
HAL Id: hal-00520041
https://hal.science/hal-00520041

Submitted on 22 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite Alphabet Iterative Decoding (FAID) of the
(155,64,20) Tanner Code

David Declercq, Ludovic Danjean, Shiva K. Planjery, Erbao Li, Bane Vasic

To cite this version:
David Declercq, Ludovic Danjean, Shiva K. Planjery, Erbao Li, Bane Vasic. Finite Alphabet Iterative
Decoding (FAID) of the (155,64,20) Tanner Code. 6th International Symposium on Turbo-Codes &
Iterative Information Processing, Sep 2010, Brest, France. �hal-00520041�

https://hal.science/hal-00520041
https://hal.archives-ouvertes.fr

Finite Alphabet Iterative Decoding (FAID) of the (155,64,20)

Tanner Code

David Declercq, Ludovic Danjean, Erbao Li

ETIS

ENSEA / UCP / CNRS UMR 8051

95000 Cergy-Pontoise, France

{declercq,danjean,erbao.li}@ensea.fr

Shiva K. Planjery, Bane Vasić

Dept. of Electrical and Computer Eng.

University of Arizona

Tucson, AZ 85721, USA

{shivap,vasic}@ece.arizona.edu

Abstract—It is now well established that iterative decoding approaches

the performance of Maximum Likelihood Decoding of sparse graph codes,

asymptotically in the block length. For a finite length sparse code, iterative

decoding fails on specific subgraphs generically termed as trapping sets.
Trapping sets give rise to error floor, an abrupt degradation of the

code error performance in the high signal to noise ratio regime. In this
paper, we will study a recently introduced class of quantized iterative
decoders, for which the messages are defined on a finite alphabet and

which successfully decode errors on subgraphs that are uncorrectable

by conventional decoders such as the min-sum or the belief propagation.
We will especially study the performance of the proposed finite alphabet

iterative decoders on the famous (155,64,20) Tanner code.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have received much

attention in the past several years owing to their exceptional

performance under iterative decoding. A wide spectrum of iterative

decoders of varying complexity have been developed ranging from

simple hard-decision algorithms such as Gallager-A/B algorithms

to the more sophisticated belief propagation (BP) algorithm. On

codes defined with sparse parity-check matrices or their equivalent

Tanner graphs [1], the BP decoder performs close to the Maximum

Likelihood Decoding (MLD) defined as the optimal decoder under

the assumption of a cycle-free Tanner graph. This last assumption

stands only for an infinite blocklength code.

For finite length LDPC codes, the presence of unavoidable cycles

breaks the BP optimality, and the decoder could converge to fixed

points or loopy attractors which are not codewords, leading to the so

called error floor region [2, 3]. It has been observed by many authors

that for finite length LDPC codes and especially for small lengths,

other decoders than the BP decoder tend to have better performance

in the error floor region. This is the case for example of the corrected

min-sum decoder [4, 5]. More recently, Planjery et al. have introduced

a new class of message passing decoders, called Finite Alphabet

Iterative Decoding (FAID) decoders [6], with the goal of surpassing

the BP decoder in the error floor region.

Richardson has introduced the notion of trapping sets in [3] to

characterize error floors. A (a, b) trapping set (TS) is a subgraph of

the whole Tanner graph, which represents a small set of a bit nodes

whose induced subgraph has b odd degree check nodes. A TS is

then a small topological structure which prevents the correction of

the a bits when initally in error by an iterative decoder, which will

be defined as a decoding failure. The error floor corresponds to the

decoding failures induced by low-weight error patterns located on TS.

Trapping sets can be present in any finite-length code irrespective of

how good the decoding threshold obtained by density evolution is

and hence, codes optimized for good decoding thresholds can still

exhibit high error floors. Characterization of error floors and design

of LDPC codes with low error floors has recently been a subject

of wide interest [7, 8]. Note that in principle, a TS is defined by a

particular topological structure, and does not depend on the chosen

decoder. As a consequence, a well chosen iterative decoder could in

fact not be trapped by a TS, and this is one of the key feature of our

appraoch to design good FAID decoders.

