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EMC Filters are increasingly integrated into power applications. To improve their performances it is important to model the electromagnetic interference between components to optimize their positions in the filter. In this paper, a method is proposed to construct the equivalent models of the component radiated field. The method proposed is based on the multipolar expansion, which provides us reduced models for the field radiated by generic structures. These models of the sources will be used to compute the mutual inductance between the components according to their geometrical placement.

INTRODUCTION

EMC filters are designed to improve the electromagnetic compatibility and the immunity level of electric and electronic systems, in particular the aspects concerning power quality and electromagnetic signature. For this reason the behavior of these filters has to be studied. Concerning these studies, the evaluation of the electrical parameters of the filter components assumes an important role. Basically, there are two types of parasitic parameters: the self-parasitic of the filter components and the mutual parasitic that reflect the coupling between components. Figure 1 represents the electric model of an EMC filter « Π » consisting of two capacitors Cy 1 and Cy 2 , and an inductance L DM . This model includes the self-parasitic of the filter components and the inductive coupling between components [START_REF] Wang | Controlling the parasitic parameters to improve EMI filter performance[END_REF]. The capacitive effects are not considered. Due to the significant current values related the filter when compared with the voltage one, this simplified model is assumed.

In figure 1 the following notations are used: ESL, ESR, C: The self-parasitic parameters, inductance, resistance, and the capacitance, L DM , EPC, EPR: The inductance, and the related self-parasitic capacitance and the resistance, M 1 and M 2 : Mutual inductances between L DM and the selfparasitic inductances ESL 1 and ESL 2, M 3 : Mutual inductance between the self-parasitic inductances ESL 1 and ESL 2, M 4 : Coupling inductance between L DM and the PCB tracks.

As Fig. 2 shows, these parasitic parameters can affect the EMC filter performances. This figure was withdraw from [START_REF] Wang | Cancellation of capacitor parasitic parameters for noise reduction application[END_REF], and it presents three curves: the first one called "base" represents the filter behavior before implementing the electromagnetic interference reduction and the filter performance improvement, the second "Minimized coupling" was obtained by optimizing the location of the components to reduce the coupling between filter components, and the third curve "Minimized coupling + ESL cancellation" represents the filter behavior after reducing the mutual parasitic and the effect of the equivalent serial inductance ESL.

The region A calls attention to the differences between the first curve "base" and the second curve "Minimized coupling", in particular to the first resonance frequency that matches the coupling effect of the filter components (mutual inductances). In a similar way, the region B represent the difference between the curves "base" and the "Minimized coupling + ESL cancellation", and the impact of the self-parasitic components Thus, in a converter including passive and active components, the component mutual parasitic modeling can be considered as a fundamental problem.

Nevertheless, it should be mentioned that, there is not a suitable methodology that takes into account the near-field coupling between components when an accurate evaluation of filter performances is required.

The objective of this work is to propose a methodology suitable for obtain models that could represent the radiated field of the filter components, at a wide range of frequencies, useful to evaluate the filter performance. In particular, these models will be applied to determine the coupling effects between the filter components, basically the mutual inductance, considering the influence of parameters, such as the distance between components etc.

As the distance between components is much smaller than the wavelength related to the frequencies of power electronic applications, usually f < 100MHz, a quasi static approach can be considered. It is the case of a magnetic source, in which the capacitive effects are negligible.

The method proposed to determine the equivalent radiated field model of the filter components by applying the multipolar expansion. It can be used to represent the radiation of generic structures (coils, capacitors, tracks…), and the spherical coordinates (r,θ,φ) are considered in this work.

Basically, this method will be used to compute the coupling effects between discrete filter components (capacitors, resistances and inductances). To simulate the whole configuration, the coupling between tracks should also be taken into account. The Partial Element Equivalent Circuit (PEEC) method is used to determine the inductive and resistive effects (R, L, M). On the other hand, for the parasitic capacitors evaluations, the MoM (Moments method) and the Fast Multipolar Method FMM are used [START_REF] Ardon | EMC Modeling of an Industrial Variable Speed Drive with an Adapted PEEC Method[END_REF]. For the tracking connection, the equivalent sources corresponding to discrete components can be integrated. This can simplify the model and improve the memory allocation.

II. MULTIPOLAR EXPANSION

A. Theory

The multipolar expansion can be used to represent the electromagnetic fields in 3D, assuming that the field is computed outside a sphere of radius r that contains the equivalent source (figure 3).

The multipolar expansion of the electric and magnetic fields is deduced from the solution of the magnetic vector potential A r and the electric vector potential F r given by [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

(1) (2)
The notations (cf) and (ca) determine the type of the function . For example, for a progressive wave propagating along (+r), when the constant c=4, and , it will correspond to the spherical Hankel functions [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF].

