. ACM Press, 1977.

[18] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling
of cellular signalling. In Proc. of CONCUR’07, volume 4703 of LNCS, pages 17–41.
Springer, 2007.

[19] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling
of cellular signalling. CONCUR 2007, pages 17–41, 2007.

[20] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular
signaling networks. In Proc. of APLAS’07, volume 4807 of LNCS, pages 139–157.
Springer, 2007.

[21] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpretation of biological
signalling networks. In Proc. of VMCAI’08, volume 4905 of LNCS, pages 42–58.
Springer, 2008.

[22] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science,
325(1):69–110, 2004.

[23] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science,
325(1):69–110, Sept. 2004.

[24] A. Di Pierro and H. Wiklicky. Probabilistic abstract interpretation and statistical
testing. In Proc. of PAPM-PROBMIV’02, pages 211–212. Springer, 2002.

[25] H. Ehrig and G. Rozenberg. Handbook of graph grammars and computing by graph
transformation: Applications, languages and tools. World Scientific Pub Co Inc,
1999.

[26] J. Faeder, M. Blinov, and W. Hlavacek. Rule-based modeling of biochemical systems
with BioNetGen. Methods Mol. Biol, 500:113–167, 2009.

39

[27] J. Feret. Static analysis of digital filters. In Proc. of ESOP’04, volume 2986 of
LNCS. Springer, 2004.

[28] J. Feret. Analysis of mobile systems by abstract interpretation. PhD thesis, École
Polytechnique, 2005.

[29] J. Feret. Numerical abstract domains for digital filters, 2005. NSAD’05.

[30] J. Feret. Reachability analysis of biological signalling pathways by abstract in-
terpretation. In Proc. of ICCMSE’07. American Institute of Physics conference
proceedings, 2007.

[31] J. Feret, V. Danos, J. Krivine, R. Harmer, and W. Fontana. Internal coarse-graining
of molecular systems. Proc. of the National Academy of Sciences, 106(16):6453–
6458, 2009.

[32] J. Feret, H. Koeppl, and T. Petrov. Stochastic fragments: A framework for the exact
reduction of the stochastic semantics of rule-based models. International Journal
of Software and Informatics, 2010. To appear.

[33] W. Fontana. Systems biology, models, and concurrency. In Proc. of POPL’08, pages
1–2. ACM, 2008.

[34] R. Giacobazzi and I. Mastroeni. Non-standard semantics for program slicing. In Spe-
cial issue on Partial Evalution and Semantics-Based Program Manipulation, pages
297–339, 2003.

[35] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refinements
in abstract model-checking. In Proc. of SAS’01, volume 2126 of LNCS, pages 356–
373. Springer, 2001.

[36] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. Journal of the ACM, 47(2):361–416, 2000.

[37] A. Girard and C. Le Guernic. Efficient reachability analysis for linear systems using
support functions. In Proc. of IFAC’08. IFAC, 2008.

[38] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In Proc. of HSCC’08, volume 4981 of LNCS, pages 215–228,
2008.

[39] R. Gori and F. Levi. A new occurrence counting analysis for bioambients. In Proc. of
APLAS’05, volume 3780 of LNCS, pages 381–400. Springer, 2005.

[40] R. Gori and F. Levi. An analysis for proving temporal properties of biological
systems. In Proc. of APLAS’06, volume 4279 of LNCS, pages 234–252. Springer,
2006.

40

[41] W. L. Hart. The Cauchy-Lipschitz method for infinite systems of differential equa-
tions. American Journal of Mathematics, 43(4):226–231, 1921.

[42] E. L. Ince. Ordinary Differential Equations. Dover Publications, 1956.

[43] C. Kühn, K. Prasad, E. Klipp, and P. Gennemark. Formal Representation of the
High Osmolarity Glycerol Pathway in Yeast. Genome Informatics, pages 22–83,
2010.

[44] T. G. Kurtz. Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability, 7:49–58, 1970.

[45] T. G. Kurtz. Limit theorems for sequences of jump Markov processes approximating
ordinary differential processes. Journal of Applied Probability, 8:244–356, 1971.

[46] S. Lack and P. Sobocinski. Adhesive categories. In Foundations of Software Science
and Computation Structures, pages 273–288. Springer, 2004.

[47] J. Leifer and R. Milner. Deriving Bisimulation Congruences for Reactive Systems.
In Proceedings of the 11th International Conference on Concurrency Theory, pages
243–258. Springer-Verlag, 2000.

[48] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system, documentation and user’s manual (release 3.06). Technical report, INRIA,
Rocquencourt, France, 19 Aug.. 2002.

[49] D. Monniaux. Abstract interpretation of probabilistic semantics. In Proc. of SAS’00,
volume 1824 of LNCS, pages 322–339. Springer Verlag, 2000.

[50] D. Monniaux. An abstract Monte-Carlo method for the analysis of probabilistic
programs (extended abstract). In Proc. of POPL’01, pages 93–101. ACM, 2001.

[51] E. Murphy, V. Danos, J. Feret, R. Harmer, and J. Krivine. Rule based modelling
and model refinement. In H. Lodhi and S. Muggleton, editors, Elements of Com-
putational Systems Biology. Wiley Book Series on Bioinformatics, 2009.

[52] E. Murphy, V. Danos, J. Feret, R. Harmer, and J. Krivine. Rule based modelling
and model refinement. Elements of Computational Systems Biology. Wiley Book
Series on Bioinformatics, 2009.

[53] H. R. Nielson, F. Nielson, and H. Pilegaard. Spatial analysis of bioambients. In
Proc. SAS’04, volume 3148 of LNCS, pages 69–83, 2004.

[54] T. Pawson and P. Nash. Assembly of cell regulatory systems through protein inter-
action domains. Science, 300(5618):445–52, Apr 2003.

[55] S. G. Peisajovich, J. E. Garbarino, P. Wei, and W. A. Lim. Rapid diversifi-
cation of cell signaling phenotypes by modular domain recombination. Science,
328(5976):368–372, Apr 2010.

41

[56] C. Priami and P. Quaglia. Beta binders for biological interactions. Proc. of
CMSB’04, 3082:20–33, 2004.

[57] J. B. Rawlings and J. G. Ekerd. GNU Octave. www.octave.org.

[58] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients:
An abstraction for biological compartments. Theoretical Computer Science, 2003.

[59] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of bio-
chemical processes using the π-calculus process algebra. In Proc. of the Pacific
Symposium of Biocomputing, pages 6:459–470, 2001.

[60] B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, and G. Müller. Computational model-
ing of the dynamics of the MAP kinase cascade activated by surface and internalized
EGF receptors. Nat Biotechnol, 20(4):370–375, April 2002.

[61] B. Yeh, R. Rutigliano, A. Deb, D. Bar-Sagi, and W. Lim. Rewiring cellular mor-
phology pathways with synthetic guanine nucleotide exchange factors. Nature,
447(7144):596–600, 2007.

42