In this paper, we present a detailed study of FAID decoders

of the (155,64,20) Tanner code [9], in the case the decoders use

messages stored only on 3 quantization bits. The (155,64,20) Tanner

code is a particularly nice LDPC code and a good test case for

the following reasons. First, the difference between its minimum

distance dmin = 20 and its minimum pseudo-distance wmin
p ≃ 10 is

very large, which means that the error correction difference between

standard iterative decoders (Gallager-B, uncorrected min-sum, BP)

and MLD is expected to be large, which also means that improving

iterative decoders should be easier on this code than on other,

larger codes. Another reason is that the (155,64,20) Tanner code is

sufficiently small and structured (the code is quasi-cyclic with bloc-

cyclicity equal to 31) such that brute force simulation can be used to

verify some claims.

The paper is organized as follows. In section II, we describe in

details the concept of FAID decoders, and give 4 decoders using

messages only on 3 quantization bits that we will study in details

on the Tanner code. In section III, we depict the main sub-structures

that we focus on, which are the smallest TS of the Tanner code, and

the smallest codewords of weight dmin = 20. We show in particular

that there are 3 different topologies for the minimal codewords on

the Tanner code, and that two of them contain one and only one

minimal TS. In section IV, we explain that looking at the minimal

TS in an isolated way is not sufficient to predict the behavior of

the iterative decoder, and propose a simulation based strategy to

discriminate between good and bad FAID decoding rules. We present

the results of the obtained FAID decoders for the (155,64,20) Tanner

code on the binary symmetric channel (BSC).

II. FINITE ALPHABET ITERATIVE DECODERS (FAID)

In the general case of a binary LDPC code C of length N

and M constraints, the related Tanner graph contains N bit nodes

and M parity-check nodes. We consider only regular LDPC whose

bit nodes have degree dv , and check nodes have degree dc. The

FAID decoding algorithm is an iterative decoder presented in [6]

in which the messages propagated along the edges of the Tanner

graph belong to a finite alphabet M. In the case of Ns levels

M = {0,±lk : 1 ≤ k ≤ ⌊Ns

2
⌋} where the sign of lk represents

the value of the bit to zero or one, and the magnitude |lk| represents

the reliability of the bit value. The value of the observation from the

channel {yi}i=0,1,...,N−1 belongs to the channel output set which

is simply Y = {−C, +C} in the case of the BSC. As for all

message-passing algorithm, update rules are defined on both bit nodes

and check nodes of the Tanner graph. The update rules consist

in computing the outgoing messages from the different extrinsic

messages entering a node (except the message on the edge for which

the output is computed); let Φv and Φc be the functions representing

respectively the rules for the bit nodes and for the check nodes.

In this paper, we consider the check node update function Φc to

be

Φc(m1, . . . , mdc−1) =

dc−1
Y

j=1

sgn(mj)

!

min
j∈{1,...,dc−1}

(|mj |) (1)

where sgn(.) denotes the standard signum function. This particular

update function Φc corresponds to the same update function in the

min-sum decoder. For all decoders considered in this paper, Φc will

be unchanged, such that the variability in the definition of decoders

will come only from different choices of bit node rules Φ
(k)
v .

For a regular column-weight dv code the update rule Φv on the ith

bit node will depend on the incoming messages m1, m2, ..., mdv−1

and the channel value yi. The function Φv is in general a non-linear

function of the mi’s, and can be expressed as:

Φv(m1, m2, · · · , mdv−1, yi) = Q

dv−1
X

j=1

mj + ωc · yi

!

(2)

where ωc = Ω (m1, m2, ..., mdv−1) is symmetric non-linear function

Ω : Mdv−1 → {0, 1}, and the function Q(.) is a — potentially non-

uniform — quantization function, defined by a set of thresholds (see

[6] for more details).

The function Φv follows the symmetry condition:

Φv(m1, ..., mdv−1,−C) = −Φv(−m1, ...,−mdv−1, C) (3)

If the condition (3) is fulfilled, then the decoder is symmetric, and

treats zeros and ones in the codeword in the same way.

For general codes, the function Φv lives in a discrete space

of dimension 2. |M|dv−1
, i.e. the number of possible values for

its entries. In this paper, since we consider only the Tanner

code which is regular with dv = 3, the function Φv can be

conveniently represented by a single 2-D look-up table with the values

{Φv(m1, m2,−C)}
m1,m2

tabulated in it. The values for the output

function Φv(m1, m2, +C) can be deduced from the 2-D LUT with

equation (3). We give in the next section four examples of those

functions that will be studied in details on the Tanner code.