If these functions are chosen, the expressions of the electric field E and the magnetic field H can be represented by the following expressions [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

(3) (4)
with the intrinsic impedance of the considered environment.

Fig. 3 -References adopted in the field computation

The coefficients describe the strength of the transverse-electric (TE) components of the radiated field, while coefficients describe the strength of the transversemagnetic (TM) components. These coefficients are the parameters to be identified to characterize the equivalent model of the radiated field components.

The selfparasitics of components

Coupling between components (Mutual inductances)

B A and are the vector's spherical harmonics which are a solution of Maxwell's equations in free space, excluding the sphere that involves the sources. To compute the vector spherical harmonics, the solution of the scalar Helmholtz equation is used:

(5) The solution of the Helmholtz equation is then expressed as follows: [START_REF][END_REF] where Y nm are the normalized spherical harmonics [START_REF] Blanco | Evalution of the rotation matrices in the basis of the real spherical harmonics[END_REF] In the aforementioned equations: n: degree, m: azimuthal order, k : the phase constant, r : distance from the center of the coordinate system, b n : The Bessel functions, : The Legendre associated functions.

B. Application

It should be mentioned that, in order to represent the component radiated field in spherical harmonics, it is necessary to compute the coefficients of the decomposition Q nm . In the case of a magnetic source in the near-field, the coefficients associated to the magnetic transverse modes are negligible because the electric field is considered very low compared to the magnetic field. These coefficients are functions of H(r, ,φ), and can be obtained by applying [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

(8)
Depending on the complexity of the object to model, we can calculate the radiated H-field by using a 3D model or by performing experimental measurements [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF]. Some components of the multipolar expansion can be directly measured using novel magnetic induction sensors, for example, the sensors based on the standard CISPR16-1 coils [START_REF][END_REF].

III. COMPUTING THE MUTUAL INDUCTANCE

A. Mutual inductance

Using the equivalent radiated field source model, we can determine the coupling between two equivalent sources through the computation of the mutual inductance. The Fig. 4 illustrates the configurations regarding the representation of two radiating sources (Models 1 and 2). The computation of the mutual impedance between source 1 and source 2 can be expressed in terms of the electrical field E and magnetic field H for each source, by [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]: [START_REF] Clebsch-Gordan | Coefficients and '3j' Symbols. A. Messiah[END_REF] When the spheres which contain each of the sources don't intersect, the mutual impedance can be expressed according to the coefficients of the multipolar expansion [START_REF] Brock | Using vector spherical harmonics to compute antenna mutual impedance from measured or computed fields[END_REF]:

(10) The expression of the mutual inductance is: [START_REF] Paret | Applications en identification radiofréquence et cartes à puce sans contact[END_REF] In the expression (10) and [START_REF] Paret | Applications en identification radiofréquence et cartes à puce sans contact[END_REF], i 1 and i 2 are respectively the current that flows in sources 1 and 2. k is the phase constant.

The coefficients associated to the magnetic transverse modes of the multipolar expansion of sources 1 and 2 must be expressed in the same reference: a translation is required, e.g. the coefficients of the source 2 can be expressed in the reference of the source 1.

B. Translation and rotation of the coefficients Q nm

The rotation of the coefficients Q nm is obtained by applying the Euler angle reference formula. It should be mentioned that only two angles are necessary because of the spherical symmetry. The details of the methodology for determining the rotation matrices for complex or real coefficients Q nm are presented in [START_REF] Blanco | Evalution of the rotation matrices in the basis of the real spherical harmonics[END_REF]- [START_REF] Clebsch-Gordan | Coefficients and '3j' Symbols. A. Messiah[END_REF].

The translation is based on the « Addition Theorem for Vector Spherical Harmonics » [START_REF]Advanced Engineering Electromagnetics[END_REF]. The addition theorem links the harmonics evaluated on r to those evaluated on r ', where r is measured from the origin of the second spherical basis, whose axes are parallel to the first. The origin of the second spherical basis is linked to the first by r''. These three vectors are connected by the relation r = r '+ r''.

The expression of the translated coefficients Q nm are:

(12)

The computation of the coefficient involves the Wigner 3j symbol according to quantum mechanics [START_REF] Clebsch-Gordan | Coefficients and '3j' Symbols. A. Messiah[END_REF].

C. Methodology

To conclude, for example in the case of two components 1 and 2, the Fig. 6 represent the method to be used to compute the mutual inductance between the components : 

IV. VALIDATION

To validate the method of computing the mutual inductance between two equivalent radiated field of the components, the analytical result was compared to the numerical result computed by Flux3D® [10]. For this proposal, two similar loops configuration were considered, C 1 and C 2. This is a simple case which objective is to validate this method in the case of a filter, for two coils.

