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Convergence and decay estimates for a class of second order dissipative equations involving a non-negative potential energy

We estimate the rate of decay of the difference between a solution and its limiting equilibrium for the following abstract second order problem

where M is the gradient operator of a non-negative functional and g is a nonlinear damping operator, under some conditions relating the Lojasiewicz exponent of the functional and the growth of the damping around the origin.

Introduction

The convergence problem for bounded solutions of semilinear dissipative wave equation has been the object of many specialized works in the last 30 years. Assuming Ω to be a bounded open connected domain of R N , a convergence result has been shown in [START_REF] Haraux | Asymptotics for some nonlinear hyperbolic equations with a one-dimensional set of rest points[END_REF] for the problem

u tt + cu t -∆u + f (u) = 0 in R + × Ω, u(t, x) = 0 on R + × ∂Ω (1.1)
when the function s → f (s) + λ 1 s is non-decreasing, relying on the fact that the set of equilibria is then one-dimensional. This result was established under a growth assumption on f and assuming precompactness of the solution curve (u(t, .), u t (t, .)in the energy space.

A first generalization allowing some types of nonlinear dampings was done by E. Zuazua in [START_REF] Zuazua | Stability and decay for a class of nonlinear hyperbolic problems[END_REF]. A much more general theory dealing with one-dimensional sets of equilibria was developped later by J. Hale and G. Raugel [START_REF] Hale | Convergence in gradient-like systems with applications to PDE[END_REF]. The hypothesis on the dimension of the equilibrium set can be relaxed if f is analytic, and general convergence results as well as rates of convergencence were proved in this direction by M.A. Jendoubi and the second author, c.f. [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF][START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF][START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF] by using the Lojasiewiz gradient inequality , cf. [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels, Colloques internationaux du C.N.R.S.: Les équations aux dérivées partielles[END_REF][START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF]. The case of a genuinely nonlinear damping seems to be more delicate. As a basic example, a convergence result for bounded solutions of the problem

     u tt + |u t | α u t -∆u + f (u) = 0, in R + × Ω, u(t) = 0, on R + × ∂Ω, u(0, •) = u 0 ∈ H 1 0 (Ω), u t (0, •) = u 1 ∈ L 2 (Ω), (1.2) 
has been proved by L. Chergui in [START_REF] Chergui | Convergence of global and bounded solutions of the wave equation with nonlinear dissipation and analytic nonlinearity[END_REF] assuming 0 < α < 1 and the following conditions f : R → R is analytic, (1.3) there exists C ≥ 0 and η > 0 whith (N -2)η < 2 such that :

if N ≥ 2 then we have |f ′ (s)| ≤ C(1 + |s| η ) on R.

(

1.4)

There exists θ ∈ α α+1 , 1 2 and C > 0 such that for all ϕ in the equilibrium set Σ = {ψ ∈ H 2 (Ω) ∩ H 1 0 (Ω) and ∆ψ = f (ψ)} there is σ ϕ such that for every u ∈ H 1 0 (Ω) one has

u -ϕ H 1 0 (Ω) < σ ϕ =⇒ ∆u + f (u) H -1 (Ω) ≥ C|E(u) -E(ϕ)| 1-θ .
(1.5) However L. Chergui did not obtain any estimate of the rate of convergence.

In this paper we shall obtain such an estimate for a class of equations which contains (1.2) when f satisfies some additional assumptions. The plan of the paper is as follows: In Section 2 we state and prove our main result. In Section 3 we give simple applications of this result. In Section 4 we show how to check the hypotheses for a more general class of nonlinear operators. Section 5 contains the convergence and decay results in the more elaborate examples related to the results of Section 4. Section 6 is devoted to the case where a rapidly decaying source term appears in the right-hand side of the equation.

Main result 2.1 Functional setting

Throughout this article we let H and V be two Hilbert spaces. We assume that V is densely and continuously embedded into H. Identifying H with its dual H ′ , we obtain V ֒→ H = H ′ ֒→ V ′ . We denote by •, • scalar products and duality relations; the spaces in question will be specified by subscripts. The notation f, u without any subscript will be used sometimes to denote f, u V ′ ,V . Throughout the text , we let C 1 ≥ 0 be such that

v V ′ ≤ C 1 v H ≤ C 2 1 v V , v ∈ V. (2.1) 
Other constants in the calculations will be denoted by

C i (i ≥ 2). Let E ∈ C 2 (V, R), and denote by M ∈ C 1 (V, V ′ ) the first derivative of E.
Throughout the text we shall assume that E and M are bounded on bounded sets of V with values to V and V ′ respectively. We study the following abstract Cauchy problem :

     ü(t) + g( u(t)) + M(u(t)) = 0, t ≥ 0, u(0) = u 0 , u 0 ∈ V, u(0) = u 1 , u 1 ∈ H, (2.2) 
under the following assumptions on g and M : 1) g : H → V ′ is such that there exists α ∈]0, 1[, ρ 1 > 0 and ρ 2 > 0 for which

∀v ∈ V, g(v), v V ′ ,V ≥ ρ 1 v α+2 H , (2.3 
)

∀v ∈ H, g(v) V ′ ≤ ρ 2 v α+1 H . (2.

4)

2) There exists a real number θ such that

θ ∈ α α + 1 , 1 2 , (2.5) 
and some constants c 1 > 0, c 2 > 0 and a bounded subset B of V such that the function E is nonnegative on B and satisfies the following assumption

∀u ∈ B, c 1 E(u) γ ≥ M(u) V ′ ≥ c 2 E(u) 1-θ (2.6)
where γ > 0 is such that :

1 2 -α(1 -θ) ≤ γ ≤ 1 -θ. (2.7)

The result

The main result of this paper is

Theorem 2.1 Let u ∈ W 1,1 loc (R + , V ) W 2,1 loc (R + , H) be a solution of (2.
2) such that u(t) ∈ B for t large where B denotes a closed subset of V . Assume that the hypotheses (2.3), (2.4) and (2.6) are satisfied. Assume in addition that there exists a constant C ≥ 0 such that for u ∈ B, the following inequality holds :

∀v ∈ V, | M ′ (u)v, v V ′ | ≤ C v 2 H . (2.8)
Let θ be as in (2.5) and (2.6). Let us introduce

ξ = 1 -(α + 1)(1 -θ) (α + 2)(1 -θ) -1 ; λ = 1 (α + 2)(1 -θ) -1 .
Then there exist a ∈ B and a constant C > 0 such that

∀t ≥ T, u(t) -a H ≤ Ct -ξ (2.9)
Moreover there are positive constants

M 1 , M 2 such that ∀t ≥ T, u(t) H ≤ M 1 t -λ 2 (2.10) ∀t ≥ T, E(u(t)) ≤ M 2 t -λ (2.11)
Finally, if either u has precompact range in V , or M : B → V ′ is weakly continuous for the topology of V , we have

a ∈ E := {y ∈ V, M(y) = 0} Remarks 2.2 1) Let us observe that in the case V = H = R N , g(v) = v α v and M(u(t)) = ∇F (u(t)), L. Chergui [3] studied the differential system ü(t) + u(t) α u(t) + ∇F (u(t)) = 0, t ∈ R + .
(2.12)

He proved a convergence result for bounded solutions of (2.12) and he obtained the rate of decay given in Theorem 2.1.

