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Transient random walk in Z? with stationary orientations

Francoise Péne*f

Abstract. In this paper, we extend a result of Campanino and Pétritis [5]. We study a random walk
in Z2 with random orientations. We suppose that the orientation of the k' floor is given by &, where
(&k)kez is a stationary sequence of random variables. Once the environment fized, the random walk can
go either up or down or can stay in the present floor (but moving with respect to its orientation). This
model was introduced by Campanino and Pétritis in [5] when the (&)rez is a sequence of independent
identically distributed random variables. In [10], Guillotin-Plantard and Le Ny extend this result to a
situation where the orientations of the floors are independent but chosen with stationary probabilities
(not equal to 0 and to 1). In the present paper, we generalize the result of [5] to some cases when (& )k
is stationary. Moreover we extend slightly a result of [10].

1 Introduction

Random walks in random environment in Z% have been studied by many authors. For a general reference
on this subject, we refer to chapter 6 of the book of Hughes [14] . Random walks with random orientations
have been less studied. However these two subjects are not far from each other. Indeed, random walks
with random orientations can be viewed as a degenerate case of random walks in random environment in
the sense that transition probabilities are allowed to be null. But this difference is significant. Moreover
random walks in Z? with random orientations can also be viewed as a question of oriented percolation
(see section 12.8 of the Book of Grimmett [9]).

The present paper contains an extension of the model introduced by Campanino and Pétritis in [5] in
another direction than the one chosen by Guillotin-Plantard and Le Ny in [10]. But our result will also
apply to random walks of the form studied in [10]. Now, let us present the different models introduced
in [5], in [10] and in the present paper with their common ideas and their differences. Let us construct a
random walk (M,, = (Xn, Yn))nZO in Z? with random orientations as follows. Let (£ )rez be a stationary
sequence of centered random variables with values in {—1;1}. The orientations of the k** horizontal floor
of Z? is given by &;. Once the environment fixed, the random walk (M,, = (X,,Y,))n will be such that
My = (0,0) and such that the distribution of M, — M,, conditioned to o(My;k = 0,...,n) is uniform

on {(0,1); (0, -1); (3, ,0)}-

In [5], Campanino and Pétritis prove the transience of the random walk (M,), when (& )rez is
sequence of independent identically distributed random variables. Moreover, they point out the fact that
the random walk (M,,)n>0 is recurrent in the ’alternate’ case where £ only depends on the parity of k.
Hence the behaviour of this random walk depends on the randomness of the orientations (&x)kez.

In [10], Guillotin-Plantard and Le Ny give a first generalization of the work of Campanino and Pétritis.
They envisage the case when the orientations of the floors are taken independently with stationary
probabilities. More precisely, they consider the following situation : Let (fi)rez be a stationary sequence
of random variables with values in [0; 1] and with expectation equal to % defined on some probability space
(M, F,v). Let us consider the probability space given by (€; := M x [0; 1)%, F; := F(B([0;1]))®%, v :=
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v ® (\)®%), where \ is the Lebesgue measure on [0;1]. We define (£, 5, )xez on this space as follows :

k. i (Wy (Zm)mez) = 2.1z <fr(0)y — 1
This means that, once a realization of (fy)r given, the horizontal floors are oriented independently; the
k" floor being oriented to the right with probability fi. We will use this notation & 1, later in the
paper. In [10], Guillotin-Plantard and Le Ny prove that, if (§x), = (fk fk) then the corresponding
v T Vo (1 fo)

random walk (M,,), is transient under the following condition :

that 0 < fo <1 a.s.).

dv < 400 (this implies

Let us notice that the (&) studied in [10] is stationary. Conversely, if (£ )y is stationary, then it can
be described by the approach of [10] by taking fi, := 1{¢,—1} = 3(&, +1). But the method of [10] cannot
be applied to a function fy that can be equal to 0 or 1 with a non-null probability.

In this paper, we are interested in the case when (£ )rez is a stationary sequence of random variables
satisfying some strong decorrelation properties. We state our main result in section 2 and prove it
in section 3. Examples are given in section 2 and detailed in the appendix. Our examples satisfy a
strong mixing condition. We complete this paper with a short discussion in section 4 about the model
envibaged by Guillotin-Plantard and Le Ny. We prove that their result remains true if the condition

. 1
S m dv < +o0 is replaced by [, Tol—Foyp v < o0, for some p > 0.

2 Main result, examples, strong mixing property

Theorem 1. Let ({)rez be a stationary sequence of centered random variables with values in {—1;1}
such that :

1. we have : 3 o 1+ PIE[£&]| < +00 and ¢f = supy >4 N~? D kot ko kg ka0, N—1 | E[S1 S S Sea | <
+00.

2. There exist some C' > 0, some (¢p s)p sen and some integer r > 1 such that for all positive integers p
and s, we have p11,s < Qp.s, such that we have limg_ | o sﬁgomys = 0 and such that, for all integers
n1, g, ng,ng with 0 < ny < ny < ng < ny, for all real numbers an,, ..., n, and Bps, ..., Bn,, we
have :

‘CO’U (ei Zﬁinl akEk’eiZZins 5k£k>

no n4
<C (1 + Z |Olk‘ + Z |ﬂk|> Prnz—nz,ns—ngz-

k:’ﬂl ]C:’I’Lg

Then the random walk (M,,),, is transient.