A. First case

We consider two loops, C 1 and C 2 with a radius "Rspire" of 10 cm, separated by r, both located on the Oz-axis as shown in the Fig. 7. The smaller sphere of validity is the sphere which surface includes the source. In our case the radius of the sphere was assumed to be equal to the radius loop. We have computed the mutual inductance between the loops, according to the distance r using the method of spherical harmonics for n=3 and n=5, and on the simulation of the flux through the surface of one of the two loops. The result is compared with those computed directly by Flux3D®. The comparison between the results is shown in the Fig. 8. To use the equivalent models of each loop to compute the mutual inductance, it is important that spheres included each source don't intersect, for that reason a minimum distance of (Rcoil1 + Rcoil2)= 0.2m between their centers must be respected.

Rotation + translation in the

reference1 of Q 2nm => Q' 2nm
As shown in Fig. 8, the results between the method using a truncated multipolar expansion and the numerical method in Flux3D® are comparable.

To compute the mutual inductance for a small distance between the two loops, the number of terms required to describe the complexity of the source increases. For that reason, at distance of r=0.2m the error is greater for n=3 than n=5 as show in the Fig. 9. To compute the mutual inductance between the two loops, in the spherical basis of the loop C 1 , it was necessary to rotate the coefficients Q 2nm of the loop C 2 before translating them to the spherical basis of loop C 1. The comparison results of the spherical harmonics method and Flux3D® are represented in Fig. 11. The results of the mutual inductance between the two coils are similar to the previous case, at r =0.2m, where the error is greater for n=3 than n=5.

V. PROPOSED MEASUREMENT METHOD

The method for measuring the mutual inductance between two loops C 1 and C 2 , of inductors L 1 and L 2 is based on the measurement of the coefficient of coupling K. The coefficient of coupling is expressed in function of the inductors L 1 and L 2 , the input and output voltage by the following relation [START_REF] Paret | Applications en identification radiofréquence et cartes à puce sans contact[END_REF]:

(13) K: coefficient of coupling, M: mutual inductance, V S : input voltage, V E : output voltage.
This relation is valid when L 1 >10*R [START_REF] Paret | Applications en identification radiofréquence et cartes à puce sans contact[END_REF], with R the resistance of the loop. For this reason, it is interesting to study the behavior of the impedance of loop in function of frequency. This method will be used in the case of two identical loops located on the Oz-axis to measure the coefficient of coupling in function of the distance r between the two loops.

VI. CONCLUSION

This method allows us to create, at first, the equivalent sources which represent the radiated field component using the multipolar expansion representation. The equivalent sources will then be used to compute the coupling between them, which was represented by a mutual inductance as a function of the distance that separates them.

Although some simple configurations were used to validate the proposed methodology, some anti-canonical structures are planned to be evaluated by the authors in the near future. Moreover, other kind of multipolar expansions, like the cylindrical one can be more suitable for modeling components such as tracks or cables, and it will also be considered. For example, in the case of the coupling between a track and a component, the spherical harmonics method is not very adequate and other harmonics method should be used.

The method proposed could be helpful when coupled with the PEEC method in the evaluation of equivalent circuit of power electronics devices (R-L-M-C). This will allow considerable gain in memory space concerning the full model configuration used in EMC filter numerical simulations.

It remains to validate the method of measurement, first in the case of two loops and then in a more complex case, for example to measure the coupling between two coils.

Another perspective for this work is to use the method presented in [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF] to determine the components of the spherical harmonics by measuring the induced flux through coils placed around the system. This method for measuring the flux induced in large coils placed around the system allows a "spatial integration" to reduce the effect of the sensor position errors, unlike to the punctual measurement method where the sensor of magnetic field moves around the object to measure the field at many points [START_REF] Vincent | Loop antennas for Near Field Multipolar Expansion Identification: First experimental Validations[END_REF].
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 1 Fig.1 -Filter with parasitic coupling and the self-parasitic.
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 2 Fig.2 -Effect of parasitic parameters, extract from [2].
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 4 Fig.4 -Representation of two radiating sources.
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 6 Fig.6 -Method used to compute the mutual inductance between two components
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 7 Fig.7 -Two similar coils placed on the z axis In this case, the method of computing the mutual inductance in flux3D® is based on the computation of the flux through the surface of one of the two loops.
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 8 Fig.8-The comparison between spherical harmonics mutual inductance result and Flux3D® up to the near-field distance limit at 200MHz (1m)
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 9 Fig.9 -The relative error compared to Flux3D®B. Second caseIn the second case the numerical method is validated when the theorem to rotate the coefficients Q 2nm of the loop C 2 is applied. A rotation of 45° around the y axis corresponds to the 2 nd Euler angle as shown in Fig.10
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 10 Fig.10 -Two similar coils in oz axis where the coil C2 is rotate of 45° than the the coil C1.
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 11 Fig.11 -The comparison between numerical and spherical harmonics results of mutual inductance

   r  1m Relative error compared to Flux3D (%) Nmax=3 Nmax=5