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We generalize a theorem of Shao (1995, Proc. Am. Math. Soc. 123, 575-582) on the almost-sure limiting behavior of the maximum of standardized random walk increments to multidimensional arrays of i.i.d. random variables. The main difficulty is the absence of an appropriate strong approximation result in the multidimensional setting. The multiscale statistic under consideration was used recently for the selection of the regularization parameter in a number of statistical algorithms as well as for the multiscale signal detection.

Introduction

Let {X i : i ∈ N} be a sequence of i.i.d. random variables satisfying E[X 1 ] = 0, E[X 2 1 ] = 1. Suppose that the logarithmic moment generating function ϕ(θ) = log E[e θX 1 ] is finite for some θ > 0. Define the Cramér-Chernoff and the Erdös-Rényi functions by I(t) = sup θ≥0 (θt -ϕ(θ)), t ≥ 0 and α(c) = sup{t ≥ 0 : I(t) ≤ 1/c}, c > 0.

(

Let S n = X 1 + . . . + X n , S 0 = 0 be the random walk generated by {X i } and let

L n = max 0≤i<j≤n S j -S i √ j -i . ( 2 
)
be the maximum of standardized random walk increments.

In the first edition of his book [START_REF] Révész | Random walk in random and non-random environments[END_REF] Révész gave upper and lower bounds for the almost-sure limiting behavior of L n in the case of Bernoulli-distributed summands [START_REF] Révész | Random walk in random and non-random environments[END_REF]Th. 14.16] and conjectured that in this case lim n→∞ L n / √ 2 log n = 1 a.s. Establishing a general version of Révész conjecture, Shao [START_REF] Shao | On a conjecture of Révész[END_REF] proved that

lim n→∞ L n / 2 log n = α * ∈ [1, ∞] a.s., (3) 
where α * = sup c>0 α(c) c/2. If X i are normal or Bernoulli distributed, then α * = 1. Shao showed that α * is finite if and only if E exp(sX +2 1 ) < ∞ for some s > 0, where X + 1 = max(X 1 , 0). It follows from [18, Lemma 1] that there are distributions with 1 < α * < ∞. Shao's proof was considerably simplified by Steinebach [START_REF] Steinebach | On a conjecture of Révész and its analogue for renewal processes[END_REF], who deduced Shao's theorem from the Erdös-Renyi law of large numbers and the following auxiliary result:

lim n→∞ max 0≤i<j≤n k:=j-i S j -S i kα(k/ log n) = 1 a.s. ( 4 
)
Our goal is to extend (3) and (4) to multidimensional arrays of i.i.d. random variables. Both Shao and Steinebach use in their proofs results of Hanson and Russo [START_REF] Hanson | Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables[END_REF], which are based on the classical strong approximation theorem [START_REF] Komlós | An approximation of partial sums of independent RV's, and the sample DF[END_REF]. It is well known that extending strong approximation theorems to the case of multidimensional indices is non-trivial and in many cases only possible with an approximation rate which is weaker than the rate in the one-dimensional case. For example, the approximation rate given in Theorem 4 of [START_REF] Massart | Strong approximation for multivariate empirical and related processes, via KMT constructions[END_REF] is too weak for our purposes, whereas Theorem 1.2 of [START_REF] Rio | Strong approximation for set-indexed partial sum processes via KMT constructions III[END_REF], which gives a sufficiently strong rate, is true only in two dimensions. We use a completely elementary method which does not rely on strong approximation. 

i) E[X n ] = 0, E[X 2 n ] = 1 ii) the logarithmic moment generating function ϕ(θ) = log E[e θX n ] is finite for some θ > 0. We denote multi-indices by m = (m 1 , . . . , m d ), n = (n 1 , . . . , n d ) etc. If m i ≤ n i for all i = 1, . . . , d, we write m ≤ n. Define | n| = d i=1 n i . We say that n → ∞ if |n| → ∞. A set of the form R(m, n) = {m 1 , . . . , n 1 } × . . . × {m d , . . . , n d }, m ≤ n,
is called discrete rectangle. In order to simplify the notation we write R(n) for the discrete rectangle R((1, . . . , 1), n) = {1, . . . , n 1 } × . . . × {1, . . . , n d }.

Let R = {R(m, n) | m ≤ n, m, n ∈ N d } be the collection of all discrete rectangles and R(n) the collection of all discrete rectangles contained in R(n). For a discrete rectangle R define

S R = n∈R X n .
The multidimensional analogue the maximum of standardized random walk increments (2) is then defined by

L(n) = max R∈R(n) S R |R| ,
where |A| stands for the number of elements of a finite set A.

Our goal is to prove the following theorem which is a higher-dimensional generalization of (3).

Theorem 1.1. Let {X n : n ∈ N d } be a d-dimensional array of i.i.d. random variables satisfying conditions i) and ii). Then, with the above notation,

lim n→∞ L(n)/ 2 log |n| = α * a.s.
The following theorem is a multidimensional analogue of (4).

Theorem 1.2. Let {X n : n ∈ N d } be a d-dimensional array of i.i.d. random variables satisfying conditions i) and ii). Then

lim n→∞ max R∈R(n) S R |R|α |R| log |n| = 1 a.s.
Some statistical applications of Theorems 1.1 and 1.2 will be briefly discussed in the next section. In Section 3 we will prove Theorem 1.1. Theorem 1.2 as well as the subsequent Theorem 2.1 can be proved by the same methods. Note finally that all results remain true with the family of discrete rectangles replaced by the family of discrete circles or cubes, the proofs remaining essentially the same.

Applications to statistical multiscale analysis

Statistical methods which aim for the simultaneous control of a family of statistics on different scales (here indexed by the rectangles R) are sometimes denoted as statistical multiscale methods. We will briefly discuss some potential applications of the preceding theorems to this situation.

Selection of the stopping index of the EM-algorithm in PET. Recently [START_REF] Bissantz | A stochastic multiscale selection of the stopping iteration for MLEM reconstructions in PET[END_REF] introduced a multiscale statistic similar to that in Theorem 1.2 for the proper selection of the stopping index of the expectation-maximisation (EM) algorithm in positron emission tomography (PET). It has been known for a long time that proper stopping of this algorithm is essential for a valid image reconstruction, albeit rigorous theoretical foundation of this empirical fact is still missing. In PET from an inhomogeneous Poisson process (photon counts) an image has to be recovered and the EM algorithm (and variants thereof) is one of the most prominent reconstruction methods. In [START_REF] Bissantz | A stochastic multiscale selection of the stopping iteration for MLEM reconstructions in PET[END_REF] it has been advocated to select the stopping index such that the corresponding residuals (instead of X n ) satisfy an analogue to Theorem 1.2. This has been investigated numerically and its superiority to some frequently used methods has been demonstrated.

Selection of the regularization parameter in penalized regression. Theorem 1.1 allows to extend the method of Davies and Kovac [START_REF] Davies | Local extremes, runs, strings and multiresolution[END_REF] for the proper selection of the threshold parameter in nonparametric function estimation to the multidimensional situation. More precisely, we will discuss the particular case of multivariate TV-norm penalization [START_REF] Van De Geer | Discussion of "Local extremes, strings and multiresolution[END_REF], [START_REF] Hinterberger | Tube methods for BV regularization[END_REF]. To this end we consider a d-variate regression model

Y (k/n) = f (k/n) + ε k ,
where {ε k , k ≤ n} is a rectangular array of i.i.d. random variables satisfying i) and ii), n = (n, . . . , n) ∈ N d , n is a positive integer and f : [0, 1] d → R is a function of bounded variation. Let the multivariate estimate fn,λ , λ > 0 of f be the minimizer of

∆ n (g) = k≤n (Y (k/n) -g(k/n)) 2 + λTV(g), g ∈ TV([0, 1] d ),
see [START_REF] Van De Geer | Discussion of "Local extremes, strings and multiresolution[END_REF]. Then the analogous to [START_REF] Davies | Local extremes, runs, strings and multiresolution[END_REF] choice of the penalty parameter λ would be such that the residuals

r k (λ) = Y (k/n) -fn,λ (k/n) satisfy Theorem 1.1 with X k replaced by r k (λ).
Multiscale signal detection. We would like to mention a further extension of (3) and (4), which is very natural from a statistical viewpoint. Let F be a probability distribution function which is for simplicity supposed to have finite logarithmic moment generating function ϕ(θ) = log e θx dF (x) for all θ ∈ R. Suppose we are given a finite rectangular array of observations {X k : k ≤ n} and would like to test the hypothesis H 0 : the observations {X k : k ≤ n} are i.i.d. with distribution dF against the alternative

H 1 : there is λ ∈ R and a discrete rectangle R ∈ R(n) such that {X k : k ∈ R} are independent with distribution dF if k / ∈ R
and with distribution e θx-ϕ(θ) dF (x) if k ∈ R. Thus, the zero hypothesis H 0 says that the observations {X k : k ≤ n} form an i.i.d. noise, whereas the alternative H 1 says that there is a rectangle where the observations are not distributed accordingly to F but rather to some distribution from the exponential family generated by F , which may be interpreted as a presence of a signal concentrated in the rectangle R. The likelihood ratio test rejects H 0 if the value of the test statistic max

R∈R(n) |R|I S R |R| (5)
is large, where I(t) = sup θ∈R (θt -ϕ(θ)) denotes the Cramér-Chernoff information function.

The above statistic was introduced in [START_REF] Siegmund | Tail probabilities for the null distribution of scanning statistics[END_REF] where its large deviations were studied. Similar but different statistics were considered in [START_REF] Dümbgen | Multiscale testing of qualitative hypotheses[END_REF], [START_REF] Dümbgen | Multiscale inference about a density[END_REF]. The next theorem describes the almost-sure limiting behavior of the statistic (5).

Theorem 2.1. Under the above assumptions we have

lim n→∞ 1 log |n| max R∈R(n) |R|I S R |R| = 1 a.s.
The information function I is non-negative and has a unique zero at EX 1 , the expectation of X 1 . Thus, contrary to the statistics from Theorems 1.1 and 1.2, the statistic (5) from Theorem 2.1 controls both positive and negative deviations of the rectangular sums from their mean. The corresponding one-sided version of Theorem 2.1 may be easily formulated.

Proof of the main theorem

In this section we prove Theorem 1.1. We need the following multidimensional generalization of the Erdös-Rényi law of large numbers, see [START_REF] Deheuvels | On the Erdös-Rényi theorem for random fields and sequences and its relationships with the theory of runs and spacings[END_REF], [START_REF] Steinebach | On the increments of partial sum processes with multidimensional indices[END_REF]. 

lim n→∞ max R∈R(n) |R|=c n S R c n = α(c) a.s.
The maximum is taken over all discrete rectangles in R(n) containing c n points.

Proof of Theorem 1.1. To prove the lower bound the method of [START_REF] Shao | On a conjecture of Révész[END_REF] can be used. We have for every c > 0

lim inf n→∞ 1 2 log |n| max R∈R(n) S R |R| ≥ lim inf n→∞ c 2 max R∈R(n) |R|=[c log |n|] S R |R| , which is a.s. equal to c 2 α(c) by Theorem 3.1. It follows that lim inf n→∞ L(n)/ 2 log |n| ≥ sup c>0 c 2 α(c) = α * a.s.
The main difficulty is to prove the upper bound lim sup

n→∞ 1 2 log |n| max R∈R(n) S R |R| ≤ α * a.s. ( 6 
)
We may suppose that α * is finite since otherwise there is nothing to prove. Write R * (n) for the collection of all discrete rectangles whose top-right corner is n. That is, R * (n) consists of all rectangles of the form R(m, n), where m ≤ n. We split the set R * (n) into "small" and "big" rectangles. A rectangle is small if it contains not more than k n points, where the multidimensionally indexed sequence {k n } n∈N d is defined by k n = [log |n|] r for some r > 3. The upper bound ( 6) follows via the Borel-Cantelli lemma from Lemmas 3.1 and 3.3 below, which estimate the maximum over small and big rectangles respectively.

Lemma 3.1. Let ε > 0. Then, for some δ > 0 and all sufficiently large n ∈ N d ,

P    1 2 log |n| max R∈R * (n) |R|<k n S R |R| > (1 + ε)α *    < 1 |n| 1+δ . ( 7 
)
Proof. It follows from the Markov inequality that P[S R /|R| > a] ≤ exp{-|R|I(a)} for each a > 0. Using this as well as the convexity of the function I we obtain

P[S R / |R| > (1 + ε)α * 2 log |n|] = P[S R /|R| > (1 + ε)α * 2 log |n|/|R|] ≤ exp{-|R|I((1 + ε)α * 2 log |n|/|R|)} ≤ exp{-(1 + ε)|R|I(α * 2 log |n|/|R|)}.
It follows from the definition of α * that I(α * √ 2t) ≥ t for every t ≥ 0 and, consequently,

I(α * 2 log |n|/|R|) ≥ log |n|/|R|. It follows P[S R / |R| > (1 + ε)α * 2 log |n|] ≤ exp{-(1 + ε)|R| log |n|/|R|} = |n| -(1+ε) .
To finish the proof note that the number of rectangles R ∈ R * (n) satisfying |R| < k n is certainly smaller than k d n and thus the left-hand side of (7) may be estimated from above by k d n |n| -(1+ε) which is smaller than |n| -(1+δ) for δ < ε and n sufficiently large. Now we are going to treat the maximum over big rectangles. In the one-dimensional case, both Shao [START_REF] Shao | On a conjecture of Révész[END_REF] and Steinebach [START_REF] Steinebach | On a conjecture of Révész and its analogue for renewal processes[END_REF] use to this end the results of Hanson-Russo [START_REF] Hanson | Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables[END_REF]. However, as discussed above, the strong approximation results needed in [START_REF] Hanson | Some results on increments of the Wiener process with applications to lag sums of i.i.d. random variables[END_REF] are not known for d > 2. Thus, we need a different method not relying on strong approximation. We use the following classical moderate deviations theorem, see e.g. [ 

(n) = o(n 1/6 ), n → ∞. Then P S n / √ n > x(n) ∼ P[N > x(n)], n → ∞,
where N is a standard normal variable.

We also need the following elementary lemma.

Lemma 3.2. Let {X i : i ∈ N} be i.i.d. random variables satisfying E[X 1 ] = 0, E[X 2 1 ] = 1.
Then there is constant C depending only on the distribution of X i such that for every k, n ∈ N, k ≤ n and every x > 0 we have

P[S k > x] ≤ CP[S n > x].
Proof. Since lim i→∞ P[S i ≥ 0] = 1/2 by the central limit theorem, there is c 1 > 0 such that P[S i ≥ 0] > c 1 for every i ∈ N. It follows that

P[S n > x] ≥ P[S k > x]P[S n -S k ≥ 0] = P[S k > x]P[S n-k ≥ 0] > c 1 P[S k > x]
and the statement of the lemma follows with C = 1/c 1 .

Now we are ready to estimate the maximum over big rectangles.

Lemma 3.3. Let ε > 0 be given. Then, for some δ > 0 and all sufficiently large n ∈ N d ,

P    1 2 log |n| max R∈R * (n) |R|>k n S R |R| > 1 + ε    < 1 |n| 1+δ .
Proof. The statement of the lemma may be written in the following equivalent form 

P   1 2 log |n| max m≤n |m|>k n S R(m) |m| > 1 + ε   < 1 |n| 1+δ . Take σ > 1 so close to 1 that (σ -1) -1/2 ε 2 > 2. We may suppose that σ k / ∈ N, k ∈ N. Let K(n) = K(n, σ) = {k = (k 1 , . . . , k d ) ∈ N d 0 | σ ki < n i , i = 1, . . . , d}. For k ∈ K(n) define discrete rectangles Q(k) = Q(k 1 , . . . , k d ) and S(k) = S(k 1 , . . . , k d ) by Q(k) = {1, . . . , σ k1 } × . . . × {1, . . . , σ k d } and S(k) = N d ∩ [σ k 1 , σ k 1 +1 ] × . . . × [σ k d , σ k d +1 ] .
S R(m) |m| ≤ max k∈K(n) |Q(k)|>k n S Q(k) |Q(k)| + max m≤n |m|>kn S P (m) |m * | .
Thus, in order to prove the lemma, it suffices to prove that for some δ > 0 

P    1 2 log |n| max k∈K(n) |Q(k)|>k n S Q(k) |Q(k)| > 1 + ε 2    < 1 |n| 1+δ (8) 
|m * | > ε 2   < 1 |n| 1+δ . ( 9 
)
In order to prove [START_REF] Feller | An introduction to probability theory and its applications[END_REF] note that the left-hand side of ( 8) is not greater than Here, N is a standard normal variable and we have used the well-known fact that P[N > x] ≤ 2e -x 2 /2 as x > 0. Finally, it is easy to see that |K(n)| = O(log n 1 . . . log n d ) = o(|n| θ ), n → ∞ for every θ > 0. This proves [START_REF] Feller | An introduction to probability theory and its applications[END_REF]. To prove [START_REF] Van De Geer | Discussion of "Local extremes, strings and multiresolution[END_REF] Recalling that (σ -1) -1/2 ε 2 > 2 and using Theorem 3.2, we may estimate the right-hand side from above by O(1/|n| 4 ). Thus, the left-hand side of ( 9) is not greater than

m≤n |m|>kn O 1 |n| 4 ≤ O 1 |n| 3 < 1 |n| 1+δ .
This finishes the proof of (9), Lemma 3.3 and Theorem 1.1.

Theorem 3 . 1 .

 31 Let c > 0 and define c n = [c log |n|] for n ∈ N d . Then

  For each m = (m 1 , . . . , m d ) ≤ n one can find uniquely defined k = k(m) with m ∈ S(k). Let m * = ( σ k1 , . . . , σ k d ) and m * = ( σ k1+1 , . . . , σ k d +1 ) be the bottom-left and top-right corners of the rectangle S(k(m)). Note that R(m * ) = Q(k(m)). Define P (m) = R(m)\R(m * ). Then R(m) is a disjoint union of R(m * ) and P (m) and it follows that S R(m) |m| ≤ S R(m * ) |m * | + S P (m) |m * | . Thus max m≤n |m|>kn

  It follows from |Q(k)| > k n and lim n→∞ k n /(log |n|) 3 = ∞ that 2 log |n| = o(|Q(k)| 1/6 ) as n → ∞ and |Q(k)| > k n .Thus, we may use Theorem 3.2 to estimate the above sum byC|K(n)| P N > (1 + ε/2) 2 log |n| ≤ 2C|K(n)| 1 |n| (1+ε/2) 2 .

  Let {X i : i ∈ N} be i.i.d. random variables satisfying E[X 1 ] = 0, E[X 2 1 ] = 1 and let S n be the sequence of their partial sums. Suppose that E[e tX 1 ] is finite for some t > 0. Let {x(n)} n∈N be a sequence satisfying x

	8, Chapter XVI,
	§7].
	Theorem 3.2.

  note that by Lemma 3.2

	P	S P (m) |m * |	>	ε 2	2 log |n| ≤ CP	S P (m * ) |m * |	>	ε 2	2 log |n| ≤ CP	S P (m

* ) |P (m * )| > ε 2 (σ -1) -1/2 2 log |n| , since |P (m * )|/|m * | ≤ σ -1.
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