This result is proved in section 3. We will see in its proof that this question is linked with Zz;é s,
where (S,)m>0 is a simple symmetric random walk on Z independent of (£x)xez. Let us give some
examples of stationary sequences (i )rez to which this result applies.

Theorem 2. [(a-mizing condition)] Let (gr)rez be a stationary sequence of bounded real-valued random
variables defined on some probability space (Q, A, P) satisfying the following a-mizing condition :

supnla,, < 400, with a, := sup sup sup P(AN B) —P(A)P(B)].
n>1 p20; m>0 A€o(g—p,---,90) BET(gn,-1gn+m)

Then :

(a) If gi takes its values in {—1;1}, if fM g dv =0 and if (& = gk )kez, then (M,,), is transient.

(b) If gy takes its values in [0;1], if fM grdv = % and if (§ = gk,gk)kez, then (M), is transient.



We will prove that the hypotheses of theorem 1 are satisfied in the general context of strongly mixing
dynamical systems. We say that (M, F, v, T) is an invertible dynamical system if (M, F, v) is a probability
space endowed with an invertible bi-measurable transformation T : M — M.

Definition 3. We say that an invertible dynamical system (M,F,v,T) is strongly mixing if there
exists cg > 0, there exist two real sequences (on)n>0 and (Km)m>o0 and, for any function g : M — C,

there exist Kél) € [0; +o0] and Kf) € [0; +00] such that, for all bounded functions g,h: M — C :
1. for all integer n > 0, we have : |Cov,(g,hoT")| < ¢y <Hg|\oo||h||00 + ||hHOOKél) + ||g||ooK}(L2)) On;
2. for all integer m > 0, we have : K;?T_m < cnggl) and : K,(j))Tm < C()Kf(?)(l + Km);

3. we have : K\ < lgllaa K\ + |1l s K and : K2 < ||glla K + Rl K

gxh — gxh

4. the sequence (pn)n>0 is decreasing, the sequence (Km)m>o is increasing and there exists an integer
r>1 such that : sup,; n%(1+ Kp)pm < +00.

Proposition 4. Let (M, F,v,T) be a strongly mixing dynamical system. Let the sequence (k) be of
one the two following kinds :

(a) & = foT* with f : M — {—1;1} a v-centered function such that K](cl) + K](c2) < 4oo. We
suppose that there exists some real number c¢; > 0 such that, for any real number o, we have :

O JRe)

expliaf) T Bexpliag) < €110l

(b) & = é:k’foTk with f + M — [0;1] su<):h that (fz\{ fdv =3 and such that there exists some ¢y > 0 such
1 2
that, for any a,b € C, we have K((Lf+b + Kaf+b < c1lal.

Then (&), satisfies the hypothesis of theorem 1.

Proposition 4 is proved in appendix A. Theorem 2 will appear as a direct consequence (see appendix
B). Our strong mixing property is satisfied by a large class of dynamical systems (endowed with some met-
ric) with K M and K% dominated by the Holder constant of f of order 5. Interesting examples are given
by hyperbolic or quasi-hyperbolic dynamical systems. We quickly give some examples of such dynamical
systems. In the case of the billiard transformation, because of the discontinuity of the transformation,
our class of allowed functions will contain discontinuous functions.

Examples 2.1. 1. Let (M, F,v,T) where T is an ergodic algebraic automorphism of the torus or a
diagonal transformation on a compact quotient of Slg, (R) by a discrete group. Letn > 0. According

to [16], the strong mixing property holds with K!Sl) some n-Hdélder constant of g along the unstable
manifolds and with K,(f) some n-Hélder constant of h along the stable-central manifolds and with

©Yn = a” for some a € (0,1) and k., = m? for some 3 > 0. Moreover Kél) and Kg(,Q) are dominated
by the Hélder constant of order n of g.

2. Let (M, F,v,T) where T is the Sinai billiard transformation (in T?) with C3-conver scatterers and
with finite horizon and where v is the T invariant measure absolutely continuous with respect to the
Lebesgue measure [19]. Let mo € Z4 and n > 0. According to [6] (theorem 4.3), the strong mizing
property holds with ¢, = o™ for some o € (0,1) and k,, = m” for some 3 >0, Kél) being some
Holder constant of g along the T~™0(~v%)’s (where the v*’s are the unstable curves) and K,(LQ) being
some Holder constant of h along the T™ (~*)’s (where the v*’s are the stable curves). The quantities
K,(Ll) and K,(LZ) will be dominating by C,(ln’mo) = SUPcec,, SUPs yeC, 24y max(d(Tk(x;?q(ﬂi)(;)};;(ygg‘:_m,__,m)n )
where Cp, 15 a set of open subsets of M on which T™ and T~™ are C.