2) The hypothesis (2.6) implies that any equilibrium point a ∈ B satisfies E(a) = 0. Hence the minimum of E on B is achieved on equilibrium points. In particular, if either u has precompact range in V , or M : B → V ′ is weakly continuous for the topology of V , the existence of a region B with the above mentioned properties implies the not so trivial conclusion that the minimum of E on B is achieved and equal to 0 .

Proof of Theorem 2.1

Let u be a solution of equation ( 2.2) such that u ∈ W 1,1 loc (R + , V ) W 2,1 loc (R + , H) and let T > 0 be such that u(t) ∈ B for t ≥ T . Let us define the nonnegative function

E(t) = 1 2 u(t) 2 H + E(u(t)).
Then we have

E ′ (t) = -u(t), g( u(t)) V,V ′ ≤ 0
Therefore E, being nonicreasing and nonnegative, remains bounded. In particular u(t) is bounded in H. Now let 0 < ε ≤ 1 be a real constant. We define the function

H(t) = E(t) + εE(t) β M(u(t)), u(t) V ′ ,
where β = α(1θ), θ is the Lojasiewicz exponent defined in (2.6).

Our bounded solution u being fixed, we can choose ε small enough in order to achieve

E(t) 2 ≤ H(t) ≤ 2E(t)
, for all t ≥ T.

(2.13)

In fact thanks to the definition of H together with assumption (2.6) we have for all t ≥ T

H(t) = E(t) + εE(t) β M(u(t)), u(t) V ′ ≤ E(t) + εE(t) β M(u(t)) V ′ u(t) V ′ ≤ E(t) + εC 1 c √ 2E(t) α(1-θ)+γ+ 1 2 .
Now, since E is bounded, it follows thanks to (2.7) that E(t) α(1-θ)+γ+ 1 2 ≤ KE(t), for all t ≥ T, where K is a positive constant. Then by choosing ε small enough we get H(t) ≤ 2E(t). The reverse inequality follows similarly .

We now compute

H ′ (t) = E ′ (t) + εβE ′ (t)E(t) β-1 M(u(t)), u(t) V ′ + εE(t) β M ′ (u(t)) u(t), u(t) V ′ -εE(t) β M(u(t)), g( u(t)) V ′ -εE(t) β M(u(t)) 2 V ′ .
Then we get

H ′ (t) = -u(t), g( u(t)) V,V ′ -εβ u(t), g( u(t)) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ +εE(t) β M ′ (u(t)) u(t), u(t) V ′ -εE(t) β M(u(t)), g( u(t)) V ′ -εE(t) β M(u(t)) 2 V ′ .
By using (2.3), u(t), g( u(t)) V,V ′ is nonnegative and then we get thanks to the definition of E together with assumption (2.6)

-u(t), g( u(t)) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ C 2 u(t), g( u(t)) V,V ′ E(t) β-1 E(u) γ E(t) 1 2 ≤ C 2 u(t), g( u(t)) V,V ′ E(t) β+γ-1 2 = C 2 u(t), g( u(t)) V,V ′ E(t) α(1-θ)+γ-1 2 .
Thanks to the last inequality together with assumption (2.7) and since E is bounded we obtain

-u(t), g( u(t)) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ C 3 u(t), g( u(t)) V,V ′ . (2.14) 
Thanks to assumption (2.8) and since E ≥ 0, by applying Young's inequality we get for all t ≥ T large enough

εE(t) β M ′ (u(t)) u(t), u(t) V ′ ≤ εC 4 E(t) β u(t) 2 H ≤ ε 4 E(t) β (α+2) α + εC 5 u(t) α+2 H .
Now by using the definition of E and β we obtain

εE(t) β M ′ (u(t)) u(t), u(t) V ′ ≤ ε 4 E(t) (1-θ)(α+2) + εC 5 u(t) α+2 H ≤ ε 4 u(t) 2(1-θ)(α+2) H + E(u) (1-θ)(α+2) + εC 5 u(t) α+2 H .
Since u is bounded we get

εE(t) β M ′ (u(t)) u(t), u(t) V ′ ≤ εC 6 u(t) α+2 H + ε 4 E(u) α(1-θ) E(u) 2(1-θ) .
Thanks to assumption (2.6) we get

εE(t) β M ′ (u(t)) u(t), u(t) V ′ ≤ εC 6 u(t) α+2 H + ε 4 E(u) α(1-θ) M(u(t)) 2 V ′ ≤ εC 6 u(t) α+2 H + ε 4 E(t) α(1-θ) M(u(t)) 2 V ′ .
Therefore we have for all t ≥ T εE(t

) β M ′ (u(t)) u(t), u(t) V ′ ≤ εC 6 u(t) α+2 H + ε 4 E(t) β M(u(t)) 2 V ′ . (2.15)
We have thanks to Cauchy Schwarz inequality together with assumption (2.4)

εE(t) β M(u(t)), g( u(t)) V ′ ≤ ερ 2 E(t) β M(u(t)) V ′ u(t) α+1 H . Let C 7 = 1 + sup R + M(u(t)) V ′
, by using Young's inequality there exists

C 8 ≥ 0 such that ε M(u(t)) V ′ u(t) α+1 H ≤ ε 1 -α 4(1 + α)C α 7 M(u(t)) α+2 V ′ + εC 8 u(t) α+2 H .
Then since E is bounded we obtain for all t ≥ T εE(t 

) β M(u(t)), g( u(t)) V ′ ≤ ε 4 E(t) β M(u(t)) 2 V ′ + εC 9 u(t) α+2 H . ( 2 
′ (t) ≤ -C 10 u(t) α+2 H + E(t) β M(u(t)) 2 V ′ .
(2.17)

Now by using the last inequality together with assumption (2.6) and the definition of E we get

-H ′ (t) ≥ C 10 ( u(t) α+2 H + E(u) (α+2)(1-θ) ) ≥ C 10 E(u) (α+2)(1-θ) ≥ C 10 (E(t) - 1 2 u(t) 2 H ) (α+2)(1-θ) ≥ C 11 E(t) (α+2)(1-θ) -C 12 u(t) 2(α+2)(1-θ) H ≥ C 11 E(t) (α+2)(1-θ) -C 13 u(t) α+2 H ≥ C 11 E(t) (α+2)(1-θ) + C 14 H ′ (t).
Then we obtain .