A. Decoding rules using 3 quantization bits

A FAID decoder will be said to use k quantization bits when the

messages realization set M has cardinality Ns = |M| < 2k. We will

use in this paper only decoding rules such that the number of levels

Ns is odd, and such that the value m = 0 belongs to M. The value

m = 0 corresponds to an erasure message, while the signum of the

message indicates the value of the corresponding bit. By convention,

we choose negative values to represent a bit equal to 0 and positive

values to represent a bit equal to 1.

We designed 4 different rules, which are reported on tables V

to VIII. The first 3 rules on tables V to VII are defined over an

alphabet of Ns = 5 levels, while the fourth rule on table VIII is

defined with Ns = 7 levels. The function outputs corresponding to

Φv(m1, m2, +C) can be deduced by symmetry. All the 4 rules will

use the check node update defined by eq. (1). At each iteration, the

decision on each coded bit ci is made with the following rule:
8

>

<

>

:

Pdv

j=1 mj(i) + yi < 0 ⇒ ci = 0
Pdv

j=1 mj(i) + yi > 0 ⇒ ci = 1
Pdv

j=1 mj(i) + yi = 0 ⇒ ci = yi

(155,64,20) Tanner code

TS(5,3) 0-3-0-0-0-0 → 155

TS(6,4) 0-1-2-0-0-0 → 930

TS(7,3) 0-3-2-0-2-0 → 930

TS(7,5) 0-1-1-0-1-0 → 11160

TS(7,5) 0-1-0-2-0-0 → 2790

Table I: Trapping Set spectrum of the Tanner Code.

For each rule, we indicated the decoding threshold of the decoder

for the regular (dv = 3, dc = 5) family, which corresponds to the

connectivity of the Tanner code. The decoding threshold corresponds

to the maximum value of the channel error probability α∗ such that

density evolution converges to the noiseless case [10]. We can see

that all these decoders have similar decoding thresholds, and the gap

to the Shannon limit αSL = 0.1461 can be explained by the very

small number of bits which quantize the messages of the decoder.

III. TOPOLOGIES OF THE (155,64,20) TANNER CODE

A. Trapping Sets Distributions

Let e = (e1, e2 . . . , en) be an error pattern at the input to the

decoder obtained from the BSC. A trapping set T(e) is a non-empty

set of variable nodes that are eventually not corrected by the decoder

[3]. A standard notation for a TS is TS(a, b) where a is the number

of bits in errors in e and b is the number of odd-degree check nodes

in the sub-graph induced by T(e).

This standard notation is however not sufficient to describe in details

the topologies which are the supports of the TS. In particular, there

could be several different topologies which have the same values a

and b. To circumvent this problem, we extend the notation of TS

by adding to the first two parameters, an additionnal topological

information which allows to distinguish between different structures

with the same a and b. We propose the following notation:

TS : (a, b) nc3 − nc4 − nc5 − nc6 − nc7 − nc8

where nck
represents the number of cycles containing k bit nodes.

Let us focus on the topologies of the Tanner code which are

supposed to be dominant in the error floor region of the frame error

rate curves, namely the smallest structures in terms of number of

bits involved in it. Using expansion of the neighboring tree from

each bitnode, it is quite easy to derive an algorithm which detects

and counts the small closed topologies, and therefore TS, in a graph.

We have reported on table I the distribution of TS up to a = 7 bits

which are present in the Tanner Code. Two examples of those TS are

drawn on figure 1(a) and figure 1(b).

The TS(5,3) is the corner point of the weakness of iterative

decoders on the Tanner code. This very small TS makes several

iterative decoders fail when the bits in error are located on the 5

bits which compose the TS. More details are given in section IV.

(a) The TS(5,3)
trapping set.

(b) A TS(6,4) trapping set.

(155,64,20) Tanner code

weight 20 → 1023

weight 22 → 6200

weight 24 → 43865

weight 26 → 259918

Table II: Distance spectrum of the Tanner Code.

c66

v0

v90

c77

v47

c1

c36

c18

v80

v2v142 c3 c89

v21 c22

c38

c57

c47

c67

v139 c74

v11

v76

c26

v111

c84

c87

c48

c83

v100c15v154

c19 v77

c58 v48

c35

v30

c33

c0

c12v151c86

v87c29v28

v55

c34

c63

c45

(5,3) TS

Figure 1: Topological structure of a Type-I minimal codeword of the

Tanner code

B. Minimal Codeword Structures

The knowledge of the dominant TS could be sufficient to predict

the behavior of usual decoders in the error floor region [7, 3].

