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work with Geiss and Schröer ( §3, 4, 5, 6), and with Hernandez ( §8, 9).

Introduction: two problems in Lie theory

Let g be a simple complex Lie algebra of type A, D, or E. We denote by G a simply-connected complex algebraic group with Lie algebra g, by N a maximal unipotent subgroup of G, by n its Lie algebra. In [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], Lusztig has introduced the semicanonical basis S of the enveloping algebra U (n) of n. Using the duality between U (n) and the coordinate ring C[N ] of N , one obtains a new basis S * of C[N ] which we call the dual semicanonical basis [START_REF] Geiss | Semicanonical bases and preprojective algebras[END_REF]. This basis has remarkable properties. For example there is a natural way of realizing every irreducible finitedimensional representation of g as a subspace L(λ) of C[N ], and S * is compatible with this infinite system of subspaces, that is, S * ∩ L(λ) is a basis of L(λ) for every λ.

The definition of the semicanonical basis is geometric (see below §5). A priori, to describe an element of S * one needs to compute the Euler characteristics of certain complex algebraic varieties. Here is a simple example in type A 3 . Let V = V 1 ⊕ V 2 ⊕ V 3 be a four-dimensional graded vector space with V 1 = Ce 1 , V 2 = Ce 2 ⊕ Ce 3 , and V 3 = Ce 4 . There is an element ϕ X of S * attached to the nilpotent endomorphism X of V given by Xe 1 = e 2 , Xe 2 = Xe 3 = 0, Xe 4 = e 3 .

Let F X be the variety of complete flags F 1 ⊂ F 2 ⊂ F 3 of subspaces of V , which are graded (i.e. F i = ⊕ j (V j ∩ F i ) (1 ≤ i ≤ 3)) and X-stable (i.e. XF i ⊂ F i ). The calculation of ϕ X amounts to computing the Euler characteristics of the connected components of F X . In this case there are four components, two points and two projective lines, so these Euler numbers are 1, 1, 2, 2. Unfortunately, such a direct geometric computation looks rather hopeless in general.

Problem 1.1. Find a combinatorial algorithm for calculating S * .

To formulate the second problem we need more notation. Let Lg = g⊗ C[t, t -1 ] be the loop algebra of g, and let U q (Lg) denote the quantum analogue of its enveloping algebra, introduced by Drinfeld and Jimbo. Here we assume that q ∈ C * is not a root of unity. The finite-dimensional irreducible representations of U q (Lg) are of special importance because their tensor products give rise to trigonometric Rmatrices, that is, to trigonometric solutions of the quantum Yang-Baxter equation with spectral parameters [START_REF] Jimbo | Solvable lattice models and quantum groups[END_REF]. The question arises whether the tensor product of two given irreducible representations is again irreducible. Equivalently, one can ask whether a given irreducible can be factored into a tensor product of representations of strictly smaller dimensions.

For instance, if g = sl 2 and V n is its (n + 1)-dimensional irreducible representation, the loop algebra Lsl 2 acts on V n by

(x ⊗ t k )(v) = z k xv, (x ∈ sl 2 , k ∈ Z, v ∈ V n ).
Here z ∈ C * is a fixed number called the evaluation parameter. Jimbo [START_REF] Jimbo | A q-analogue of U (gl(N + 1)), Hecke algebra and the Yang-Baxter equation[END_REF] has introduced a simple U q (Lsl 2 )-module W n,z , which can be seen as a q-analogue of this evaluation representation. Chari and Pressley [START_REF] Chari | Quantum affine algebras[END_REF] have proved that W n,z ⊗W m,y is an irreducible U q (Lsl 2 )-module if and only if

q n-m z y ∈ q ±(n+m+2-2k) | 0 < k ≤ min(n, m) .
In the other direction, they showed that every simple object in the category mod U q (Lsl 2 ) of (type 1) finite-dimensional U q (Lsl 2 )-modules can be written as a tensor product of modules of the form W ni,zi for some n i and z i . Thus the modules W n,z can be regarded as the prime simple objects in the tensor category mod U q (Lsl 2 ). Similarly, for general g one would like to ask Problem 1.2. Find the prime simple objects of mod U q (Lg), and describe the prime tensor factorization of the simple objects.

Both problems are quite hard, and we can only offer partial solutions. An interesting feature is that, in both situations, cluster algebras provide the natural combinatorial framework to work with.

Cluster algebras

Cluster algebras were invented by Fomin and Zelevinsky [START_REF] Fomin | Cluster algebras I: Foundations[END_REF] as an abstraction of certain combinatorial structures which they had previously discovered while studying total positivity in semisimple algebraic groups. A nice introduction [START_REF] Fomin | Total positivity and cluster algebras[END_REF] to these ideas is given in these proceedings, with many references to the growing literature on the subject.

A cluster algebra is a commutative ring with a distinguished set of generators and a particular type of relations. Although there can be infinitely many generators and relations, they are all obtained from a finite number of them by means of an inductive procedure called mutation.

Let us recall the definition. 1 We start with the field of rational functions F = Q(x 1 , . . . , x n ). A seed in F is a pair Σ = (y, Q), where y = (y 1 , . . . , y n ) is a free generating set of F , and Q is a quiver (i.e. an oriented graph) with vertices labelled by {1, . . . , n}. We assume that Q has neither loops nor 2-cycles. For k = 1, . . . , n, one defines a new seed µ k (Σ) as follows. First µ k (y i ) = y i for i = k, and

µ k (y k ) = i→k y i + k→j y j y k , (1) 
where the first (resp. second) product is over all arrows of Q with target (resp. source) It is easy to check that µ k (Σ) is a seed, and µ k (µ k (Σ)) = Σ. The mutation class C(Σ) is the set of all seeds obtained from Σ by a finite sequence of mutations µ k . One can think of the elements of C(Σ) as the vertices of an n-regular tree in which every edge stands for a mutation.

k. Next µ k (Q) is obtained from Q by (a)
If Σ ′ = ((y ′ 1 , . . . , y ′ n ), Q ′ ) is a seed in C(Σ)
, then the subset {y ′ 1 , . . . , y ′ n } is called a cluster, and its elements are called cluster variables. Now, Fomin and Zelevinsky define the cluster algebra A Σ as the subring of F generated by all cluster variables. Some important elements of A Σ are the cluster monomials, i.e. monomials in the cluster variables supported on a single cluster.

For instance, if n = 2 and Σ = ((x 1 , x 2 ), Q), where Q is the quiver with a arrows from 1 to 2, then A Σ is the subring of Q(x 1 , x 2 ) generated by the rational functions x k defined recursively by

x k+1 x k-1 = 1 + x a k , (k ∈ Z). (2) 
The clusters of A Σ are the subsets {x k , x k+1 }, and the cluster monomials are the special elements of the form

x l k x m k+1 , (k ∈ Z, l, m ∈ N).
It turns out that when a = 1, there are only five different clusters and cluster variables, namely

x 5k+1 = x 1 , x 5k+2 = x 2 , x 5k+3 = 1 + x 2 x 1 , x 5k+4 = 1 + x 1 + x 2 x 1 x 2 , x 5k = 1 + x 1 x 2 .
For a ≥ 2 though, the sequence (x k ) is no longer periodic and A Σ has infinitely many cluster variables. The first deep results of this theory shown by Fomin and Zelevinsky are: [START_REF] Fomin | Cluster algebras I: Foundations[END_REF], [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF]). (i) Every cluster variable of A Σ is a Laurent polynomial with coefficients in Z in the cluster variables of any single fixed cluster.

Theorem 2.1 ([
(ii) A Σ has finitely many clusters if and only if the mutation class C(Σ) contains a seed whose quiver is an orientation of a Dynkin diagram of type A, D, E.

One important open problem [START_REF] Fomin | Cluster algebras I: Foundations[END_REF] is to prove that the coefficients of the Laurent polynomials in (i) are always positive. In §9 below, we give a (conjectural) representation-theoretical explanation of this positivity for a certain class of cluster algebras. More positivity results, based on combinatorial or geometric descriptions of these coefficients, have been obtained by Musiker, Schiffler and Williams [START_REF] Musiker | Positivity for cluster algebras from surfaces[END_REF], and by Nakajima [START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF].

The cluster structure of C[N ]

To attack Problem 1.1 we adopt the following strategy. We endow C[N ] with the structure of a cluster algebra2 . Then we show that all cluster monomials belong to S * , and therefore we obtain a large family of elements of S * which can be calculated by the combinatorial algorithm of mutation.

In [2, §2.6] explicit initial seeds for a cluster algebra structure in the coordinate ring of the big cell of the base affine space G/N were described. A simple modification yields initial seeds for C[N ] (see [START_REF] Geiss | Auslander algebras and initial seeds for cluster algebras[END_REF]).

For instance, if G = SL 4 and N is the subgroup of upper unitriangular matrices, one of these seeds is

((D 1,2 , D 1,3 , D 12,23 , D 1,4 , D 12,34 , D 123,234 ), Q),
where Q is the triangular quiver:

1 Ð Ð Ñ Ñ Ñ Ñ 2 Ð Ð Ñ Ñ Ñ Ñ G G 3 a a a a Ð Ð Ñ Ñ Ñ Ñ 4 G G 5 a a a a G G 6 a a a a
Here, by D I,J we mean the regular function on N which associates to a matrix its minor with row-set I and column-set J. Moreover, the variables

x 4 = D 1,4 , x 5 = D 12,34 , x 6 = D 123,234
are frozen, i.e. they cannot be mutated, and therefore they belong to every cluster. Using Theorem 2.1, it is easy to prove that this cluster algebra has finitely many clusters, namely 14 clusters and 12 cluster variables if we count the 3 frozen ones.

In general however, that is, for groups G other than SL n with n ≤ 5, the cluster structure of C[N ] has infinitely many cluster variables. To relate the cluster monomials to S * we have to bring the preprojective algebra into the picture.

The preprojective algebra

Let Q denote the quiver obtained from the Dynkin diagram of g by replacing every edge by a pair (α, α * ) of opposite arrows. Consider the element

ρ = (αα * -α * α)
of the path algebra CQ of Q, where the sum is over all pairs of opposite arrows. Following [START_REF] Gelfand | Model algebras and representations of graphs[END_REF][START_REF] Ringel | The preprojective algebra of a quiver, Algebras and modules[END_REF], we define the preprojective algebra Λ as the quotient of CQ by the two-sided ideal generated by ρ. This is a finite-dimensional selfinjective algebra, with infinitely many isomorphism classes of indecomposable modules, except if g has type A n with n ≤ 4. It is remarkable that these few exceptional cases coincide precisely with the cases when C[N ] has finitely many cluster variables. Moreover, it is a nice exercise to verify that the number of indecomposable Λ-modules is then equal to the number of cluster variables. This suggests a close relationship in general between Λ and C[N ]. To describe it we start with Lusztig's Lagrangian construction of the enveloping algebra U (n) [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF][START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF]. This is a realization of U (n) as an algebra of C-valued constructible functions over the varieties of representations of Λ.

To be more precise, we need to introduce more notation. Let S i (1 ≤ i ≤ n) be the one-dimensional Λ-modules attached to the vertices i of Q. Given a sequence i = (i 1 , . . . , i d ) and a Λ-module X of dimension d, we introduce the variety F X,i of flags of submodules d. This is a projective variety. Denote by Λ d the variety of Λ-modules X with a given dimension vector d = (d i ), where

f = (0 = F 0 ⊂ F 1 ⊂ • • • ⊂ F d = X) such that F k /F k-1 ∼ = S i k for k = 1, . . . ,
i d i = d. Consider the constructible function χ i on Λ d given by χ i (X) = χ(F X,i )
where χ denotes the Euler-Poincaré characteristic. Let M d be the C-vector space spanned by the functions χ i for all possible sequences i of length d, and let

M = d∈N n M d .
Lusztig has endowed M with an associative multiplication which formally resembles a convolution product, and he has shown that, if we denote by e i the Chevalley generators of n, there is an algebra isomorphism U (n) ∼ → M mapping the product e i1 • • • e i d to χ i for every i = (i 1 , . . . , i d ). Now, following [START_REF] Geiss | Semicanonical bases and preprojective algebras[END_REF][START_REF] Geiss | Rigid modules over preprojective algebras[END_REF], we dualize the picture. Every X ∈ mod Λ determines a linear form δ X on M given by

δ X (f ) = f (X), (f ∈ M).
Using the isomorphisms

M * ≃ U (n) * ≃ C[N ], the form δ X corresponds to an element ϕ X of C[N ],
and we have thus attached to every object X in mod Λ a polynomial function ϕ X on N . For example, if g is of type A 3 , and if we denote by P i the projective cover of S i in mod Λ, one has

ϕ P1 = D 123,234 , ϕ P2 = D 12,34 , ϕ P3 = D 1,4 .
More generally, the functions ϕ X corresponding to the 12 indecomposable Λmodules are the 12 cluster variables of C[N ].

Via the correspondence X → ϕ X the ring C[N ] can be regarded as a kind of Hall algebra of the category mod Λ. Indeed the multiplication of C[N ] encodes extensions in mod Λ, as shown by the following crucial result. Before stating it, we recall that mod Λ possesses a remarkable symmetry with respect to extensions, namely,

Ext 1 Λ (X, Y ) is isomorphic to the dual of Ext 1 Λ (Y, X)
functorially in X and Y (see [START_REF] Crawley-Boevey | On the exceptional fibres of Kleinian singularities[END_REF][START_REF] Geiss | Semicanonical bases and preprojective algebras II: A multiplication formula[END_REF]). In particular dim Ext

1 Λ (X, Y ) = dim Ext 1 Λ (Y, X) for every X, Y . Theorem 4.1 ([22, 25]). Let X, Y ∈ mod Λ. (i) We have ϕ X ϕ Y = ϕ X⊕Y .
(ii) Assume that dim Ext 1 Λ (X, Y ) = 1, and let

0 → X → L → Y → 0 and 0 → Y → M → X → 0 be non-split short exact sequences. Then ϕ X ϕ Y = ϕ L + ϕ M .
In fact [START_REF] Geiss | Semicanonical bases and preprojective algebras II: A multiplication formula[END_REF] contains a formula for ϕ X ϕ Y valid for any dimension of Ext 1 Λ (X, Y ), but we will not need it here. As a simple example of (ii) in type A 2 , one can take X = S 1 and Y = S 2 . Then we have the non-split short exact sequences [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF] on the unitriangular subgroup of SL 3 . More generally, the short Plücker relations in SL n+1 can be obtained as instances of (ii).

0 → S 1 → P 2 → S 2 → 0 and 0 → S 2 → P 1 → S 1 → 0, which imply the relation ϕ S1 ϕ S2 = ϕ P2 +ϕ P1 , that is, the elementary determinantal relation D 1,2 D 2,3 = D 1,3 + D 12,
We note that Theorem 4.1 is the analogue for mod Λ of a formula of Caldero and Keller [START_REF] Caldero | From triangulated categories to cluster algebras[END_REF] for the cluster categories introduced by Buan, Marsh, Reineke, Reiten and Todorov [START_REF] Buan | Tilting theory and cluster combinatorics[END_REF] to model cluster algebras with an acyclic seed. Cluster categories are not abelian, but Keller [START_REF] Keller | On triangulated orbit categories[END_REF] has shown that they are triangulated, so in this setting exact sequences are replaced by distinguished triangles.

The dual semicanonical basis S *

We can now introduce the basis S * of the vector space C[N ]. Let d = (d i ) be a dimension vector. The variety E d of representations of CQ with dimension vector d is a vector space of dimension 2 d i d j , where the sum is over all pairs {i, j} of vertices of the Dynkin diagram which are joined by an edge. This vector space has a natural symplectic structure. Lusztig [START_REF] Lusztig | Quivers, perverse sheaves, and quantized enveloping algebras[END_REF] has shown that Λ d is a Lagrangian subvariety of E d , and that the number of its irreducible components is equal to the dimension of the degree d homogeneous component of U (n) (for the standard N n -grading given by the Chevalley generators). Let Z be an irreducible component of Λ d . Since the map ϕ : X → ϕ X is a constructible map on Λ d , it is constant on a Zariski open subset of Z. Let ϕ Z denote this generic value of ϕ on Z. Then, if we denote by I = ⊔ d I d the collection of all irreducible components of all varieties Λ d , one can easily check that [START_REF] Lusztig | Semicanonical bases arising from enveloping algebras[END_REF], and called by him the semicanonical basis.

S * = {ϕ Z | Z ∈ I} is dual to the basis S = {f Z | Z ∈ I} of M ∼ = U (n) constructed by Lusztig in
For example, if g is of type A n and N is the unitriangular subgroup in SL n+1 , then all the matrix minors D I,J which do not vanish identically on N belong to S * [START_REF] Geiss | Semicanonical bases and preprojective algebras[END_REF]. They are of the form ϕ X , where X is a subquotient of an indecomposable projective Λ-module.

More generally, suppose that X is a rigid Λ-module, i.e. that Ext 1 Λ (X, X) = 0. Then X is a generic point of the unique irreducible component Z on which it sits, that is, ϕ X = ϕ Z belongs to S * , so the calculation of ϕ Z amounts to evaluating the Euler characteristics χ(F X,i ) for every i (of course only finitely many varieties F X,i are non-empty). Thus in type A 3 , the nilpotent endomorphism X of §1 can be regarded as a rigid Λ-module with dimension vector d = (1, 2, 1), and the connected components of F X are just the non-trivial varieties F X,i , namely [START_REF] Berenstein | Cluster algebras III: Upper bounds and double Bruhat cells[END_REF][START_REF] Berenstein | Cluster algebras III: Upper bounds and double Bruhat cells[END_REF][START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF][START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(n, 1, m)[END_REF] .

F X,(2,1,2,3) , F X,(2,3,2,1) , F X,(2,2,1,3) , F X,
Note however that if g is not of type A n (n ≤ 4), there exist irreducible components Z ∈ I whose generic points are not rigid Λ-modules.

Rigid Λ-modules

Let r be the number of positive roots of g. Equivalently r is the dimension of the affine space N . This is also the number of elements of every cluster of C[N ] (if we include the frozen variables). Geiss and Schröer have shown [START_REF] Geiss | Extension-orthogonal components of preprojective varieties[END_REF] that the number of pairwise non-isomorphic indecomposable direct summands of a rigid Λ-module is bounded above by r. A rigid module with r non-isomorphic indecomposable summands is called maximal. We will now see that the seeds of the cluster structure of C[N ] come from maximal rigid Λ-modules.

Let T = T 1 ⊕• • •⊕T r be a maximal rigid module, where every T i is indecomposable. Define B = End Λ T , a basic finite-dimensional algebra with simple modules s i (1 ≤ i ≤ r). Denote by Γ T the quiver of B, that is, the quiver with vertex set {1, . . . , r} and d ij arrows from i to j, where d ij = dim Ext 1 B (s i , s j ). Theorem 6.1 ( [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF]). The quiver Γ T has no loops nor 2-cycles.

Define Σ(T ) = ((ϕ T1 , . . . , ϕ Tr ), Γ T ).

Theorem 6.2 ([24]

). There exists an explicit maximal rigid Λ-module U such that Σ(U ) is one of the seeds of the cluster structure of C[N ].

Let us now lift the notion of seed mutation to the category mod Λ.

Theorem 6.3 ([23]

). Let T k be a non-projective indecomposable summand of T . There exists a unique indecomposable module

T * k ∼ = T k such that (T /T k ) ⊕ T * k is maximal rigid.
We call (T /T k ) ⊕ T * k the mutation of T in direction k, and denote it by µ k (T ). The proof of the next theorem relies among other things on Theorem 4.1. It follows immediately that the cluster monomials of C[N ] belong to S * . Indeed, by (ii) every cluster monomial is of the form

ϕ a1 T1 • • • ϕ ar Tr = ϕ T a 1 1 ⊕•••⊕T ar
r , (a 1 , . . . , a r ∈ N), some maximal rigid module T = T 1 ⊕ • • • ⊕ T r , and therefore belongs to S * because T a1 1 ⊕ • • • ⊕ T ar r is rigid. Thus the cluster monomials form a large subset of S * which can (in principle) be calculated algorithmically by iterating the seed mutation algorithm from an explicit initial seed. This is our partial answer to Problem 1.1.

Of course, these results also give a better understanding of the cluster structure of C[N ]. For instance they show immediately that the cluster monomials are linearly independent (a general conjecture of Fomin and Zelevinsky). Furthermore, they suggest the definition of new cluster algebra structures on the coordinate rings of unipotent radicals of parabolic subgroups of G, obtained in a similar manner from some appropriate Frobenius subcategories of mod Λ (see [START_REF] Geiss | Partial flag varieties and preprojective algebras[END_REF]). One can also develop an analogous theory for finite-dimensional unipotent subgroups N (w) of a Kac-Moody group attached to elements w of its Weyl group (see [START_REF] Buan | Cluster structures for 2-Calabi-Yau categories and unipotent groups[END_REF][START_REF] Geiss | Kac-Moody groups and cluster algebras[END_REF]).

Finite-dimensional representations of U q (Lg)

We now turn to Problem 1.2. We need to recall some known facts about the category mod U q (Lg)3 of finite-dimensional modules over U q (Lg).

By construction, U q (Lg) contains a copy of U q (g), so in a sense the representation theory of U q (Lg) is a refinement of that of U q (g). Let ̟ i (1 ≤ i ≤ n) be the fundamental weights of g, and denote by

P = n i=1 Z̟ i , P + = n i=1 N̟ i ,
the weight lattice and the monoid of dominant integral weights. It is well known that mod U q (g) is a semisimple tensor category, with simple objects L(λ) parametrized by λ ∈ P + . In fact, every M ∈ mod U q (g) has a decomposition

M = µ∈P M µ (3) 
into eigenspaces for a commutative subalgebra A of U q (g) coming from a Cartan subalgebra of g. One shows that if M is irreducible, the highest weight occuring in ( 3) is a dominant weight λ, dim M λ = 1, and there is a unique simple U q (g)module with these properties, hence the notation M = L(λ). For an arbitrary M ∈ mod U q (g), the formal sum

χ(M ) = µ∈P dim M µ e µ
is called the character of M , since it characterizes M to isomorphism. When dealing with representations of U q (Lg) one needs to introduce spectral parameters z ∈ C * , and therefore P and P + have to be replaced by

P = 1≤i≤n, z∈C * Z(̟ i , z), P + = 1≤i≤n, z∈C * N(̟ i , z).
It was shown by Chari and Pressley [START_REF] Chari | Quantum affine algebras[END_REF][START_REF] Chari | Quantum affine algebras and their representations[END_REF] that finite-dimensional irreducible representations of U q (Lg) were similarly determined by their highest l-weight λ ∈ P + (where l stands for "loop"). This comes from the existence of a large commutative subalgebra A of U q (Lg) containing A. If M ∈ mod U q (Lg) is regarded as a U q (g)module by restriction and decomposed as in (3), then every U q (g)-weight-space M µ has a finer decomposition into generalized eigenspaces for A

M µ = µ∈ P M µ where the µ = k m i k (̟ i k , z k ) in the right-hand side all satisfy k m i k ̟ i k = µ.
The corresponding formal sum

χ q (M ) = µ∈ P dim M µ e µ
has been introduced by Frenkel and Reshetikhin [START_REF] Frenkel | The q-characters of representations of quantum affine algebras, Recent developments in quantum affine algebras and related topics[END_REF] and called by them the q-character of M . It characterizes the class of M in the Grothendieck ring of mod U q (Lg), but one should be warned that this is not a semisimple category, so this is much coarser than an isomorphism class.

For instance, the 4-dimensional irreducible representation V 3 of U q (sl 2 ) with highest weight λ = 3̟ 1 has character

χ(V 3 ) = Y 3 + Y 1 + Y -1 + Y -3
if we set Y = e ̟1 . There is a family W 3,z ∈ mod U q (Lsl 2 ) of affine analogues of V 3 , parametrized by z ∈ C * , whose q-character is given by

χ q (W 3,z ) = Y z Y zq 2 Y zq 4 + Y z Y zq 2 Y -1 zq 6 + Y z Y -1 zq 4 Y -1 zq 6 + Y -1 zq 2 Y -1 zq 4 Y -1 zq 6 ,
where we write Y a = e (̟1,a) for a ∈ C * . Thus W 3,z has highest l-weight

λ = (̟ 1 , z) + (̟ 1 , zq 2 ) + (̟ 1 , zq 4 ).
The reader can easily imagine what is the general expression of χ q (W n,z ) for any (n, z) ∈ N×C * . It follows that there is a closed formula for the q-character of every finite-dimensional irreducible U q (Lsl 2 )-module since, as already mentioned, every such module factorizes as a tensor product of W ni,zi and the factors are given by a simple combinatorial rule [START_REF] Chari | Quantum affine algebras[END_REF].

The situation is far more complicated in general. In particular it is not always possible to endow an irreducible U q (g)-module with the structure of a U q (Lg)module. The only general description of q-characters of simple U q (Lg)-modules, due to Ginzburg and Vasserot for type A [START_REF] Ginzburg | Langlands reciprocity for affine quantum groups of type An[END_REF] and to Nakajima in general [START_REF] Nakajima | Quiver varieties and finite-dimensional representations of quantum affine algebras[END_REF], uses intersection cohomology of certain moduli spaces of representations of graded preprojective algebras, called graded quiver varieties. This yields a Kazhdan-Lusztig type algorithm for calculating the irreducible q-characters [START_REF] Nakajima | Quiver varieties and t-analogs of q-characters of quantum affine algebras[END_REF], but this type of combinatorics does not easily reveal the possible factorizations of the q-characters.

The subcategories C ℓ

It can be shown that Problem 1.2 for mod U q (Lg) can be reduced to the same problem for some much smaller tensor subcategories C ℓ (ℓ ∈ N) which we shall now introduce.

Denote by L( λ) the simple object of mod U q (Lg) with highest l-weight λ ∈ P + . Since the Dynkin diagram of g is a tree, it is a bipartite graph. We denote by I = I 0 ⊔ I 1 the corresponding partition of the set of vertices, and we write ξ i = 0 (resp.

ξ i = 1) if i ∈ I 0 (resp. i ∈ I 1 ). For ℓ ∈ N, let P +,ℓ = 1≤i≤n, 0≤k≤ℓ N(̟ i , q ξi+2k ).
We then define C ℓ as the full subcategory of mod U q (Lg) whose objects M have all their composition factors of the form L( λ) with λ ∈ P +,ℓ . It is not difficult to prove [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] that C ℓ is a tensor subcategory, and that its Grothendieck ring K 0 (C ℓ ) is the polynomial ring in the n(ℓ + 1) classes of fundamental modules [L(̟ i , q ξi+2k )],

(1

≤ i ≤ n, 0 ≤ k ≤ ℓ).
For example, let W (i) j,a denote the simple object of mod U q (Lg) with highest l-weight

(̟ i , a) + (̟ i , aq 2 ) + • • • + (̟ i , aq 2j-2 ), (i ∈ I, j ∈ N * , a ∈ C * ),
a so-called Kirillov-Reshetikhin module. The q-characters of the Kirillov-Reshetikhin modules satisfy a nice system of recurrence relations, called T -system in the physics literature, which allows to calculate them inductively in terms of the qcharacters of the fundamental modules L(̟ i , a). This was conjectured by Kuniba, Nakanishi and Suzuki [START_REF] Kuniba | Functional relations in solvable lattice models. I. Functional relations and representation theory[END_REF], and proved by Nakajima [START_REF] Nakajima | t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras[END_REF] (see also [START_REF] Hernandez | The Kirillov-Reshetikhin conjecture and solutions of T -systems[END_REF] for the non simply-laced cases). The q-characters of the fundamental modules can in turn be calculated by means of the Frenkel-Mukhin algorithm [START_REF] Frenkel | Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras[END_REF]. One should therefore regard the Kirillov-Reshetikhin modules as the most "accessible" simple U q (Lg)modules. There are n(ℓ + 1)(ℓ + 2)/2 such modules in C ℓ , namely:

W (i) j,q ξ i +2k , (i ∈ I, 0 < j ≤ ℓ + 1, 0 ≤ k ≤ ℓ + 1 -j).

The cluster algebras A ℓ

Let Q denote the quiver obtained by orienting the Dynkin diagram of g so that every i ∈ I 0 (resp. i ∈ I 1 ) is a source (resp. a sink). We define a new quiver Γ ℓ with vertex set {(i, k) | i ∈ I, 1 ≤ k ≤ ℓ + 1}. There are three types of arrows (a) arrows (i, k) → (j, k) for every arrow i → j in Q and every 1 ≤ k ≤ ℓ + 1;

(b) arrows (j, k) → (i, k + 1) for every arrow i → j in Q and every 1 ≤ k ≤ ℓ;

(c) arrows (i, k) ← (i, k + 1) for every i ∈ I and every 1 ≤ k ≤ ℓ.

For example, if g has type A 3 and I 0 = {1, 3}, the quiver Γ 3 is:

(1, 1) 

7 7 t t
W W t t t (3, 2) o o W W t t t (3, 3) o o W W t t t (3, 4) o o W W t t t Let x = {x (i,k) | i ∈ I, 1 ≤ k ≤ ℓ + 1}
be a set of indeterminates corresponding to the vertices of Γ ℓ , and consider the seed (x, Γ ℓ ) in which the n variables x (i,ℓ+1) (i ∈ I) are frozen. This is the initial seed of a cluster algebra A ℓ ⊂ Q(x).