-C 15 H ′ (t) ≥ E(t) (α+2)(1-θ) . ( 2 

Therefore we get for all

t ≥ T 2t t u(s) H ds ≤ C 18 t -λ α+2 t α+1 α+2 = C 18 t -ξ , where ξ = 1-(α+1)(1-θ) (α+2)(1-θ)-1 .
Then we obtain for all t ≥ T

∞ t u(s) H ds ≤ ∞ k=0 2 k+1 t 2 k t u(s) H ds ≤ C 19 ∞ k=0 (2 k t) -ξ ≤ C 19 t -ξ .
In particular, u ∈ L 1 (T, ∞, H). Hence, u(t) has a limit a in H as t → ∞ and

u(t) -a H ≤ Ct -ξ .
The other estimates follow rather easily from (2.19) and (2.13). Then by (2.6), we see that M(u(t)) tends to 0 as t → ∞ and the last conclusion follows immediately.

Direct applications

In this section we apply our main result to various simple example in order to test the sharpness of the estimates given by that theorem.

A second order ODE

As a first application of the abstract theorem 2.1 let us consider the following second order ODE :

u ′′ + |u ′ | α u ′ + f (u) = 0, (3.1) 
where α ∈ (0, 1) and f is such that for some reals a, b with a ≤ b

f (s) = m(s)[(s -b) + -(s -a) -] where m ∈ W 1,∞ loc (R), and inf s∈R m(s) > 0 (3.2)
For this example it suffices to choose V = R, then conditions (2.6) and (2.7) are verified with

θ = γ = 1 2
for any compact interval B of R. The assumptions (2.3) and (2.4) are clearly true for equation (3.1). As a consequence of (3.2) it is easy to see that all solutions of (3.1) are bounded and globally Lipschitz on R + . By applying theorem 2.1 we prove that there exists

c ∈ R such that |u(t) -c| ≤ Ct -1 α +1 , where C is a positive constant. Clearly c ∈ [a, b].
This result is optimal.

A critical semilinear wave equation

In what follows, Ω is a bounded connected open subset of R N . As a second application of the abstract theorem 2.1, we let

V = H 1 0 (Ω), H := L 2 (Ω), M(u) = -∆u -λ 1 u + |u| p-1 u, where λ 1 is the first eigenvalue of -∆ and p > 1 satisfies (N -2)p < N + 2, E(u) = 1 2 Ω (|∇u| 2 -λ 1 |u| 2 ) dx + 1 p + 1 Ω |u| p+1 dx
and we consider the following system

u tt + g(u t ) -∆u -λ 1 u + |u| p-1 u = 0, in R + × Ω, u(t, x) = 0, on R + × ∂Ω, (3.3) 
where g : H → V ′ satisfies (2.3)-(2.4) with 0 < α < 1 p . It has been established in [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF] that under the above conditions, E ∈ C 2 (V, V ′ ) and (2.8) is fulfilled. In order to apply our main result to this example the main assumption remaining to be checked is therefore assumption (2.6). Now it has been proved in [START_REF] Haraux | Rate of decay to equilibrium in some semilinear parabolic equations[END_REF] that for u small enough in V

M(u) H -1 ≥ c 1 (E(u)) 1-θ , where θ = 1 p + 1 .
This result suffices to study the asymptotics of solutions knowing in advance that they converge to 0 in V. Actually a refinement of the method of [START_REF] Haraux | Rate of decay to equilibrium in some semilinear parabolic equations[END_REF] allows to verify that for any R > 0 , there is c 1 (R) > 0 for which

∀u ∈ V, u V ≤ R ⇒ M(u) H -1 ≥ c 1 (R)(E(u)) p p+1
For the proof, see Section 4, Corollary 4.2 and Remark 4.3, 2). On the other hand it is not difficult to check that (2.6) holds true on any bounded subset of

V with γ = 1 2 . Indeed M(u) H -1 ≤ -∆u -λ 1 u H -1 + |u| p-1 u H -1 .
We infer

-∆u -λ 1 u H -1 ≤ (2E(u)) 1 2 Indeed ∀v ∈ V, -∆u -λ 1 u, v = Ω (∇u.∇v -λ 1 uv)dx
By Cauchy-Schwarz inequality we deduce

∀v ∈ V, -∆u -λ 1 u, v ≤ ( Ω ( ∇u 2 -λ 1 |u| 2 )dx) 1 2 ( Ω ( ∇v 2 -λ 1 |v| 2 )dx) 1 2 ≤ ( Ω ( ∇u 2 -λ 1 |u| 2 )dx) 1 2 v V
And the result follows. Now, if N ≤ 2 the estimate of the nonlinear part is obvious, while if

N > 2 since p < N + 2 N -2 then we have p p + 1 < 1 2 + 1 N = 1 (2 * ) ′ . So we obtain |u| p-1 u L (2 * ) ′ ≤ c 2 |u| p-1 u L p+1 p ≤ c 3 (E(u)) p p+1 .
Then we get

|u| p-1 u H -1 ≤ c 4 (E(u)) p p+1 .
In order to apply Theorem 2.1 we first observe that

∀u ∈ V, E(u) = 1 2 Ω (|∇u| 2 -λ 1 |u| 2 ) dx + 1 p + 1 Ω |u| p+1 dx ≥ 1 2 Ω |∇u| 2 dx -M
for some positive constant M (the proof for p = 1 is just slightly more delicate), and as a consequence of the fact that E(t) is non-increasing we deduce that any solution u is such that u(t) remains bounded in V .

Then we compute

ξ = 1 -(α + 1)(1 -θ) (α + 2)(1 -θ) -1 = 1 -αp (α + 1)p -1 ; λ = 1 (α + 2)(1 -θ) -1 = p + 1 (α + 1)p -1 .
Applying (2.9) we obtain

|(u(t) -a)| ≤ Ct -1-αp (α+1)p-1
for some a which will turn out to be 0 by the last part of the Theorem. On the other hand, since (cf. Proposition 4.1, formula (4.6)) for some η > 0 we have

E(u) ≥ η u p+1 V , applying (2.11) we find u(t) V ≤ M t -1 (α+1)p-1
which is always sharper. This shows that it is sometimes preferable to apply directly the energy estimate rather than (2.9).