The first example is a direct consequence of [16]. The second example is a consequence of [6]. In

appendix C, we give a precise definition of K](cl) and of KJ(CQ) for these examples (and a definition of C,,
for the Sinai billiard). For these systems, we can say a little more :



Theorem 5. Letn € (0,1) and let (M, F,v,T) be a strongly mixing dynamical system (endowed with
some metric) such that there exists a € (0,1) and 3 > 0 such that ¢, = o™ and K, = mP and such that

K,(ll) and K}(LQ) are both dominated by the n-Hélder constant of h. Then :

(A) If (& = ékfgooTk)kez with go : M — [0;1] a Hélder continuous function (of order n) such that
Jas 90dv = 5, then (M), is transient.

(B) If (€ = 214 0 TF — 1)1ez with v(A) = 1/2 and with A such that there exist ca > 0 and ( > 0 such
that, for every e €]0;1[, we have : v({x € M : d(z,A) < €}) < cac’, then (M,,),, is transient.

Conclusion (4) of theorem 5 follows directly from proposition 4. Conclusion (B) of theorem 5 is
proved in appendix D.

3 Proof of theorem 1

Let us define Ty := 0 and, for alln > 1: Tp,4q :=inf{k > T, : Y, # Yk_l}. According to lemma 2.5 of
[5], we have the following result :

Lemma 6. If (Mr,)n>0 is transient, then (My)n>0 is transient

Now, still following [5], we construct a realization of (Mr, ),. Let us consider a symmetric random
walk (Sy,)n on Z independent of ({x)kez. For any integer m > 1 and any integer k, we define :

Ny (k) := Card{j =0,....m : S; =k}.

Let us also consider a sequence of independent random variables (Ci(y))izl,yez with geometric distri-
bution with parameter g, and independent of ((&,)yez, (Sp)p>1)-

Lemma 7. The process (X,, Sp)n>1 with X,, = ZyeZ &y Zﬁvz”fl(y) Ci(y) has the same distribution as

(M7, )n>1-

In this lemma, (Z-(y) corresponds to the duration of the stay at the y** horizontal floor during the i*?
visit to this floor. According to the Borel-Cantelli lemma, it suffices to prove that : >~ - P({(X,,S,) =
(0,0)}) < +oo. We follow the scheme of the proof of [5]. The difference will be in our way of estimating

17(11) and in the introduction of the sets U,,. We will consider 41, 2, d3, and = such that : 0 < ;1 < 2d,
014+ (B +16)0; < £,05>0,3-35 <5< %—36—01, % —20, <B <% — 0, max(dy,d2) < <
% — 22max(d1,02). The idea is that d1, da, i — 03 and % — 3 are positive numbers very close to zero.
As in [5, 10], let us define : A, :={w € Q : maxyez N,—1(¢) < nz+% and maxk—o,...n |Sk| < n%”l}.

Moreover, we define : U, := {w € A, : Va,y € Z, |Np_1(z) — Ny_1(y)| < \/|& — ylnz+7}. The sketch
of the proof is the following :

1. As in proposition 4.1 of [5], we have : Zn21 P{X,=0and S, =0} \ 4,) < 4o0. Actually we
have : 7 o P({S, =0} \ 4y) < +oo.

2. We will see in lemma 8 of the present paper that we have : > -, P (A4, \U,) < +oc. Therefore,
we have : 37 o P ({X, =0and S, =0} \Uy,) < +o00; >

3. Let us define B, :={w €Uy, : |3, 4 nyn—l(y)’ > n219}. As in proposition 4.3 of [5], we have :
ano P(B,N{X, =0and S, =0}) < +00. It remains to prove that :
Ym0 P(UnN{X, =0and S, =0} \ By) < +o0.



(a) As in lemma 4.5 of [5], there exists a real number C > 0 such that :

sup P ({X, = 0}[(S))pa1. (E)ien) < Oy 2.
WEUL\Bn, n

(b) We will prove that there exists some 6 > 0 and some C’ > 0 such that :
Yw € Up, P (U, \ Bpl(S,)p) (w) < C'n9.

i. This probability is bounded by ¢/nz*% 1, (w) with I,(w) = Ir(Ll)(w) + Iy(f)(w) and

_ t2nl+253
2

I (w) ::/ L E[eitzyezsyzvn_l(yxw)‘(Sp)p}e it
{jtl<n™305+02)

and
_ 42,14283

‘[7(12)("‘)) ::/ i ses E[eitzyeZN"—l(y)(w)’(Sp)p}e Co P
{|t|>n"2 %3702}

ii. We will prove that nz*% supy;, I = O(n~?) for some § > 0 (see our lemma 9);
iii. On the other hand, following [5], we have :

n%'*"s?’f,(f) < / e‘ﬁ ds < 2n %2¢~ n
{ls|>n’2}

(c) We have P(S, = 0) < C"n"=.

(d) Hence we have : P (U, N {X, =0 and S, =0} \ B,) < C"n~19/In(n).

We have to prove that points 2 and 3(b)(ii) are true with our choices of parameters. Indeed, all the other
points are true for any positive d1, 2,5 and for any sequence of random variables (£x)xecz independent
of (Sp),. We notice that, for any integer n > 1, we have : 27;01 €s; = > pez §kNn—1(k). In our proof,
we need some real numbers §1, 2, 03, d4, 3, v and € > 0. We will suppose that :

51>0,62>0,61+(2*27+16)(52<é,53>0,51<54<i—53—g(527%—352<(53<%—g§2,

3(52 < %(53, (%3 — 200 < B < %9’ — 09, 2(53 > % + 642 + 01, maX(61,52) <y < % — 22max((51752) and :

no 0N B[G6n]| = O(n 7).

(r+1)nB
m2 g

(we have : > o |E[§oém]| < N—z Yomsn VMIE[E0&n]]). All these inequalities are true with the follow-
ing choices of parameters : -

1 1 1 11 o3 3 1

01 = ——, 0o = ——, d3 = — — — 309 = 489/2000, §4 = 1/2500, = — — =9 = 477/4000, ~ = —.

1=3000° 2= 5000 3= 71 1™ /2000, 04 = 1/2500, 3 5 302 /4000, v 1
Lemma 8. We have : ), -, P (A, \ Uy) < +o0.

Proof. Let us consider any z,y € Z with ¢ # y and |z — y| < 3n2t91. For any integer j > 1, we
define the time 7;(x) of the j visit of (S,), to # and the number N;(z,y) of visits of (S,), to y between
the times 7;(x) and 7,41 (z). According to [15, 20] (see [15] lemma 2), for any integer p > 1, there exists
K, > 0 such that, for any 2’ # y,” we have : E[(N;(z,y'))?] < Kp|z' —y/|P~!. According to [15], on the
set {71(x) < 71(y)}, we have :

Ny—1(z) TN, _1 (2)+1(T)
(Noa(@) = Naa () = D (L=Nj(mo)+ D lis—y)
j=1 k=n



Let p be any positive integer. We have :

2p 2p
Np_1(z) TNp—1(2)+1(T)
(Nn—1(2) = N1 (9))*P L7, ()< )y < 277 S (1-Ni(wy) | + Y Usi—y
j=1 k=n

. 1
But, on A, since we have N,,_;(z) < nz792 we get :

2 15
TNy g (2)+1(2) P [n2+ 2J

Z 1{Sk:y} < (NNn—l(I)(-T7y)>2p =

k=n Jj=1

A
(]
=
)
S
S

Hence we have:

2p
Tanl(I)*’l(I)
E Yoo Asmy | la| < 2 TRK ey
k=n
< K3 Ha - ylP (ntmexero)’
Moreover, on A,,, we have :
Noi () o K %
>, (1=Nj(wy)| <  max > (1= Nz, y))
j=1 k=1,..., Ln§+52J i=1

Since (Z?Zl(l - /\/j(x,y)))k>1 is a martingale (see [15] lemma 2), according to a maximal inequality,

we have :
2 2
k P k
max > (1= Nj(z,y) < oo e (1—N(z,9))
kzlam,[n? 2J j=1 k:1,...,[n2 ZJ j=1
LP Lp
Hence we have :
Np—1(2) 2 » \? k 2p
El| 3 0-N@y)| 1a|< ( 1) mx B |30 - Am)
j=1 p— k=1,4..,Ln§+52J =
Let us write M?}f by = (l2p)l!/ . Forany k=1,.., Ln%M?J, since the Nj,,’s are independent and since
""" ’ i=1Vi*
E[1 - Nj(z,y)] =0, we have :
k P 2p 1
E|(Ya-N@w)| [=> 2 M 2o TTEI =N @) ],
7j=1 =1 vi+...4v;=2p; min; v; >1 J1<...<jp m=1
2p 1
< > > M2 oS T @R+ WG, () )
1=1 v1+...+v;=2p; min; v; >2 1<ji<...<jii<km=1
2p 1
< D > MZ > T e+ Ky o=y
1=1 v1+...4+v;=2p; min; v; >2 1<ji<...<ji<km=1
2p
< C~'p Z \1‘ _ y|2p—l(n%+62)l < 2p3pép|x _ ylp(n%-FmaX((;l,(sg))p.
=1



Hence we get : E [(Ny—1(z) — Nypo1(y))?P14,] < C~’Z’,|x — y|P(nztmax(81.82) ) Therefore, according to the
Markov inequality, for any integer p > 1, we have :

SRS D PR A =)

b
< Z ]E[(Nn—l(x) *pan—legyi)zplAn] < ¢ (5n%+51)2 (nmax(él,zsg)f'y)p'
T, Yy=— [7z%+51-‘ |$ N y‘ (n2 )

By taking p large enough, we get : 3, -, P(4, \ U,) < +oc. O

3.1 Estimates on U,

In this section, we suppose that we are in U,,. We will estimate :

W () = ity eyNwl(y)’
W= [ B (S| (@) ¢

Lemma 9. There exists a real number § > 0 such that : sup,,>, n? SUP,cy, n%+53l7(11)(w) < +o00.

42,1423
2

To prove this lemma, we will use the following formula :

n%+63]7(11)(w) — % / <E {eiun_é_‘s?ﬁsz > yez €y Nn—1(y) (Sp)p:| (w)) e—% du.
{lu|<1}

The main idea is to prove that, in this formula, we can replace the term :

(5y)s]

1

B, (u) (w) — |:eiun_2—53+52 S, ez €0 Na1(y)

w2 2
by the term : A, (u)(w) := e 21723725 2y = Bl EINn 1 W)™ N ore precisely let us prove that we have :

Lemma 10. There exists a real number dg > 0 such that we have :

“’2"25
supn® sup n52/ | By (u)(w) — Ap(u)(w)|e™ 2 * du < +o00. (1)
n>1  weUn lul<1

After proving 10, we will prove that lemma 9 is a consequence of it. We will use the following notation :
0'2 = EmeZE[£O£7rL]~

3.1.1 Proof of lemma 10

Our proof uses a method introduced by Jan (cf. [12], [13]). This method also gives a result of convergence
in distribution for (n*3/4 ZZ;& fgn) N (see [17, 18]). Let n be an integer such that n® > 2. Let us fix
n>1

1
2[715“1 +1

w € U, and u € [—1;1]. Let usrecall that 0 < 5 < %’—62 et let us define : Ly, := | =57 — (we have :

L, < 4nz9-P) and, for all integer k = 0, ..., Ly, : Q) = — {n%”lJ +k[n?| and op, 41 = {n%HlJ +1;
_1_ @ -1 Qg -1

by = el e Zygj(;; SoNn-1W) 51g ag = e_%”z]é*”? Eyg:r(’lvi UE(N”*I(y))Z. We have to estimate :

nd2 [H/ﬁio bk‘ (Sp)p} (w) — Héio ag (w)‘ . Hence it is enough to estimate :

Ly k—1 Ly
n®> " |E <H bm) (bk—ak)< 11 am/> (Sp)p | (@)]-
k=0 m=0 m’'=k+1




e We explain how we can restrict our study to the sum over the k such that (r + 1)4 <k<L,—1. Let
k e€0,....,L,}. We have :

IN

atd 2 at+f  a+0
< Z géan(@) [(Sp)p | (w) Z Z El&e&m]| Nn—1(€)(w)Np—1(m)(w)

l=a+1 l=a+1m=a+1

N ed

mEZ

IN

Hence we have :

E[Jbe — 11(S,)p] () < =30+ (B [|S0te0 = €,N, 1 ()] 65, (@)

< n7%763+62n% Z |E[£O€m] n%+62 < n7%63+%52 Z |]E[§O£m]|a
MmeEZ mEZ

since we have 3 < %3 — 3. Moreover we have :

o2 Sk 1 2 2, 14+26 — 3634385 -2
lax(w) — 1] < % 2yzagy (Noo1(y)() Ten T gz <0 T0E
k on 1265252 = 914205252 3 = 9
From which, we get :
(r4+1)*—1
3 5 3
N Elb = akll(Sp)p] @) + Ellb, = a,[[(Sp)y) (@) < co (nm IR o d0ran) - g)
k=0

with ¢ := ((r + 1)* + 1)/> ez [Elo&m]] + %ag. Let us recall that 38, < 1.

Hence, it remains to estimate :

L,—1 k—1 Ly
n® Z (H bm) (b — ax) H am'|(Sp)p (3)
k=(r+1)% m=0 m/=k+1

e Let us introduce some holes in the indices m in order to use our decorrelation hypothesis. Let us
control the following quantity :

Ln—1 k—(r+1)* 3 k—(r+1)7 Ln
Bomot S (I eI T1 ) =t] T st I s,
k=(r+1)4 m=0 j=1 m=k—(r+1)it1+41 m''=k—r m/=k+1
‘We have :
Ln—1 k—(r+1)7
By Y H 1T b | — 1 1ok, — agll o< (u,.)-
k= (7‘+1 m:kf(T+1)j+1+1 Lm(Un)

1 1
On U, we have : |by — 1| < n=2 7040203102 < p=0+202+6,

m=k—(r+1)7+t14+1
have : |ay — 1| < %n‘2‘53+452+5ag. Therefore, since we have 3 < %3 — by, we get :

Analogously, we get : ‘(Hk_(rﬂ)j . bm) - 1‘ < r(r+1)9n=%+20248_ On the other hand, we

Bn < 4n62n%+51—ﬁr3(r+ 1)6 (1 + ;Ug) (n—53+262+5) O( *—7(53—1-662-{-61) )

The control of the quantity B,, comes from the fact that %53 > % + 682 + 07.



i i P CoL o
It remains to estimate : n% 3 3" (L a iy D<o <y <jp<a Onkijongas Where Cpp o gy g, 18 the fol-
lowing quantity :

k—(r+1)* k—(r+1)71 E—1 L,
E H b H b H bm (bk _ak) H A/ (Sp)p )
m=0 m=k—(r+1)72+1 m=k—(r+1)J0+1 m’'=k+1

with the convention : Hiza by, = 1if B < a. Let jo, 71,2 be fixed. We have : Ch 1 jo.1.5. <
Dn7k7j07j17j2 + En,k,j(),jl,]é, with :

L’”
D tejonge = |Co(s,), (Bnkigige Tukgo) [ @
m’'=k+1
Ly
and  Ey ko155 = [E[Ankji gzl (Sp)p] E [Tnkjol (Sp)p] H Ams | -
m/=k+1

. k—(r+1)* k—(r+1)71 k—1
with Ay g jy g, 1= Hm=(0 ) bin Hm’(:k—()r-i-l)j’z-&-l b and Uy g j, := (Hm=k—(r+1)j0+1 bm) (br—ax).

e Control of the covariance terms (thanks to our decorrelation hypothesis). Let jo, ji,j2 be fixed.
Let k= (r +1)%, ..., L, — 1. We have :

k L,
Dn,k,jmjujz < CO’U|(Sp)p An,k,jl,j27 H bim H A | +
m=k—(r+1)J0+1 m’'=k+1
k—1 Ln
+ COUKSp)p A"»kﬂ'l,jzv H bm H A | -
m=k—(r+1)J041 m/=k

L5348y (01 +03+1) 1
0140 jun~ 2 °3 D &eNn—1(0) : :
But we have : ]_["1:9111 by =€ f=01) . Therefore, according to point 2

of the hypothesis of our theorem, we have :
1
Dn7k7j07j17j2 <20 (1 +n2 bukos ZN7L_1(€)> Pp,s
LeZ

with p := [n?]((r+ 1)/t — (r+1)°) and s := |n”|(r+1)7%° — 1. Let us notice that we have : p > rs.
Since » ,cy Nn—1(£) = n, we have :

L,—1
& 1—03+4+01— 26 —6 6

n° E : Dn,kyjo-,jl,jz < 4C (n st —p+ 2)” A Sup S Prs,s

>

k=(r+1)4 s2nf

_9 27 S .
S 4C (nl g+51+( 5 +10)52) sup 56@7‘3737

s>nb

since 3 > % — 26, and d5 > 1 — 385. We end this point by noticing that d; + (2 + 16)d, < 1.

e Control of the term with the product of the expectations. Let jo,j1,j2 be fixed. Let k = (r +
1)4, ..., L, — 1. We can notice that Ey k. jo.jr,j» is bounded by the following quantity :

k k—1
Fo ko = |E H bm — H b | ak| (Sp)p
m=k—(r+1)7041 m=k—(r+1)J0+1

We approximate the terms with exponential using Taylor expansions.



— First we explain that, in F}, 1 j,, we can replace

k apy1y)—1
;00— 503402 E
H by, = exp | wun 2 gENn—l (Z)
m=k—(r+1)Jo+1 =0 ranyio 4y

by the formula given by the second order Taylor expansion of the exponential function :

apy1)—1 2 agy1)—1 2
1+ iun =2 %+02 N1 (¢ u N1 (¢ 4
+dun Y. &N - s Y. &N - ()
=0 (ryio 1) = (rrnyio )
3
. . 1 _3_ a -1

Indeed, the induced error is less than : $n=273%+3%2] [‘Zei’i;(:—(r-%—l)jﬂ+l) &Nn,l(ﬁ)‘ |(Sp)p] :
Moreover, we have :

O (k41)—1 * k) ~l 4

145
E > aNua®)] (S| < > [El6ysEuabunbunl| (n3772)
éZa(k—(7~+l)j0+1) Y1Y2,Y3,Y4=% 1 (1 1)d0 41)

< yn*o(r 4 1)5028,

according to the hypothesis of our theorem. Hence, taking the sum over k = (r+1)4,...,L,, —1
and multiplying by n°2, this substitution induces a total error bounded by :

(66)3/4 SatL+461—B, —2—363+363, 3+36 9
6 no2T 2T T2 o002 5 R0 (4 1)2

Wl

n2f

/\3/4
and so by : %nmﬁ%”l’%ﬁéﬁ(r +1)2. Since § < % — 5y, 03 > 2 — 302 and &y + (5 +

16)62 < %, we have : 709 + % + 61 — 303 + %ﬁ < _Tlfi'

— Let us introduce Y, = o) =1 &Ny 1(f) and Zy = Za(k“)_l agNn,1(€)2. We

Zza(kf(r+1)j0+1) l=0(k)

. 2
iu Y. — u VA
: . k—1 T 5. k 1283 —208 k
explain that, in F, 1 j,, we can replace (Hm:k_(rﬂ)joﬂ bm) ap = en2t987% 2n TEO3TE02

by the formula given by the Taylor expansion of the exponential function at the second order :

2 2 2
w iu u
L+ n3+os—d2 Yi - O 1+205—262 Zk+ 2 (n;+53—52 Yy — 2 1+205—25; Zk) : (5)
Indeed the modulus of the error between these two quantities is less than :
1 u u? 3 4 1 3 1 3
EE [ n3+03—32 Vi — o1 +285 252 Z |(Sp)p1 < gE myk WZIC |(Sp)p| -

We control the first term as in the preceding point. Moreover, we have :

|n—1—253+262 Zk|3 < 3~ 683+65> (Ug>3 38y, 3+602 < p,—603+1262+30 (05)3.

Hence, taking the sum over k = (r 4+ 1)%, ..., L,, — 1 and multiplying by n%, we get a quantity
3
bounded by : 2391 —655+135:428 (ag) and we have : 1 + 8, — 605 + 136, + 23 < 0.
— Now, we show that in formula (5), we can omit the term with (Z;)2. Indeed, we have :

L,—1
Z 11— 2 116, —3—2—
n62 (n 1—2635+202 Zk) S 2n52+2+61 B—2 453+452n2ﬁ(0_§)2n2+452

(7.+1)4

< op 58030 (02)2

since (8 < %3 — 09 and %53 > %—1-6(52—%51.

10



— Hence, it remains to estimate the following quantity called G, i j, :

U U 2 U
‘E {n2+5 (Vi + W) = on1+205—26, (Vi + W)™ — i +03-—02 Vit
2 2 . 2
U U 9 10U U
Jr2nl-ﬁ-2<53—262 Zk + 2n1+263—262 (Yk) + n%+53,52 Yk 2n1+253_252 Zk (Sp)p] )

with W), := z;;';;g;l € Np_1(¢). We get :

u? u?

o1 +265 282 Zy + 91265285 (Yx)

2
U 2
Gnkjo = ’E [%H%_%z (Vi + W)™ +

2|50

u

2n1+263 —202

E [(Wk)z’ L OWLY — Zk’ (S,,)p} ‘ .

Let us notice that we have :

a1y —1
Zpi= Y |El&INaa(0?+2 Y El&m]No(6)?
f=ay, m<f—1

— Let us show that, in the last expression of Gy, 1 j,, we can replace Zj, by :

ap41)—1
Zi= Y | El)INa 1 (02 +2 > El&elm]Na—1 () N1 (m)
L=a ) m<f—1

Indeed, by definition of U,,, we have :

et (|- 2 | 5] <

2n1+263—262

k1)1

n1+265 252 Z Z gfgm |NTL 1( )|Nn—1(m) 7Nn—1(€)|

l=a)y m<L-—1

n +—2634+362+6+% Z \/E|E[§O£m]|

m>1

IN

Hence, taking the sum over k = (r 4+ 1)%, ..., L,, — 1 and multiplying by n%, we get a quantity
bounded by : 4p1to1—20s+40243 > oms1 VMIE[Eo&n]|. But, since d5 > 1-30andy < % -
22max(d1,82), we have : + +6; — 283+ 45, + 2 <0
— Hence we have to estimate :
2
~ u
G k.jo = o1 +285 255

E [(Wk)Q L OWLY — Zk’ (S,,)p} ‘ .

We have :
A(ry1)—1 0—1
E[(We)?[(Sp)p] = Y. BT (Naa1(0)*+2 > E[gebm]Nu—1(£) N—1(m)
L=a ) M= ()
Hence we have :
41y —1 0—1

E[(Wi)? +2WiYe| (Sp)p] = D | El€) I (Na-1(6)* +2 > E[§e&m]Nn—1(()Ny—1(m)

l=ar) M= (o (r4+1)70 +1)

11



We get :

2 (k1) —1

én,k,jo = m Z Z E[éffm]Nn—l(g)Nn—l(m)

l=ap)y mla 1

(k= (r+1)70+1) ™

2
U 5a —2554+45,
P e T e T A A W o Y |

(r+1)nB (r+1)nB
m2i—a— m2-—u—

Hence, taking the sum over k = (r + 1)4,..., L,, — 1 of these quantities and multiplying by n°, we
get a quantity bounded by :

Anati=2atsoe N R[ge, ]| <dnhi T2 N E[gg,,

(r+1)nB (r+1)nP
m2— m> -5

since d3 > 1 —30,. To conclude it suffices to notice that : no 1102 Zm> rannd |El60&m]| = O(n™¢).
D

3.1.2 Proof of lemma 9

Let us consider n > 2. According to lemma 10, it suffices to prove that there exists a real number §’ > 0
such that we have :

w2262

2
5/ F) u 2 _un
supn’ sup n 2/|u<1e><p <2n1+253_252 E E[§y&:](Nn—1(y)(w)) )e = du < +oo.
= Y,z

n>1 wel,

Let us take w € U,,. We have :

U2 'LLQ
exp (—W ZE[fyezuNn_l(y)(w)V) = oxp (-WMUE Z(Nn_1<y><w>>2> .
Y,z Yy
Let us define : p, := Card{y € Z : N,_1(y) > **5—}. We have :
b
1.5 n% 4 1.5
n = > Naaly) <punzt 4 5 (3715* ' —pn)
y=— Ln%+61J
— (9249
S pnn%+62 (l_n (;+ 4))+n1+5154.

Since §; < d4, we have : p, > n=3—% (n — nl’(‘s‘**‘sl)) > n3 =02 (1 —n*(‘gr‘sl)) > con%*‘S?, with ¢g :=

3 _55-254

2
(64— 94 bl
1 —2-0a=%)  Hence we have : > yez(Nn-1(9)(W))* > pn (”23 ) > cns and
3 5,
w2 ¥, 02 (Ny_ 1 (9)(@))2 woZeqnz 02720
e 2n 11283285 < e 18nlt233-252
2 o Lisy-255-26

< 6—7{’—805 con
Therefore, we have :

u? w2n29
no2 / ¢ anTFs =355 2oy E[Ey&z](Nn—l(y)(w))26*¥ du <
lul<1

12



2 1 — 284 —
|u|<1

2
< n—1+54+ 52+53/e—%0500 dv.
R

This ends the proof since d4 + d3 + %52 < i. O

4 About the model of Guillotin-Plantard and Le Ny

In this section, we prove that the hypothesis f M dv < +o0o of Guillotin-Plantard and Le Ny

fo (1 fo)
in [10] can be replaced by the existence of p > 1 such that fM m dv < 400, for some p > 0. In
this situation, there is no need to introduce the set U, ; we take U, = A,,. If we take 6; > 0, 2 > 0 and
ds > 0, all the points (of the sketch of the proof of section 3) except the point 3(b)(ii) come in the same

way without the need of the hypothesis fM W dv < 4oc0. It remains to estimate :

12, 1+283

sup n2 I (W) = n%“s?’/ E [eitzyez 5?/N"‘1(y)’ (Sp)p} (w)e™ — = dt.
wEA {|t|<n™ 2 %F%2}

Let us take w € A,,. We suppose d3 > 205 and §; < d4 < i — 03 — 22. The idea of Guillotin-Plantard and
Le Ny is to write :
it |70 b+ / 1 E | T lcos(tNo-1(y)) + i(2f, — 1) sin(tNo—1 ()] (Sy)p | €
(ltlsn=27%%02) oy
12,1428
= nir / 1 E H \/1 —4fy (1= fy) sinz(th_l(y)) (Spp| e 7 St
{|tj<n 27 %8102} | veZ
< %*53/ EH\/l Rl F) g (N 1 ()2 (5,0 | =7
n — e
- (It <n=395+%2) . " "

yGZ

< n%+53/ E He_w%fy(l—fy)tZNn—l(y)z (Sp)p e*w dt
B {|t|<n~2 %3 +o2y | vez

since |tN,_1(y)] < n-2 %st0apa+ds — 202-05 Hence7 if n is large enough, then [tN,_1(y)| will be
7T

uniformly less than % and [sin(tN,,—1(y))| > 2[tN,—1(y)|. We also use the fact that, for positive u, we

have : 1 —u <e ™. Accordlng to the Holder inequality with E % =1, we have :
n%+53 I’r(Ll)’ < n%+53/ E |:e*,%fo(1*f0)t2 S Nu—1(k)? (Sp)p:| e*m
{[t|<n= 278702}
Now, we use the fact that, since 4 > d1, there exists a constant ¢ such that we have :
Vo' € Ay S (Npo1())2(w') > en? 027204,
YEL

This has been proved in the previous section entitled 'proof of lemma 9’. Hence, under the hypothesis
fM fo(l ) dv < 400 of Guillotin-Plantard and Le Ny, we have :

n%+53

IA

I(l)(w)‘ n%+53/ B | o= 25 fo0—foyPnd —t2-28a] _2ali2s
' {Itl<n” 7 0at02)

n7i+63+872+54/]E S e dy
R fo(1 = fo)

13
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t2, 11203
3

dt



with the change of variable v = t\/ fo(l — fo)n%*‘h”z‘s‘*. This gives the result of Guillotin-Plantard and
Le Ny since —i + 45 + %2 + d4 < 0. We adapt this argument to our hypothesis. Now let us replace the
hypothesis [}, \/ﬁ dv < 400 by [}, m dv < 400 for some p > 0. Let us take d3 > 202 and

1 $ ) .
61<54<Z—53—?2—;2. We have :

3 _ — 2,,1-}—25 q 5 s

n%ﬂ?s/ s 5 E|:6—f2fo(1—fo)t2"2 o2 254:| e~ 2 dt 2n%+53n—§+72+54+72
—34 %2 45,4+%2
{lt|[<n 47 2 P}

IN

< opitoatFHs+2
On the other hand, let ¢, = su uPe™™, we have :
’ P pu>0 ’
8 f (1 2 36525 214263
E |:€_772f0(1 fo)t®n2 702 4:| S,t n dt <

1
,n*2+53
3,92 5 92 1 s
f{n 47 2 P <|t|<n 27 62}

253 2\ P
< Qn%+6sn—%—63+62/ o~ 2z fo(1=fo)n ) dv < n%c, (77> / [fo(1 — fo)] 7 dv.
- - 8

M M

A Proof of proposition 4

In cases (a) and (b), (& )r is a stationary sequence of bounded centered random variables

A.1 Proof of (a)

. . 2
Wehave: Y00 vIF PIEE0E]| = Xm0 VI F BIE,[f.foT?]| which is less than : o] f]|oc (||f||oo + KW 4 K¢ >) >0
and hence is finite. Let us consider an integer N > 1. We have :

4
% