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SHAO’S THEOREM ON THE MAXIMUM OF STANDARDIZED RANDOM
WALK INCREMENTS FOR MULTIDIMENSIONAL ARRAYS

Zakhar Kabluchko1 and Axel Munk1

Abstract. We generalize a theorem of Shao (1995, Proc. Am. Math. Soc. 123, 575-582) on the
almost-sure limiting behavior of the maximum of standardized random walk increments to multidi-
mensional arrays of i.i.d. random variables. The main difficulty is the absence of an appropriate strong
approximation result in the multidimensional setting. The multiscale statistic under consideration was
used recently for the selection of the regularization parameter in a number of statistical algorithms as
well as for the multiscale signal detection.
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1. Introduction

Let {Xi : i ∈ N} be a sequence of i.i.d. random variables satisfying E[X1] = 0, E[X2
1 ] = 1. Suppose that the

logarithmic moment generating function ϕ(θ) = log E[eθX1 ] is finite for some θ > 0. Define the Cramér-Chernoff
and the Erdös-Rényi functions by

I(t) = sup
θ≥0

(θt− ϕ(θ)), t ≥ 0 and α(c) = sup{t ≥ 0 : I(t) ≤ 1/c}, c > 0. (1)

Let Sn = X1 + . . . + Xn, S0 = 0 be the random walk generated by {Xi} and let

Ln = max
0≤i<j≤n

Sj − Si√
j − i

. (2)

be the maximum of standardized random walk increments.
In the first edition of his book [15] Révész gave upper and lower bounds for the almost-sure limiting behav-
ior of Ln in the case of Bernoulli-distributed summands [15, Th. 14.16] and conjectured that in this case
limn→∞ Ln/

√
2 log n = 1 a.s. Establishing a general version of Révész conjecture, Shao [18] proved that

lim
n→∞

Ln/
√

2 log n = α∗ ∈ [1,∞] a.s., (3)
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where α∗ = supc>0 α(c)
√

c/2. If Xi are normal or Bernoulli distributed, then α∗ = 1. Shao showed that α∗ is
finite if and only if E exp(sX+2

1 ) < ∞ for some s > 0, where X+
1 = max(X1, 0). It follows from [18, Lemma 1]

that there are distributions with 1 < α∗ < ∞.
Shao’s proof was considerably simplified by Steinebach [20], who deduced Shao’s theorem from the Erdös-Renyi
law of large numbers and the following auxiliary result:

lim
n→∞

max
0≤i<j≤n
k:=j−i

Sj − Si

kα(k/ log n)
= 1 a.s. (4)

Our goal is to extend (3) and (4) to multidimensional arrays of i.i.d. random variables. Both Shao and Steinebach
use in their proofs results of Hanson and Russo [11], which are based on the classical strong approximation
theorem [13]. It is well known that extending strong approximation theorems to the case of multidimensional
indices is non-trivial and in many cases only possible with an approximation rate which is weaker than the rate
in the one-dimensional case. For example, the approximation rate given in Theorem 4 of [10] is too weak for
our purposes, whereas Theorem 1.2 of [16], which gives a sufficiently strong rate, is true only in two dimensions.
We use a completely elementary method which does not rely on strong approximation.
To state our results let {Xn : n = (n1, . . . , nd) ∈ Nd} be a d-dimensionally indexed array of i.i.d. random
variables satisfying the following conditions

i) E[Xn] = 0, E[X2
n] = 1

ii) the logarithmic moment generating function ϕ(θ) = log E[eθXn ] is finite for some θ > 0.

We denote multi-indices by m = (m1, . . . ,md), n = (n1, . . . , nd) etc. If mi ≤ ni for all i = 1, . . . , d, we write
m ≤ n. Define |n| = ∏d

i=1 ni. We say that n →∞ if |n| → ∞.
A set of the form

R(m,n) = {m1, . . . , n1} × . . .× {md, . . . , nd}, m ≤ n,

is called discrete rectangle. In order to simplify the notation we write R(n) for the discrete rectangle

R((1, . . . , 1),n) = {1, . . . , n1} × . . .× {1, . . . , nd}.

Let R = {R(m,n) | m ≤ n,m,n ∈ Nd} be the collection of all discrete rectangles and R(n) the collection of
all discrete rectangles contained in R(n). For a discrete rectangle R define

SR =
∑

n∈R

Xn.

The multidimensional analogue the maximum of standardized random walk increments (2) is then defined by

L(n) = max
R∈R(n)

SR√
|R| ,

where |A| stands for the number of elements of a finite set A.
Our goal is to prove the following theorem which is a higher-dimensional generalization of (3).

Theorem 1.1. Let {Xn : n ∈ Nd} be a d−dimensional array of i.i.d. random variables satisfying conditions i)
and ii). Then, with the above notation,

lim
n→∞

L(n)/
√

2 log |n| = α∗ a.s.

The following theorem is a multidimensional analogue of (4).



TITLE WILL BE SET BY THE PUBLISHER 3

Theorem 1.2. Let {Xn : n ∈ Nd} be a d−dimensional array of i.i.d. random variables satisfying conditions i)
and ii). Then

lim
n→∞

max
R∈R(n)

SR

|R|α
(

|R|
log |n|

) = 1 a.s.

Some statistical applications of Theorems 1.1 and 1.2 will be briefly discussed in the next section. In Section 3
we will prove Theorem 1.1. Theorem 1.2 as well as the subsequent Theorem 2.1 can be proved by the same
methods. Note finally that all results remain true with the family of discrete rectangles replaced by the family
of discrete circles or cubes, the proofs remaining essentially the same.

2. Applications to statistical multiscale analysis

Statistical methods which aim for the simultaneous control of a family of statistics on different scales (here
indexed by the rectangles R) are sometimes denoted as statistical multiscale methods. We will briefly discuss
some potential applications of the preceding theorems to this situation.

Selection of the stopping index of the EM-algorithm in PET. Recently [1] introduced a multiscale statis-
tic similar to that in Theorem 1.2 for the proper selection of the stopping index of the expectation-maximisation
(EM) algorithm in positron emission tomography (PET). It has been known for a long time that proper stop-
ping of this algorithm is essential for a valid image reconstruction, albeit rigorous theoretical foundation of
this empirical fact is still missing. In PET from an inhomogeneous Poisson process (photon counts) an image
has to be recovered and the EM algorithm (and variants thereof) is one of the most prominent reconstruction
methods. In [1] it has been advocated to select the stopping index such that the corresponding residuals (instead
of Xn) satisfy an analogue to Theorem 1.2. This has been investigated numerically and its superiority to some
frequently used methods has been demonstrated.

Selection of the regularization parameter in penalized regression. Theorem 1.1 allows to extend the
method of Davies and Kovac [3] for the proper selection of the threshold parameter in nonparametric function
estimation to the multidimensional situation. More precisely, we will discuss the particular case of multivariate
TV-norm penalization [9], [12]. To this end we consider a d-variate regression model

Y (k/n) = f(k/n) + εk,

where {εk,k ≤ n} is a rectangular array of i.i.d. random variables satisfying i) and ii), n = (n, . . . , n) ∈ Nd,
n is a positive integer and f : [0, 1]d → R is a function of bounded variation. Let the multivariate estimate f̂n,λ,
λ > 0 of f be the minimizer of

∆n(g) =
∑

k≤n

(Y (k/n)− g(k/n))2 + λTV(g), g ∈ TV([0, 1]d),

see [9]. Then the analogous to [3] choice of the penalty parameter λ would be such that the residuals
rk(λ) = Y (k/n)− f̂n,λ(k/n) satisfy Theorem 1.1 with Xk replaced by rk(λ).

Multiscale signal detection. We would like to mention a further extension of (3) and (4), which is very nat-
ural from a statistical viewpoint. Let F be a probability distribution function which is for simplicity supposed
to have finite logarithmic moment generating function ϕ(θ) = log

∫
eθxdF (x) for all θ ∈ R. Suppose we are

given a finite rectangular array of observations {Xk : k ≤ n} and would like to test the hypothesis

H0 : the observations {Xk : k ≤ n} are i.i.d. with distribution dF
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against the alternative

H1 : there is λ ∈ R and a discrete rectangle R ∈ R(n) such that {Xk : k ∈ R} are independent with
distribution dF if k /∈ R and with distribution eθx−ϕ(θ)dF (x) if k ∈ R.

Thus, the zero hypothesis H0 says that the observations {Xk : k ≤ n} form an i.i.d. noise, whereas the
alternative H1 says that there is a rectangle where the observations are not distributed accordingly to F but
rather to some distribution from the exponential family generated by F , which may be interpreted as a presence
of a signal concentrated in the rectangle R. The likelihood ratio test rejects H0 if the value of the test statistic

max
R∈R(n)

|R|I
(

SR

|R|
)

(5)

is large, where I(t) = supθ∈R(θt− ϕ(θ)) denotes the Cramér-Chernoff information function.
The above statistic was introduced in [17] where its large deviations were studied. Similar but different statistics
were considered in [5], [6]. The next theorem describes the almost-sure limiting behavior of the statistic (5).

Theorem 2.1. Under the above assumptions we have

lim
n→∞

1
log |n| max

R∈R(n)
|R|I

(
SR

|R|
)

= 1 a.s.

The information function I is non-negative and has a unique zero at EX1, the expectation of X1. Thus, contrary
to the statistics from Theorems 1.1 and 1.2, the statistic (5) from Theorem 2.1 controls both positive and negative
deviations of the rectangular sums from their mean. The corresponding one-sided version of Theorem 2.1 may
be easily formulated.

3. Proof of the main theorem

In this section we prove Theorem 1.1. We need the following multidimensional generalization of the Erdös-Rényi
law of large numbers, see [4], [19].

Theorem 3.1. Let c > 0 and define cn = [c log |n|] for n ∈ Nd. Then

lim
n→∞

max
R∈R(n)
|R|=cn

SR

cn
= α(c) a.s.

The maximum is taken over all discrete rectangles in R(n) containing cn points.

Proof of Theorem 1.1. To prove the lower bound the method of [18] can be used. We have for every c > 0

lim inf
n→∞

1√
2 log |n| max

R∈R(n)

SR√
|R| ≥ lim inf

n→∞

√
c

2
max

R∈R(n)
|R|=[c log |n|]

SR

|R| ,

which is a.s. equal to
√

c
2α(c) by Theorem 3.1. It follows that

lim inf
n→∞

L(n)/
√

2 log |n| ≥ sup
c>0

√
c

2
α(c) = α∗ a.s.

The main difficulty is to prove the upper bound

lim sup
n→∞

1√
2 log |n| max

R∈R(n)

SR√
|R| ≤ α∗ a.s. (6)
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We may suppose that α∗ is finite since otherwise there is nothing to prove.
Write R∗(n) for the collection of all discrete rectangles whose top-right corner is n. That is, R∗(n) consists of
all rectangles of the form R(m,n), where m ≤ n. We split the set R∗(n) into ”small” and ”big” rectangles.
A rectangle is small if it contains not more than kn points, where the multidimensionally indexed sequence
{kn}n∈Nd is defined by kn = [log |n|]r for some r > 3. The upper bound (6) follows via the Borel-Cantelli lemma
from Lemmas 3.1 and 3.3 below, which estimate the maximum over small and big rectangles respectively.

Lemma 3.1. Let ε > 0. Then, for some δ > 0 and all sufficiently large n ∈ Nd,

P


 1√

2 log |n| max
R∈R∗(n)
|R|<kn

SR√
|R| > (1 + ε)α∗


 <

1
|n|1+δ

. (7)

Proof. It follows from the Markov inequality that P[SR/|R| > a] ≤ exp{−|R|I(a)} for each a > 0. Using this
as well as the convexity of the function I we obtain

P[SR/
√
|R| > (1 + ε)α∗

√
2 log |n|] = P[SR/|R| > (1 + ε)α∗

√
2 log |n|/|R|]

≤ exp{−|R|I((1 + ε)α∗
√

2 log |n|/|R|)}
≤ exp{−(1 + ε)|R|I(α∗

√
2 log |n|/|R|)}.

It follows from the definition of α∗ that I(α∗
√

2t) ≥ t for every t ≥ 0 and, consequently,

I(α∗
√

2 log |n|/|R|) ≥ log |n|/|R|.

It follows
P[SR/

√
|R| > (1 + ε)α∗

√
2 log |n|] ≤ exp{−(1 + ε)|R| log |n|/|R|} = |n|−(1+ε).

To finish the proof note that the number of rectangles R ∈ R∗(n) satisfying |R| < kn is certainly smaller than kd
n

and thus the left-hand side of (7) may be estimated from above by kd
n|n|−(1+ε) which is smaller than |n|−(1+δ)

for δ < ε and n sufficiently large. ¤
Now we are going to treat the maximum over big rectangles. In the one-dimensional case, both Shao [18]
and Steinebach [20] use to this end the results of Hanson-Russo [11]. However, as discussed above, the strong
approximation results needed in [11] are not known for d > 2. Thus, we need a different method not relying on
strong approximation. We use the following classical moderate deviations theorem, see e.g. [8, Chapter XVI,
§7].

Theorem 3.2. Let {Xi : i ∈ N} be i.i.d. random variables satisfying E[X1] = 0, E[X2
1 ] = 1 and let Sn be

the sequence of their partial sums. Suppose that E[etX1 ] is finite for some t > 0. Let {x(n)}n∈N be a sequence
satisfying x(n) = o(n1/6), n →∞. Then

P
[
Sn/

√
n > x(n)

] ∼ P[N > x(n)], n →∞,

where N is a standard normal variable.

We also need the following elementary lemma.

Lemma 3.2. Let {Xi : i ∈ N} be i.i.d. random variables satisfying E[X1] = 0, E[X2
1 ] = 1. Then there is

constant C depending only on the distribution of Xi such that for every k, n ∈ N, k ≤ n and every x > 0 we
have

P[Sk > x] ≤ CP[Sn > x].
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Proof. Since limi→∞P[Si ≥ 0] = 1/2 by the central limit theorem, there is c1 > 0 such that P[Si ≥ 0] > c1

for every i ∈ N. It follows that

P[Sn > x] ≥ P[Sk > x]P[Sn − Sk ≥ 0] = P[Sk > x]P[Sn−k ≥ 0] > c1P[Sk > x]

and the statement of the lemma follows with C = 1/c1. ¤
Now we are ready to estimate the maximum over big rectangles.