A semilinear wave equation with Neumann boundary conditions

As a third application of the abstract theorem 2.1, we let

V = H 1 (Ω), H = L 2 (Ω), M(u) = -∆u + |u| p-1 u, where 1 ≤ p < N +2 N -2 , E(u) = 1 2 Ω |∇u| 2 dx + 1 p + 1 Ω |u| p+1 dx
and we consider the following system

u tt + g(u t ) -∆u + |u| p-1 u = 0, in R + × Ω, ∂u ∂n = 0 on R + × ∂Ω, (3.4) 
where g : H → V ′ satisfies (2.3)-(2.4) with 0 < α < 1 p . As in the previous example the results of [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF] show that under the above conditions, E ∈ C 2 (V, V ′ ) and (2.8) is fulfilled. The main assumption to be checked is again assumption (2.6). It is rather easy to verify that for any R > 0 , there is c 1 (R) > 0 for which

∀u ∈ V, u V ≤ R ⇒ M(u) H -1 ≥ c 1 (R)(E(u)) p p+1
For the proof, see Section 4, Corollary 4.4 and Remark 4.5, 2). Moreover it is not difficult to check that (2.6) holds true on any bounded subset of V with γ = 1 2 . Indeed

M(u) V ′ ≤ -∆u V ′ + |u| p-1 u V ′ .
We infer

-∆u V ′ ≤ (2E(u)) 1 2 Indeed ∀v ∈ V, -∆u, v = Ω ∇u.∇vdx
By Cauchy-Schwarz inequality we deduce

∀v ∈ V, -∆u, v ≤ ( Ω ∇u 2 dx) 1 2 ( Ω ∇v 2 dx) 1 2 ≤ ( Ω ∇u 2 dx) 1 2 v V
And the result follows. Then by the same method as in the Dirichlet case we obtain easily

|u| p-1 u V ′ ≤ c 4 (E(u)) p p+1 .
In order to apply Theorem 2.1 we first observe that

∀u ∈ V, E(u) = 1 2 Ω |∇u| 2 dx + 1 p + 1 Ω |u| p+1 dx ≥ δ Ω |∇u| 2 + u 2 dx -M
for some constants M ≥ 0, δ > 0 , and as a consequence of the fact that E(t) is non-increasing we deduce that any solution u is such that u(t) remains bounded in V .

By applying Theorem 2.1 and using Proposition 4.1, formula (4.6), we obtain exactly the same estimates as in the previous example. In particular we find

u(t) V ≤ M t -1 (α+1)p-1
The degree of sharpness of this estimate is not clear, cf. remark 3.4 .

Examples of damping operators and convergence of weak solutions

In the examples of both paragraphs 3.2 and 3. 

∃K > 0, γ ′ (s) ≥ -K, a.e. on R
Assume that γ satisfies the following conditions

∀s ∈ R, γ(s)s ≥ ρ 1 |s| α+2 (C 1 ) ∀s ∈ R, |γ(s)| ≤ ρ 2 |s| α+1 (C 2 )
The typical case is

γ(s) = γ 1 (s + ) α+1 -γ 2 (s -) α+1
By setting g(v)(x) = γ(v(x)) a.e. on Ω we define an operator g :

H → V ′ with V = H 1 (Ω) (resp V = H 1 0 (Ω)) for any α ∈ [0, 1] if N ≤ 2 and for any α ∈ [0, 2 N ] if N ≥ 3.
In addition in such a case g satisfies automatically (2.3)-(2.4).

Example 3.2 Let m be a locally Lipschitz function such that

∀s ∈ R + , σ 1 s α ≤ m(s) ≤ σ 2 s α (M ) and ∃K > 0, m ′ (s) ≥ -K, a.e. on R By setting g(v)(x) = m( v H )(v(x)) a.e. on Ω
we define an operator g :

H → H ⊂ V ′ with V = H 1 (Ω) (resp V = H 1 0 (Ω))
for any α > 0. In addition in such a case g satisfies automatically (2.3)-(2.4).

By applying the results of [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF], It is rather straightforward to see that for any g satisfying the conditions of Example 3.1,the initial value problems associated to both equations (3.3) and (3.4) are well-posed for any initial state in V × H. In addition, for initial data in D(A) × V , the solution has the regularity required for the applicability of Theorem 2.1. In addition the solution depends continuously on the initial state as a map from V × H to C([0, T, V ] ∩ C 1 ([0, T, H] for any T > 0. A careful inspection of the results from [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF] shows that exactly the same property can be deduced for the same quation when g has the non-local form described in Example 3.2.

By combining these properties with the results previously obtained, we obtain Corollary 3.3 For any g satisfying the conditions of Example 3.1 or Example 3.2 , for any (u 0 , u 1 ) ∈ V × H there is a unique weak global solution u of (3.3) (resp (3.4)) in the sense of [START_REF] Haraux | Semi-linear hyperbolic problems in bounded domains[END_REF] which satisfies u(0, .) = u 0 and u t (0, .) = u 1 . In addition if we assume α < 1 p and in the case of Example 3.1, for N > 2, the additional condition α ≤ 2

N , then we have, for some constants M, M ′ > 0

∀t ≥ 1, u(t, .) V ≤ M t -1 (α+1)p-1 and ∀t ≥ 1, u t (t, .) H ≤ M ′ t -p+1 2[(α+1)p-1]
Proof. For a strong solution, the result is a direct consequence of the fact that g satisfies (2.3)-(2.4). Moreover it follows obviously from our method of proof that the estimates on u and u t are uniform when the initial data (u 0 , u 1 ) remain bounded in V × H. Then the result in the general case follows by density.

Remark 3.4

The Neumann case contains in particular the case of the ODE u ′′ + g(u ′ ) + |u| p-1 u = 0 which was studied in [START_REF] Haraux | Sharp decay estimates of the solutions to a class of nonlinear second order ODE[END_REF]. It is not difficult to see that the rate of decay given by Corollary 3.3 for g(s) := |s| α s is optimal for space-independant solutions only if p = 1.

4 A gradient inequality for some non analytic functionals.

In this section we shall find the optimal Lojasiewicz exponent for a class of nonnegative potentials associated to semi-linear PDE problems. In what follows, Ω is a bounded connected open subset of R N .

A general class of possibly non-analytic functionals. Application to various operators and boundary conditions

In this paragraph, V is a Hilbert space continuously imbedded in

H = L 2 (Ω), A ∈ L(V, V ′ ) is symmetric, such that ∀u ∈ V, Au, u ≥ 0 (4.1)
and we set

M(u) = Au + f (u)
where f : V → V ′ is the gradient of a functional F ∈ C 1 (V ). The energy functional is

E(u) = 1 2 Au, u + F(u)
We assume that N = ker A is finite dimensional and we denote by P : H → N the orthogonal projection on N in H.