By Theorem 2.1, if g has type A 1 then A ℓ has finite cluster type A ℓ . Also, if ℓ = 1, A ℓ has finite cluster type equal to the Dynkin type of g. Otherwise, except for a few small rank cases, A ℓ has infinitely many cluster variables.

Our partial conjectural solution of Problem 1.2 can be summarized as follows (see [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] for more details): Conjecture 9.1. There is a ring isomorphism ι ℓ :

A ℓ ∼ → K 0 (C ℓ ) such that ι ℓ (x (i,k) ) = W (i) k, q ξ i +2(ℓ+1-k) , (i ∈ I, 1 ≤ k ≤ ℓ + 1).
The images by ι ℓ of the cluster variables are classes of prime simple modules, and the images of the cluster monomials are the classes of all real simple modules in C ℓ , i.e. those simple modules whose tensor square is simple.

Thus, if true, Conjecture 9.1 gives a combinatorial description in terms of cluster algebras of the prime tensor factorization of every real simple module. Note that, by definition, the square of a cluster monomial is again a cluster monomial. This explains why cluster monomials can only correspond to real simple modules. For g = sl 2 , all simple U q (Lg)-modules are real. However for g = sl 2 there exist imaginary simple U q (Lg)-modules (i.e. simple modules whose tensor square is not simple), as shown in [START_REF] Leclerc | Imaginary vectors in the dual canonical basis of Uq(n)[END_REF]. This is consistent with the expectation that a cluster algebra with infinitely many cluster variables is not spanned by its set of cluster monomials.

We arrived at Conjecture 9.1 by noting that the T -system equations satisfied by Kirillov-Reshetikhin modules are of the same form as the cluster exchange relations. This was inspired by the seminal work of Fomin and Zelevinsky [START_REF] Fomin | Y -systems and generalized associahedra[END_REF], in which cluster algebra combinatorics is used to prove Zamolodchikov's periodicity conjecture for Y -systems attached to Dynkin diagrams. Kedem [START_REF] Kedem | Q-systems as cluster algebras[END_REF] and Di Francesco [START_REF] Di Francesco | Q-systems as cluster algebras II: Cartan matrix of finite type and the polynomial property[END_REF], Keller [START_REF] Keller | Cluster algebras, quiver representations and triangulated categories[END_REF][START_REF] Keller | The periodicity conjecture for pairs of Dynkin diagrams[END_REF], Inoue, Iyama, Kuniba, Nakanishi and Suzuki [START_REF] Inoue | Periodicities of T -systems and Y -systems[END_REF], have also exploited the similarity between cluster exchange relations and other types of functional equations arising in mathematical physics (Q-systems, generalized T -systems, Y -systems attached to pairs of simply-laced Dynkin diagrams). Recently, Inoue, Iyama, Keller, Kuniba and Nakanishi [START_REF] Inoue | Periodicities of T -systems and Y -systems, dilogarithm identities, and cluster algebras I: Type Br[END_REF][START_REF] Inoue | Periodicities of T -systems and Y -systems, dilogarithm identities, and cluster algebras II: Type Cr, F4, and G2[END_REF] have obtained a proof of the periodicity conjecture for all T -systems and Y -systems attached to a non simply-laced quantum affine algebra.

As evidence for Conjecture 9.1, we can easily check that for g = sl 2 and any ℓ ∈ N, it follows from the results of Chari and Pressley [START_REF] Chari | Quantum affine algebras[END_REF]. On the other hand, for arbitrary g we have: This was first proved in [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] for type A and D 4 by combinatorial and representation-theoretic methods, and soon after, by Nakajima [START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF] in the general case, by using the geometric description of the simple U q (Lg)-modules. In both approaches, a crucial part of the proof can be summarized in the following chart:

F -polynomials ↔ quiver Grassmannians q-characters ↔ Nakajima quiver varieties
Here, the F -polynomials are certain polynomials introduced by Fomin and Zelevinsky [START_REF] Fomin | Cluster algebras IV: Coefficients[END_REF] which allow to calculate the cluster variables in terms of a fixed initial seed. By work of Caldero-Chapoton [START_REF] Caldero | Cluster algebras as Hall algebras of quiver representations[END_REF], Fu-Keller [START_REF] Fu | On cluster algebras with coefficients and 2-Calabi-Yau categories[END_REF] and Derksen-Weyman-Zelevinsky [START_REF] Derksen | Quivers with potentials and their representations I: Mutations[END_REF][START_REF] Derksen | Quivers with potentials and their representations II: Applications to cluster algebras[END_REF], F -polynomials have a geometric description via Grassmannians of subrepresentations of some quiver representations attached to cluster variables: this is the upper horizontal arrow of our diagram. The lower horizontal arrow refers to the already mentioned relation between irreducible q-characters and perverse sheaves on quiver varieties established by Nakajima [START_REF] Nakajima | Quiver varieties and finite-dimensional representations of quantum affine algebras[END_REF][START_REF] Nakajima | Quiver varieties and t-analogs of q-characters of quantum affine algebras[END_REF]. In [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] we have shown that the F -polynomials for A 1 are equal to certain natural truncations of the corresponding irreducible q-characters of C 1 (the left vertical arrow), and we observed that this yielded an alternative geometric description of these q-characters in terms of ordinary homology of quiver Grassmannians. In [START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF] Nakajima used a Deligne-Fourier transform to obtain a direct relation between perverse sheaves on quiver varieties for C 1 and homology of quiver Grassmannians (the right vertical arrow), and deduced from it the desired connection with the cluster algebra A 1 .

The other main step in the approach of [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF] is a certain tensor product theorem for the category C 1 . It states that a tensor product S 1 ⊗ • • • ⊗ S k of simples objects of C 1 is simple if and only if S i ⊗ S j is simple for every pair 1 ≤ i < j ≤ k. A generalization of this theorem to the whole category mod U q (Lg) has been recently proved by Hernandez [START_REF] Hernandez | Simple tensor products[END_REF]. Note that the theorem of Hernandez is also valid for non simply-laced Lie algebras g, and thus opens the way to a similar treatment of Problem 1.2 in this case.

Conjecture 9.1 has also been checked for g of type A 2 and ℓ = 2 [33, §13]. In that small rank case, A 2 still has finite cluster type D 4 , and this implies that C 2 has only real objects. There are 18 explicit prime simple objects with respective dimensions 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 8, 8, 8, 10, 10, 15, 15, 35, and 50 factorization patterns (corresponding to the 50 vertices of a generalized associahedron of type D 4 [START_REF] Fomin | Cluster algebras II: Finite type classification[END_REF]). Our proof in this case is quite indirect and uses a lot of ingredients: the quantum affine Schur-Weyl duality, Ariki's theorem for type A affine Hecke algebras [START_REF] Ariki | On the decomposition numbers of the Hecke algebra of G(n, 1, m)[END_REF], the coincidence of Lusztig's dual canonical and dual semicanonical bases of C[N ] in type A 4 [START_REF] Geiss | Semicanonical bases and preprojective algebras[END_REF], and Theorem 6.4.

One remarkable consequence of Theorem 9.2 from the point of view of cluster algebras is that it immediately implies the positivity conjecture of Fomin and Zelevinsky for the cluster algebras A 1 with respect to any reference cluster (see [33, §2]). Conjecture 9.1 would similarly yield positivity for the whole class of cluster algebras A ℓ .

An intriguing relation

Problem 1.1 and Problem 1.2 may not be as unrelated as it would first seem. For a suggestive example, let us take g of type A 3 . In that case, the abelian category mod Λ has 12 indecomposable objects (which are all rigid), 3 of them being projective-injective. On the other hand the tensor category C 1 has 12 prime simple objects (which are all real), 3 of them having the property that their tensor product with every simple of C 1 is simple. It is easy to check that C[N ] and C⊗ Z K 0 (C 1 ) are isomorphic as (complexified) cluster algebras with frozen variables. Therefore we have a unique one-to-one correspondence X ↔ S between rigid objects X of mod Λ and simple objects S of C 1 such that

ϕ X ≡ [S],
that is, such that X and S project to the same cluster monomial. In this correspondence, direct sums X ⊕ X ′ map to tensor products S ⊗ S ′ . It would be interesting to find a general framework for relating in a similar way, via cluster algebras, certain additive categories such as mod Λ to certain tensor categories such as C 1 . We refer to [START_REF] Keller | Algèbres amassées et applications, Séminaire Bourbaki[END_REF] for a very accessible survey of these ideas.

  adding a new arrow i → j for every existing pair of arrows i → k and k → j; (b) reversing the orientation of every arrow with target or source equal to k; (c) erasing every pair of opposite arrows possibly created by (a).

Theorem 6 . 4 (

 64 [START_REF] Geiss | Rigid modules over preprojective algebras[END_REF]). (i) We have Σ(µ k (T )) = µ k (Σ(T )), where in the righthand side µ k stands for the Fomin-Zelevinsky seed mutation.(ii) The map T → Σ(T ) gives a one-to-one correspondence between the maximal rigid modules in the mutation class of U and the clusters of C[N ].

Theorem 9 . 2 (

 92 [START_REF] Hernandez | Cluster algebras and quantum affine algebras[END_REF][START_REF] Nakajima | Quiver varieties and cluster algebras[END_REF]). Conjecture 9.1 holds for g of type A, D, E and ℓ = 1.

For simplicity we only consider a particular subclass of cluster algebras: the antisymmetric cluster algebras of geometric type. This is sufficient for our purpose.

Here we mean that C[N ] = C ⊗ Z A for some cluster algebra A contained in C[N ].

We only consider modules of type 1, a mild technical condition, see e.g. [8, §12.2 B].
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