Lemma 3.3. Let ε > 0 be given. Then, for some δ > 0 and all sufficiently large n ∈ Nd,

P


 1√

2 log |n| max
R∈R∗(n)
|R|>kn

SR√
|R| > 1 + ε


 <

1
|n|1+δ

.

Proof. The statement of the lemma may be written in the following equivalent form

P


 1√

2 log |n| max
m≤n
|m|>kn

SR(m)√
|m| > 1 + ε


 <

1
|n|1+δ

.

Take σ > 1 so close to 1 that (σ − 1)−1/2 ε
2 > 2. We may suppose that σk /∈ N, k ∈ N. Let

K(n) = K(n, σ) = {k = (k1, . . . , kd) ∈ Nd
0 | σki < ni, i = 1, . . . , d}.

For k ∈ K(n) define discrete rectangles Q(k) = Q(k1, . . . , kd) and S(k) = S(k1, . . . , kd) by

Q(k) = {1, . . . , dσk1e} × . . .× {1, . . . , dσkde}

and
S(k) = Nd ∩ (

[σk1 , σk1+1]× . . .× [σkd , σkd+1]
)
.

For each m = (m1, . . . ,md) ≤ n one can find uniquely defined k = k(m) with m ∈ S(k). Let m∗ =
(dσk1e, . . . , dσkde) and m∗ = (bσk1+1c, . . . , bσkd+1c) be the bottom-left and top-right corners of the rectangle
S(k(m)). Note that R(m∗) = Q(k(m)). Define P (m) = R(m)\R(m∗). Then R(m) is a disjoint union of
R(m∗) and P (m) and it follows that

SR(m)√
|m| ≤

SR(m∗)√
|m∗|

+
SP (m)√
|m∗|

.

Thus

max
m≤n
|m|>kn

SR(m)√
|m| ≤ max

k∈K(n)
|Q(k)|>kn

SQ(k)√
|Q(k)| + max

m≤n
|m|>kn

SP (m)√
|m∗|

.

Thus, in order to prove the lemma, it suffices to prove that for some δ > 0

P


 1√

2 log |n| max
k∈K(n)
|Q(k)|>kn

SQ(k)√
|Q(k)| > 1 +

ε

2


 <

1
|n|1+δ

(8)

and

P


 1√

2 log |n| max
m≤n
|m|>kn

SP (m)√
|m∗|

>
ε

2


 <

1
|n|1+δ

. (9)
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In order to prove (8) note that the left-hand side of (8) is not greater than

∑

k∈K(n)
|Q(k)|>kn

P

[
SQ(k)√
|Q(k)| >

(
1 +

ε

2

)√
2 log |n|

]

It follows from |Q(k)| > kn and limn→∞ kn/(log |n|)3 = ∞ that
√

2 log |n| = o(|Q(k)|1/6) as n → ∞ and
|Q(k)| > kn. Thus, we may use Theorem 3.2 to estimate the above sum by

C|K(n)|P
[
N > (1 + ε/2)

√
2 log |n|

]
≤ 2C|K(n)| 1

|n|(1+ε/2)2
.

Here, N is a standard normal variable and we have used the well-known fact that P[N > x] ≤ 2e−x2/2 as x > 0.
Finally, it is easy to see that |K(n)| = O(log n1 . . . log nd) = o(|n|θ), n →∞ for every θ > 0. This proves (8).
To prove (9) note that by Lemma 3.2

P

[
SP (m)√
|m∗|

>
ε

2

√
2 log |n|

]
≤ CP

[
SP (m∗)√
|m∗|

>
ε

2

√
2 log |n|

]
≤ CP

[
SP (m∗)√
|P (m∗)| >

ε

2
(σ − 1)−1/2

√
2 log |n|

]
,

since |P (m∗)|/|m∗| ≤ σ − 1. Recalling that (σ − 1)−1/2 ε
2 > 2 and using Theorem 3.2, we may estimate the

right-hand side from above by O(1/|n|4). Thus, the left-hand side of (9) is not greater than

∑

m≤n
|m|>kn

O

(
1
|n|4

)
≤ O

(
1
|n|3

)
<

1
|n|1+δ

.

This finishes the proof of (9), Lemma 3.3 and Theorem 1.1. ¤
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[4] Deheuvels, P., 1985. On the Erdös-Rényi theorem for random fields and sequences and its relationships with the theory of

runs and spacings. Z. Wahrscheinlichkeitstheorie verw. Gebiete 70, 91-115.
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