However, as demonstrated in the next section, when the iterative

decoder is more general, which is the case of the FAID decoders

studied here, looking at the TS alone is not sufficient. The natural

and obvious thing to do is then to look at bigger structures which are

also attractor points of the decoders. Instead of considerering larger

and larger TS, we propose to study the behavior of the decoders

on the closed structures which form the codewords of the Tanner

code. The main reason is that the multiplicity of TS with constant

b > 1 becomes rapidly cumbersome with increasing a. It is our belief

that looking at error events located inside a codeword gives a lot of

information about iterative decoding convergence points, although a

TS is not necessarily nested in a codeword.

The Hamming distance spectrum of the Tanner code is given on

table II. This spectrum has been obtained with the impulse algorithm

presented in [11], and the multiplicities are assumed exact. We will

focus on the minimum codewords of weight dmin = 20. Note that

those minimal codewords are actually TS(20,0) trapping sets.

By analysis of the topologies of these codewords, we have

identified that there are only 3 types of structures for the minimal

codewords, which we will denote Type-I, Type-II and Type-III. This

means that each and every codeword of weight 20 belongs to one

of the automorphism group of the subgraph induced by one of the

3 types of codewords. This is especially interesting since we can

restrict the study of the decoders on 3 sub-graphs instead of 1023

sub-graphs. Another observation is that only 2 out of the 3 types

contain the minimal TS, i.e. the TS(5,3) trapping set. We have drawn

on figure 1 the structure of Type-I codewords, which contain the

TS(5,3) trapping set. For lack of space, we do not represent the other

types.

IV. THE ISSUE OF PREDICTING DECODER BEHAVIOR BASED ON

MINIMAL TRAPPING SETS

A. Trapping Sets Critical Numbers

In [7] the concept of critical number has been introduced to

characterize the contribution to the error floor of a given trapping set.

Given a TS(a, b) trapping Set T(e), the critical number m (T(e)) is

the minimal number of bits received in error inside the trapping set

leading to a decoding failure. Although the notion of critical number

was originally developed for Gallager-A/B algorithms in [12], it is

still applicable in our current framework of FAID decoders since we

are considering decoding over the BSC.

The critical number is then more representative than the TS itself

to measure its impact in the error floor region. For example, a TS(7,3)

with critical number 4 will have a larger contribution to the error floor

than a TS(5,3) with critical number 5. Additionnally, we choose the

convention m (T(e)) = ∞ when all combinations of a errors or less

are corrected by the iterative decoder.

In the next section, we show that computing the critical numbers

of the TS when the TS are considered in an isolated way could be

misleading.

B. Limitations of the Isolation Assumption

In [6], the concept of isolated structures was defined and used

to analyze local decoding behaviors in order to derive good update

rules for FAID decoders. In short, the isolation assumption ensures

that the decoder updates inside a TS are not corrupted by propagation

of messages along external closed path to the TS, and this for a given

number of iterations k. In other words, the TS is isolated from the rest

of the graph for at least k iterations. This assumption is necessary

to interpret correctly the values of the critical numbers and to be

able to predict the performance of one iterative decoder in the error

floor region based on these critical numbers. Please refer to [6] for a

detailed discussion about the advantages of the isolation assumption.

As a consequence, the computation tree of an isolated structure is

equivalent if the structure is simulated alone, or if it is simulated when

embedded in a global larger graph. Under the isolation assumption,

the critical numbers therefore represent exactly the typical error

correcting behavior of a decoder on the whole graph of a code. We

have computed and indicated on table III the critical numbers of the

4 different FAID decoders, and for all TS present in the Tanner code

up to 8 bits.

Without big surprise, the TS(8,2) is the most difficult TS to

cope with for all decoders. Note that all 4 FAID decoders have

infinite critical number on the 2 smallest TS, the TS(5,3) and the

TS(6,4), which seems to indicate that it is possible to derive quantized

decoders, even with very few quantization bits, which are not trapped

by the TS of usual decoders (Gallager-B, Min-sum).

Those critical numbers are however not predictive at all when

the isolation assumption is not fulfilled. We have verified some

error correction properties with extensive Monte Carlo simulations

on the whole Tanner code. It turns out that although the rule Φ
(3)
v

has the exact same statistics as rule Φ
(2)
v and even better statistics

than rule Φ
(1)
v in terms of critical numbers, rule Φ

(3)
v fails on

110 five-error patterns when we simulate the rule on the whole

Tanner code, while rule Φ
(1)
v and rule Φ

(2)
v correct all five-errors

patterns in less than 100 iterations. Another contradiction is that

the critical number for rule Φ
(2)
v on TS(8,2) is 5, which means

that there are five-error patterns such that decoder Φ
(2)
v fails in

an isolated way, but successfully corrects the five errors when the

TS(8,2) is simulated in the whole Tanner code. As we can see,

Number of bits Trapping Set Label rule Φ
(1)
v rule Φ

(2)
v rule Φ

(3)
v rule Φ

(4)
v

5 bits (5,3) 0-3-0-0-0-0 ∞ ∞ ∞ ∞

6 bits (6,4) 0-1-2-0-0-0 ∞ ∞ ∞ ∞

7 bits

(7,3) 0-3-2-0-2-0 7 ∞ ∞ 6

(7,5) 0-1-1-0-1-0 ∞ ∞ ∞ ∞

(7,5) 0-1-0-2-0-0 ∞ ∞ ∞ ∞

8 bits

(8,2) 0-3-4-2-4-2 6 5 5 6

(8,4) 0-3-0-2-0-2 ∞ ∞ ∞ 6

(8,4) 0-1-3-1-1-1 ∞ ∞ ∞ 7

(8,4) 0-1-2-2-2-0 ∞ ∞ ∞ 7

(8,6) 0-1-0-1-0-1 ∞ ∞ ∞ ∞

(8,6) 0-1-0-0-2-0 ∞ ∞ ∞ ∞

Decoding Threshold α∗ 0.09781 0.09778 0.09777 0.10155

Table III: Critical numbers on the trapping sets of the Tanner code

for the selected decoding rules. The decoding threshold of each rule

is also shown.

10
−3

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

α

F
ra

m
e

 E
rr

o
r

R
a

te

Bad Rule

Φ
v

(3)

Φ
v

(1)

Figure 2: Performance comparison of different FAID decoders on the

(155,64,20) Tanner Code

contradictions in the analysis of the isolated critical numbers are

in both positive and negative directions, which makes it difficult to

make use in the goal of choosing a good decoder for a particular code.

On figure 2, we compared the frame error rate (FER) performance

of the FAID rules Φ
(1)
v and Φ

(3)
v on the Tanner code. All curves

have been plotted with a maximum of 100 iterations, and at least

300 frame errors have been recorded for each simulation points. The

difference between the two rules is not large, although the curves

start to split apart in the error floor region due to the fact that Φ
(1)
v

corrects all five-errors patterns while Φ
(1)
v does not. As a catastrophic

counter-example of using only isolated critical numbers for designing

FAID rules, we have also plotted the performance of a FAID rule

which have all its critical numbers equal to +∞ (labelled as ‘Bad

Rule’ in the figure). The decoding threshold for this rule is only

α∗ = 0.07778, and then is a lot worse than the tresholds of the rules

tabulated at the end of this paper.

Of course, brute force simulations on the whole code would give

the desired ordering between rules, but at the price of a too large

computational burden. The problem of finding the best decoding rules

for a specific code cannot be solved with the knowledge of critical

numbers alone, and remains an open issue. In this paper, we propose

a first approach to partially solve this issue which is still based on

Monte Carlo simulations, but on larger structures than the smallest

TS.

C. Selection of Rules by Monte-Carlo Simulations on Larger

Structures

We propose to make decisions with respect the ordering between

FAID rules, by simulations of ne-errors patterns on the sub-graphs

induced by the minimal codewords of weight 20. Although we do

not claim that simulation on these sub-graphs are strictly predictive,

looking at the codeword structures makes sense with respect to the

isolation assumption described in the preceding section. As a matter

of fact, a codeword is a particular TS(a,0) trapping set, and then is

connected to the rest of the graph only by edges which have already

even degree inside the TS. More importantly, there is no edge which

connects the codeword to the rest of the graph, and which ouputs from

a bitnode. From our own observations on TS, the isolation assumption

is more often ‘broken’ when the external paths go through a bitnode

than when then go only through check nodes of the TS. It seems that

codewords are almost isolated, at least more than other types of TS.

A more formal study of the isolation assumption will be reported in

a future paper.

We have simulated all 5-errors patterns and all 6-errors patterns on

the 3 types of codewords, for a large number of FAID decoders. We

report on Table IV the results for the 5-levels decoders of tables V-

VII. The numbers in the table indicate the number of error patterns

which are not corrected by the decoders, and in the case all error

events are corrected, we indicate in brackets the maximum number

of iterations needed to correct all events.

5-errors patterns 6-errors patterns

Φ
(1)
v Φ

(2)
v Φ

(3)
v Φ

(1)
v Φ

(2)
v Φ

(3)
v

type-I 3 2 > 10 172 138 > 500

type-II 0(7) 0(8) 0(9) 0(16) 0(21) > 21

type-III 0(4) 0(4) 0(4) 0(4) 0(4) 0(5)

Table IV: Statistics of correction for small error events on the

codewords sub-graphs.

As a first observation, we can see that the 3 types of codewords

have completely different behaviors. Type-I codewords seem to be

the most problematic ones, and Type-III codewords the easiest to

decode. Remember that Type-III codewords do not contain TS(5,3)

trapping sets, which could explain why they have the best behaviors

with iterative decoding. This is a very interesting differentiation of

codewords which have although the same Hamming weight, and

therefore cannot be differentiated with MLD.

In terms of ordering of the different rules, those statistics are in

better accordance with the simulations on the whole Tanner code

than the critical numbers of table III. It is readily seen on these

statistics that rule Φ
(3)
v is worse than rules Φ

(1)
v and Φ

(2)
v . Since we

verified that rule Φ
(3)
v does not correct all five-error patterns on the

Tanner code while Φ
(1)
v and Φ

(2)
v do, we can see that the ordering

of rules made with simulations on the codewords is somewhat more

predictive than the isolated critical numbers. A more important result

is that we performed those statistics for all possible 5-levels decoders

(there are 28314 possible FAID decoders), and rules Φ
(1)
v and Φ

(2)
v

have the best overall statistics of all decoders. Since this approach

of simulating error patterns on codewords appears to be predictive,

we conjecture that we have found the best 5-levels decoders for the

(155,64,20) Tanner code, that is decoders Φ
(1)
v and Φ

(2)
v . The FER

curves for these two decoders are very close, and we report on figure

3 only the performance of rule Φ
(1)
v together with the 7-levels rule

Φ
(4)
v . The 7-levels rule Φ

(4)
v has been obtained with similar techniques

as described in details for the 5-levels rules in this paper. However,

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

FER versus the crossover probability on the BSC (Tanner Code (d
c
=5, d

v
=3, N=155))

α

F
ra

m
e

 e
rr

o
r

ra
te

Gallager−B Decoder

Belief propagation decoder

5−level decoder

7−level decoder

Figure 3: Performance of the best FAID rules found compared to

Gallager-B and BP

m1\m2 −l2 −l1 0 +l1 +l2

−l2 −l2 −l2 −l2 −l2 0

−l1 −l2 −l2 −l1 −l1 +l1

0 −l2 −l1 −l1 0 +l1

+l1 −l2 −l1 0 +l1 +l2

+l2 0 +l1 +l1 +l2 +l2

Table V: Table Look-up for Φ
(1)
v - the channel value is set to −C. The

decoding threshold for this rule is α(1)∗ = 0.09781.

we do not claim that rule Φ
(4)
v is the best 7-levels decoder for the

Tanner code. All curves have been simulated with a maximum of

100 decoding iterations on the BSC channel with probability of error

α. As we can see, both FAID decoders Φ
(1)
v and Φ

(4)
v beat the BP

decoder in the error floor region, as expected.

V. CONCLUSION

The problem of looking for the best decoder for a particular

code is not usual. Most research directions actually fix the iterative

decoder, try to characterize its behavior and then propose to add

special constraints to the code design such that the code is adapted

to the decoder (both asymptotically with density evolution or for

finite length cases using topological constraints). Here, we look at

the problem the other way around, and by defining a large number

of iterative FAID decoders, try to find the best one for a particular

code. With the approach presented in this paper, we have obtained

as an interesting result the best 5-levels decoder for the (155,64,20)

Tanner Code. Also interesting are the error performance results of

the proposed 7-levels decoder. Indeed, the curves of Φ
(4)
v and the

BP decoder cross at FER=10−3, and then Φ
(4)
v becomes better than

the BP quite rapidly, although it requires messages stored only on

3 bits, which is by far smaller than the number of bits usually used

in hardware implementations of the log-BP or the min-sum decoders

(usually a number of 6 quantization bits is adviced). Our approach of

FAID decoders could then eventually lead to reduced silicium area

in hardware implementations of LDPC decoders. Those good results

need to be verified for the AWGN channel and for other codes than

the Tanner code.

ACKNOWLEGEMENT

This work is partially funded by the NANO2012 project.

m1\m2 −l2 −l1 0 +l1 +l2

−l2 −l2 −l2 −l2 −l2 0

−l1 −l2 −l2 −l1 −l1 +l1

0 −l2 −l1 −l1 0 +l2

+l1 −l2 −l1 0 +l1 +l2

+l2 0 +l1 +l2 +l2 +l2

Table VI: Table Look-up for Φ
(2)
v - the channel value is set to −C. The

decoding threshold for this rule is α(2)∗ = 0.09778.

m1\m2 −l2 −l1 0 +l1 +l2

−l2 −l2 −l2 −l2 −l2 0

−l1 −l2 −l1 −l1 −l1 +l2

0 −l2 −l1 −l1 0 +l2

+l1 −l2 −l1 0 +l2 +l2

+l2 0 +l2 +l2 +l2 +l2

Table VII: Table Look-up for Φ
(3)
v - the channel value is set to −C. The

decoding threshold for this rule is α(3)∗ = 0.09777.

m1\m2 −l3 −l2 −l1 0 +l1 +l2 +l3

−l3 −l3 −l3 −l3 −l3 −l3 −l3 −l1

−l2 −l3 −l3 −l3 −l3 −l2 −l1 +l1

−l1 −l3 −l3 −l2 −l2 −l1 0 +l1

0 −l3 −l3 −l2 −l1 −l1 +l1 +l2

+l1 −l3 −l2 −l1 −l1 0 +l1 +l2

+l2 −l3 −l1 0 +l1 +l1 +l1 +l2

+l3 −l1 +l1 +l1 +l2 +l2 +l2 +l3

Table VIII: Table Look-up for Φ
(4)
v - the channel value is set to −C.

The decoding threshold for this rule is α(4)∗ = 0.10155.

REFERENCES

[1] R. Tanner, “A recursive approach to low complexity codes,” Information

Theory, IEEE Transactions on, vol. 27, no. 5, pp. 533–547, 1981.
[2] D. J. MacKay and M. S. Postol, “Weaknesses of Margulis and

Ramanujan-Margulis Low-Density Parity-Check Codes,” in Electronic

Notes in Theoretical Computer Science. Elsevier, 2003, p. 2003.
[3] T. Richardson, “Error Floors of LDPC Codes,” Proc. 41st Annual

Allerton Conf on Communications Control and Comuting, 2003.
[4] B. Smith, F. R. Kschischang and W. Yu, “Low-density parity-check codes

for discretized min-sum decoding,” in Proc. 23rd Biennial Symp. on

Commun., pp. 14–17, 2006.
[5] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu,

“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[6] S. K. Planjery, D. Declercq, S. K. Chilappagari, and B. Vasic,
“Multilevel decoders surpassing belief propagation on the binary
symmetric channel,” 2010, Preprint. [Online]. Available: http://arxiv.org/
abs/1001.3421

[7] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
LDPC codes on the binary symmetric channel,” in Proc. IEEE Int. Conf.

on Commun. (ICC ’06), vol. 3, Istanbul, Turkey, pp. 1089–1094, 2006.
[8] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright,

“Lowering LDPC error floors by postprocessing,” in IEEE Global

Telecommunications Conf. (GLOBECOM ’08), New Orleans, LA, pp.
1–6, Nov.30-Dec. 4 2008.

[9] R. Tanner, D. Srkdhara, and T. Fuja, “A class of group-structured LDPC
codes,” 2001. [Online]. Available: citeseer.ist.psu.edu/tanner01class.html

[10] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” Information Theory,

IEEE Transactions on, vol. 47, no. 2, pp. 599–618, 2001.
[11] D. Declercq and M. Fossorier, “Improved Impulse Method to Evaluate

the Low Weight Profile of Sparse Binary Linear Codes", in the proc. of
ISIT’08, Toronto, Canada, July 2008.

[12] S. K. Chilappagari and B. Vasic, “Error correction capability of column-
weight-three LDPC codes,” IEEE Trans. Inform. Theory, vol. 55, no. 5,
pp. 2055–2061, May 2009.