Proposition 4.1 Under the following hypotheses

∃η > 0, ∀v ∈ V ∩ N ⊥ , Av, v ≥ η v 2 V (4.2) ∃µ > 0, ∀u ∈ V, f (u), u ≥ µF(u) (4.3) 
For any R > 0 there is a constant

M (R) such that ∀u ∈ V, u V ≤ R =⇒ u r+1 H ≤ M (R)F(u) (4.4)
Then for any R > 0 1) there is a constant

C(R) such that ∀u ∈ V, u V ≤ R =⇒ (E(u)) r r+1 ≤ C(R) M(u) V ′ (4.5)
2) there is a constant

P (R) such that ∀u ∈ V, u V ≤ R ≤ R =⇒ u r+1 V ≤ P (R)E(u) (4.6)
Proof. We have

∀u ∈ V, Mu, u = A(u -P u), u -P u + f (u), u ≥ η u -P u 2 V + µF(u) On the other hand ∀u ∈ V, u V ≤ u -P u V + P u V ≤ u -P u V + C 1 P u H ∀u ∈ V, u V ≤ R =⇒ u V ≤ u -P u V + C 2 (R)F(u) 1 r+1 Hence ∀u ∈ V, u V ≤ R =⇒ u V ≤ C 3 (R)( u -P u 2 r+1 V + F(u) 1 r+1
) which implies by using the inequality a + b ≤ 2(a q + b q ) 1/q applied with q = r + 1

∀u ∈ V, u V ≤ R =⇒ u V ≤ 2C 3 (R)( u -P u 2 V + F(u)) 1 r+1
Therefore (4.6) is proved and moreover

∀u ∈ V, u V ≤ R =⇒ η u -P u 2 V + µF(u) ≤ Mu, u ≤ 2C 3 (R)( u -P u 2 V + F(u)) 1 r+1 Mu V ′
Then (4.5) becomes an immediate consequence of the simple inequality

Au, u = A(u -P u), u -P u ≤ A L(V,V ′ ) u -P u 2 V
We now state 3 simple applications of Proposition 4.1

1) The Dirichlet case. Let V = H 1 0 (Ω), H := L 2 (Ω). We consider

M(u) = -∆u -λ 1 u + c 1 (u + ) p -c 2 (u -) q
where λ 1 is the first eigenvalue of -∆ and c 1 , c 2 > 0, 1 ≤ inf{p, q} and either N ≤ 2, or sup{p, q} < N +2 N -2 . The energy is given by

E(u) = 1 2 Ω (|∇u| 2 -λ 1 |u| 2 ) dx + c 1 p + 1 Ω (u + ) p+1 dx + c 2 q + 1 Ω (u -) q+1 dx
Corollary 4.2 Under the above conditions, we have (4.5) with r = sup{p, q}.

Proof. We set

Au = -∆u -λ 1 u; f (u) = c 1 (u + ) p -c 2 (u -) q
and F(u) :

c 1 p + 1 Ω (u + ) p+1 dx + c 2 q + 1 Ω (u -) q+1 dx
Then under the assumptions on p, q, f is a continuous map from V to V ′ and it is in fact the gradient of F. In addition (4.3) is fulfilled with µ = 1 + inf{p, q} ≥ 2 and we also have clearly, using the positive character of both c 1 and c 2

u + p+1 H ≤ K 1 F(u)
and u -q+1 H ≤ K 2 F(u) By addition we find

u + r+1 H + u -r+1 H ≤ K 1 F(u) u r-p H + K 2 F(u) u r-q H ≤ KF(u)( u r-p H + u r-q H )
and (4.4) follows easily. Finally we observe that since Ω is connected, N is one dimensional and to check (4.2), introducing the second eigenvalue λ 2 of -∆ on V we find

∀v ∈ V ∩ N ⊥ , Av, v ≥ λ 2 v 2 H
In addition by definition of the norm in V we have

∀v ∈ V, v 2 V = Av, v + λ 1 v 2 H Hence ∀v ∈ V ∩ N ⊥ , v 2 V ≤ Av, v + λ 1 λ 2 Av, v = (1 + λ 1 λ 2 ) Av, v which gives (4.2) with η = λ 2 λ 1 + λ 2
. Therefore all conditions of Proposition 4.1 are fulfilled and the result follows Remarks 4.3 1) If p = q or c 1 = c 2 , the functional is not analytic since even its restriction to the subspace of multiples of the first eigenfunction is not analytic.

2) If p = q and c 1 = c 2 we recover the example of Section 3.2.

2) The Neuman case. Let V = H 1 (Ω), H := L 2 (Ω) . We consider

M(u) = -∆u + c 1 (u + ) p -c 2 (u -) q
where and c 1 , c 2 > 0, 1 ≤ inf{p, q} and either N ≤ 2, or sup{p, q} < N +2 N -2 . The energy is given by

E(u) = 1 2 Ω (|∇u| 2 dx + c 1 p + 1 Ω (u + ) p+1 dx + c 2 q + 1 Ω (u -) q+1 dx
Corollary 4.4 Under the above conditions, we have (4.5) with r = sup{p, q}.

Proof. We set

Au = -∆u; f (u) = c 1 (u + ) p -c 2 (u -) q and F(u) : c 1 p + 1 Ω (u + ) p+1 dx + c 2 q + 1 Ω (u -) q+1 dx
The properties of f and F are similar to the previous example. Since Ω is connected, N is one dimensional, being reduced to constant functions and and to check (4.2), introducing the second eigenvalue λ 2 of -∆ on V we find

∀v ∈ V ∩ N ⊥ , Av, v ≥ λ 2 v 2 H
In addition by definition of the norm in V we have here

∀v ∈ V, v 2 V = Av, v + v 2 H Hence ∀v ∈ V ∩ N ⊥ , v 2 V ≤ Av, v + 1 λ 2 Av, v = (1 + 1 λ 2 ) Av, v which gives (4.2) with η = λ 2 1 + λ 2
. Therefore all conditions of Proposition 4.1 are fulfilled and the result follows Remarks 4.5 1) If p = q or c 1 = c 2 , the functional is not analytic since even its restriction to the subspace of multiples of the first eigenfunction is not analytic.

2) If p = q and c 1 = c 2 we recover the example of Section 3.3.

3) A fourth order operator. Let V = H 2 0 (Ω) , H = L 2 (Ω) and let λ 1 denote here the first eigenvalue of ∆ 2 on H 2 0 (Ω).We assume c 1 > 0, c 2 > 0 and p, q > 1 with (N -4) sup{p, q} < N + 4

We consider

M(u) = ∆ 2 u -λ 1 u + c 1 (u + ) p -c 2 (u -) q
The energy is given by

E(u) = 1 2 Ω (|∆u| 2 -λ 1 |u| 2 ) dx + c 1 p + 1 Ω (u + ) p+1 dx + c 2 q + 1 Ω (u -) q+1 dx
Corollary 4.6 Under the above conditions, we have (4.5) with r = sup{p, q}.

Proof. We set

Au = ∆ 2 u -λ 1 u; f (u) = c 1 (u + ) p -c 2 (u -) q
and F(u) :

c 1 p + 1 Ω (u + ) p+1 dx + c 2 q + 1 Ω (u -) q+1 dx
Then under the assumptions on p, q, f is a continuous map from V to V ′ and it is in fact the gradient of F. The rest of the proof is identical to the proof of Corollary 4.4

Multiple equilibria under Neumann boundary conditions

In this paragraph we let V = H 1 (Ω), H = L 2 (Ω), and we set

M(u) = -∆u + f (u) E(u) = 1 2 Ω |∇u| 2 dx + Ω F (u(x)) dx
The hypotheses that we shall make on f will imply that the energy functional is bounded from below since it will be the case for any primitive of f . We shall choose for F the primitive with minimum equal to 0.

More specifically, let us define for some reals a, b with a ≤ b

∀s ∈ R, ρ(s) = (s -b) + -(s -a) - Let p > 1 be such that (N -2)p < N + 2 in order that V ⊂ L p+1 (Ω) We assume that f ∈ W 1,∞ loc (R) with f = 0 on [a, b] and for some c > 0 ∀s ∈ R, f (s)ρ(s) ≥ c|ρ(s)| p+1 (4.7) 
We define then

F (s) := s a f (u)du
In particular F = 0 on [a, b] and it follows clearly from (4.7) that F satisfies

∀s ∈ R, F (s) ≥ c p + 1 |ρ(s)| p+1
We assume that F satisfies for some C > 0 the upper bound

∀s ∈ R, F (s) ≤ C|ρ(s)| p+1 (4.8) 
Proposition 4.7 Under the conditions (4.7), (4.8), for any R > 0 there is a constant

C(R) such that ∀u ∈ V, u V ≤ R =⇒ (E(u)) p p+1 ≤ C(R) M(u) V ′ (4.9)
Proof. Setting

P v := 1 |Ω| Ω v(x)dx
we have since f is nondecreasing

∀u ∈ H 2 (Ω), Mu, u -P u = Ω |∇u| 2 + f (u)(u -P u)dx ≥ Ω |∇u| 2 + f (P u)(u -P u)dx = Ω |∇u| 2 dx similarly ∀u ∈ H 2 (Ω), Mu, ρ(u) = Ω (ρ ′ (u)|∇u| 2 + f (u)ρ(u))dx ≥ c Ω |ρ(u)| p+1 dx = c ρ(u) p+1 p+1 hence by addition ∀u ∈ H 2 (Ω), Mu, u -P u + ρ(u) ≥ ∇u 2 2 + c ρ(u) p+1 p+1
As a consequence of Poincaré's inequality , we have

u -P u V ≤ K 1 ∇u 2 In addition ρ(u) V ≤ ∇(ρ(u)) 2 + ρ(u) 2 ≤ ∇u 2 + K 2 ρ(u) p+1 hence u -P u + ρ(u) V ≤ K 3 ( ∇u 2 + ρ(u) p+1 )
As a consequence we find for some fixed δ > 0

Mu * ≥ δ ∇u 2 2 + ρ(u) p+1 p+1 ∇u 2 + ρ(u) p+1
by writing

∇u 2 ≤ ∇u 1-2 p+1 2 ∇u 2 p+1 2 ≤ u 1-2 p+1 V ∇u 2 p+1 2 we deduce Mu * ≥ δ ∇u 2 2 + ρ(u) p+1 p+1 (1 + u 1-2 p+1 V )( ∇u 2 p+1 2 + ρ(u) p+1 )
By using the inequality a + b ≤ 2(a q + b q ) 1/q applied with q = p + 1 we find

Mu * ≥ δ ( ∇u 2 2 + ρ(u) p+1 p+1 ) p p+1 2(1 + u 1-2 p+1 V )
and finally

E(u) p p+1 ≤ M (1 + u 1-2 p+1 V
) Mu * 5 More elaborate convergence results.

In this section we state and prove the convergence results corresponding to the specific cases of Section 4. These convergence results will contain as special cases all the examples given in Section 3.

Preliminary results

In order to apply Theorem 2.1 , we shall need among other things to verify the left hand side of (2.6). For this we shall rely in all cases on the following simple preliminary result Proposition 5.1 Let Ω is a bounded open subset of R N , V a Hilbert space continuously imbedded in H = L 2 (Ω), and A ∈ L(V, V ′ ) symmetric, satisfying (4.1) and (4.2) . Let f : V → V ′ be the gradient of a nonnegative functional F ∈ C 1 (V ). Assume that for any R > 0 there is a constant

K(R) such that ∀u ∈ V, u V ≤ R =⇒ f (u) V ′ ≤ K(R)(F(u)) 1 2
(5.1)

Then for any R > 0, there is a constant M (R) such that ∀u ∈ V, u V ≤ R =⇒ Au + f (u) V ′ ≤ M (R)( Au, u + 2F(u)) 1 2 (5.2) 
Proof. For any u ∈ V we have

Au V ′ = A(u -P u) V ′ ≤ A u -P u V ≤ A η 1 2
Au, u

1 2
The result follows by combining this inequality with (5.1).

In practice, to treat the nonlinear part f (u), we shall use repeatedly the following simple Lemma Lemma 5.2 Let Ω , V , H be as above and p ≥ 1 be such that V ⊂ L p+1 (Ω) with continuous and dense imbedding. Then for any c ∈ R and any R > 0, there is a constant

P (R) such that ∀u ∈ V, u V ≤ R =⇒ {(u -c) + } p V ′ ≤ P (R) (u -c) + p+1 2 p+1
(5.3)

Proof. By duality we have L p+1 p (Ω) ⊂ V ′ with continuous imbedding. Therefore for any u ∈ V we have

{(u -c) + } p V ′ ≤ K 1 {(u -c) + } p L p+1 p = K 1 {(u -c) + } p p+1
Since p ≥ p+1 2 , the result follows easily by combining this inequality with the imbedding V ⊂ L p+1 (Ω).

Finally, boundedness of the solutions in V will follow in all examples as a consequence of the following lemmas Lemma 5.3 Let V , H be as above and A ∈ L(V, V ′ ) symmetric, satisfying (4.1). Assume that there are λ 0 > 0, γ 0 > 0 such that

∀u ∈ V, Au, u + λ 0 u 2 H ≥ γ 0 u 2 V
In addition, assume that there are σ 0 > 0, K 0 ≥ 0 such that

∀u ∈ V, F(u) ≥ σ 0 u 2 H -K 0 (5.4)
Then there exists σ > 0 such that

∀u ∈ V, E(u) ≥ σ u 2 V -K 0 (5.5)
Proof. If σ 0 ≥ λ 0 2 , the result is obvious since then

E(u) = 1 2 Au, u + F(u) ≥ 1 2 γ 0 u 2 V + (σ 0 - 1 2 λ 0 ) u 2 H -K 0 ≥ 1 2 γ 0 u 2 V -K 0 If σ 0 < λ 0 2 , we write E(u) = 1 2 Au, u + F(u) ≥ σ 0 λ 0 Au, u + F(u) ≥ σ 0 γ 0 λ 0 u 2 V -K 0 Lemma 5.4 Let f ∈ W 1,∞ loc (R) satisfy for some p > 1, c > 0, A ≥ 0 ∀s ∈ R, |s| ≥ A ⇒ f (s)s ≥ c|s| p+1
Then for any primitive F of f there is δ > 0 and C > 0 for which

∀s ∈ R, F (s) ≥ δ|s| 2 -C
In particular in this case, the functional

F(u) := Ω F (u(x))dx satisfies (5.4).
Proof.

The first inequality is an obvious consequence of a trivial lower estimate on F and the second one follows by integration since Ω is bounded. Of course without additional conditions on f the functional F is not necessarily defined on all u ∈ V , it may take infinite values. In the examples we always assume that the functional is defined on V as a consequence of growth conditions on F . Theorem 6.1 Let u ∈ W 1,1 loc (R + , V ) W 2,1 loc (R + , H) be a solution of (6.1) such that u(t) ∈ B for t large where B denotes a closed subset of V . Assume that hypothesis (2.3), (2.4) (2.6), (2.8) and (6.2) are satisfied. Let θ be as in (2.5) and (2.6). Let us introduce

µ = inf 1 -(α + 1)(1 -θ) (α + 2)(1 -θ) -1 , δ α + 1 ; ν = inf{ 1 (α + 2)(1 -θ) -1 , α + 1 + δ( α + 2 α + 1 )}.
Then there exist T > 0 , a ∈ B and some constants C, M > 0 such that

∀ t ≥ T, u(t) -a H ≤ Ct -µ . (6.3) ∀ t ≥ T, E(u(t)) ≤ M t -ν . (6.4)
6.1 Proof of Theorem 6.1

Let u be a solution of equation ( 6.1) such that u ∈ W 1,1 loc (R + , V ) W 2,1 loc (R + , H) and u(t) ∈ B for t large. Let us define the nonnegative function

E(t) = 1 2 u(t) 2 H + E(u).
Now let 0 < ε ≤ 1 be a real constant. We define the function

H(t) = E(t) + εE(t) β M(u(t)), u(t) V ′ + ∞ t h(s), u(s) H ds + ∞ t E(s) β h(s) 2 H ds,
where β = α(1θ), θ is the Lojasiewicz exponent defined in (2.6).

We have,

H(t) ≤ c 8 E(t) + c 9 (1 + t) λ , for all t ≥ T, (6.5) 
where λ = α + 1 + δ( α+2 α+1 ). In fact, we have

H(t) ≤ E(t) + εE(t) β M(u) V ′ u V ′ + ∞ t h H u H ds + ∞ t E(s) β h(s) 2 H ds.
We have by (2.3)

E ′ (t) = -g( u), u V ′ ,V + h, u H ≤ -ρ 1 u α+2 H + h H u H .
Therefore we have by Young's inequality 

∞ t u α+2 H ds ≤ c 2 E(t) + c 3 ∞ t h α+2 α+1 H ds. Now, since E is bounded then we have ∞ t E(s) β h(s) 2 H ds ≤ c 5 ∞ t h(s)
where µ = inf 1 -(α + 1)(1 -θ) (α + 2)(1 -θ) -1 , δ α + 1 .
Then the conclusion follows as in the proof of Theorem 2.1 and we have u ∈ L 1 (T, ∞, H) for T > 0 large enough. Hence, u(t) has a limit a in H as t → ∞ and u(t)a H ≤ Ct -µ .

On the other hand we have by the calculation leading to (6.6) H(t) ≥ E(t)εc 6 E(t) α(1-θ)+γ- 

  3, the initial value problem can be solved for any initial state in V × H under relevant conditions on the damping term. In this paragraph we shall consider 2 basic examples Example 3.1 Let γ be a locally Lipschitz function such that

  On the other hand, by the above inequalities together with(2.6) we getH(t) ≤ E(t) + εc 6 E(t) α(1-θ)+γ+ 1 2 + c 3 ′ (t) = E ′ (t)h, u H +εβ u(t), h(t)-g( u(t)) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ +εE(t) β M ′ (u(t)) u(t), u(t) +εE(t) β M(u(t)), h(t)g( u(t)) V ′ -εE(t) β M(u(t)) 2 V ′ -E(t) β h(t) 2 H .We have by Cauchy-schwarz inequalityεβ u(t), h(t) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ εβc 10 u 2 H M(u(t)) V ′ h H E(t) β-1 .On the other hand we have by the calculations of section 1-u(t), g( u(t)) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ c 14 u(t), g( u(t)) V,V ′ . (6.7) εE(t) β M ′ (u(t)) u(t), u(t) V ′ ≤ εc 15 u(t) α+2Then by following the steps of the proof of Theorem 2.1 and by using (6.5) we get the following differential inequalityc 18 H(t) (α+2)(1-θ) + c 19 H ′ (t) ≤ c 20 (1 + t) λ(1-θ)(α+2) .Now, by using (6.10) together with the last inequality we have for all t ≥ T ds ≤ c 22 (1 + t) -ν .

		t	∞	h	α+2 α+1 H	+ c 2 E(t) + c 5	t	∞	h(s) 2 H ds.	(6.6)
	Since E(t) α(1-θ)+γ+ 1 2 ≤ c 7 E(t), then by observing that 2 > α+2 Therefore by applying Lemma 2.1 from [2] we obtain α+1 and using the assumption (6.2) we get H(t) ≤ c 8 E(t) + c 9 (1 + t) λ , where λ = α + 1 + δ( α+2 (6.11) H(t) ≤ c 21 (1 + t) -ν , where ν = inf{ 1 , λ}. (α + 2)(1 -θ) -1 α+1 ). We have 2t
	t H Since we have u α+2 2t t u H ds ≤ t H Then we obtain since u 2 we obtain 2t t u H ds ≤ α+1 α+2 (	t	2t (1 + t) -µ , u α+2 H ds) c 23	1 α+2 ,
							H	+	ε 4	E(t) β M(u(t)) 2 V ′ .	(6.8)
	εE(t) β M(u(t)), g( u(t)) V ′ ≤	ε 4	E(t) β M(u(t)) 2 V ′ + εc 16 u(t) α+2 H .	(6.9)
	Then by combining the last 4 inequalities we obtain for a fixed ε small enough
	H ′ (t) ≤ -c 17 u(t) α+2 H	2 H ds. + E(t) β M(u(t)) 2 V ′ .	(6.10)

H ≤ 2E(t) εβ u(t), h(t) V,V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ εβc 11 E(t) β h H M(u(t)) V ′ .

By Cauchy-Schwarz inequality together with the last inequality we get

εE(t) β M(u(t)), h(t) V,V ′ +εβ u(t), h(t) V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ εE(t) β h H M(u(t)) V ′ +εβc 11 E(t) β h H M(u(t)) V ′ .

Once again by applying Cauchy-Schwarz inequality we get

εE(t) β M(u(t)), h(t) V,V ′ + εβ u(t), h(t) V ′ E(t) β-1 M(u(t)), u(t) V ′ ≤ ε 4 E(t) β M(u(t)) 2 V ′

+εc 13 E(t) β h(t) 2 H .

  It follows that there exists a constant M such thatE(u(t)) ≤ M (1 + t) -ν .

		1 2 -c 3	t	∞	h	α+2 α+1 H	-c 2 E(t) -c 5	t	∞	h(s) 2 H ds.
	Then by choosing ε small enough we get							
		H(t) ≥	E(t) 2	-	c 24 (1 + t) λ .	
	Therefore we have	E(t) ≤ 2H(t) +	c 24 (1 + t) λ ,	
	and then thanks to (6.11) we obtain, since λ ≥ ν E(t) ≤ c 25 (1 + t) ν .		

Convergence to 0 and rate of decay

Again, in what follows, Ω is a bounded connected open subset of R N . We consider the following problems u tt + g(u t ) -∆uλ 1 u + c 1 (u + ) pc 2 (u -) q = 0, in R + × Ω, u(t, x) = 0, on R + × ∂Ω, (5.6) and

The main result of this paragraph is the following :

Theorem 5.5 Define V, H as in Section 4.1. Assuming that p, q, c 1 , c 2 fulfill the conditions of Section 4.1 and g satisfies

where r = sup{p, q} and M, M ′ are some positive constants depending on the solution.

Proof. The main assumptions to be checked are (2.6) and boundedness of u(t) in V . The relevant Lojasiewicz inequality is uniform on any bounded subset of V and has been proved in Corollary 4.2 as a consequence of Proposition 4.1. We now check that the left-handside of (2.6) holds true on any bounded subset of V with γ = 1 2 . This is in fact a simple consequence of Lemma 5.2 applied with c = 0. Indeed under the hypothesis of Theorem 5.5, we have

Changing u to -u and replacing p by q we find

Then by an obvious combination we find than f (u) = c 1 (u + ) pc 2 (u -) q satisfies (5.1). By applying Proposition 5.1 we conclude that the left-handside of (2.6) holds true on any bounded subset of V with γ = 1 2 . Now(2.6) holds true on any bounded subset of V . A simple application of Theorem 2.1 will conclude the proof as soon as boundedness of u(t) in V is established. But is is clear that f satisfies (5.4) with A = 0. Then Lemma 5.5 and Lemma 5.3 applied with λ 0 = λ 1 in the Dirichlet case, λ 0 = 1 in the Neumann case conclude the proof, since the non-increasing character of the energy provides the required V -bound.

Multiple equilibria under Neumann boundary conditions

We consider the system

The main result of this paragraph is the following : Theorem 5.6 Define V, H as in Section 4.2. Assume that in addition to the conditions of Proposition 4.6 , f ∈ C 1 (R) satisfies (4.7)and

Proof. The main assumption to be checked are again (2.6) and boundedness of u(t) in V . Boundedness in V is similar to the previous case since f satisfies (5.4) with A = 2 max{|a|, |b|}+1 for instance. The relevant Lojasiewicz inequality is uniform on any bounded subset of V and has been proved in Proposition4.9. We now check that the left-handside of (2.6) holds true on any bounded subset of V with γ = 1 2 . This is in fact a simple consequence of Lemma 5.2. Indeed under the hypothesis of Theorem 5.5, we have

Similarly we find

Then we find that f satisfies (5.1). By applying Proposition 5.1 we conclude that the lefthandside of (2.6) holds true on any bounded subset of V with γ = 1 2 . Since(2.6) holds true on any bounded subset of V , a simple application of Theorem 2.1 concludes the proof.

An example with a fourth order operator in space

Again, in what follows, Ω is a bounded connected open subset of R N . We consider the following problem

where λ 1 denotes here the first eigenvalue of ∆ 2 on H 2 0 (Ω). We define V = H 2 0 (Ω) and H = L 2 (Ω). We assume c 1 > 0, c 2 > 0 and p, q > 1 with (N -4) sup{p, q} < N + 4

The main result of this paragraph is the following : Theorem 5.7 Assuming that p, q, c 1 , c 2 fulfill the conditions above and 0 < α < 1 r , with r := sup{p, q}, any solution u ∈ W 1,1 loc (R + , V ) W 2,1 loc (R + , H) of (5.9) converges to 0 in V as t → ∞ and we have

where M, M ′ are some positive constants depending on the solution.

Proof. The proof of the V -bound of u(t) and (2.6) are quite similar to the analogous steps in the proof of Theorem 5.5. The relevant Lojasiewicz inequality is uniform on any bounded subset of V and has been proved in Proposition 4.6 . The proof that the lefthandside of (2.6) holds true on any bounded subset of V with γ = 1 2 is already done in proof of Theorem 5.5 . Hence (2.6) holds true on any bounded subset of V . However here Theorem 2.1 cannot be applied as it stands because g is not defined on H, but from H 1 0 to H -1 . A thorough inspection of the proof of Theorem 2.1 allows, mutatis mutandis, to obtain the necessary extension, and this concludes the proof.

Convergence and rate of convergence in the non autonomous case

In this section we assume that the hypothesis of Theorem 2.1 are satisfied and we consider the following abstract system

where h : R + → H is such that ∃c ≥ 0, ∃δ > 0, h(t) H ≤ c (1 + t) 1+δ+α , for all t ∈ R + .

(6.

2)

The main result of this section is the following :

Applications

Theorem 6.1 is applicable to perturbations of any of the particular systems considered in Sections 3 and 5 by a sufficiently fast decaying forcing term. To avoid heavy repetitions, the details of application to those examples are left to the reader.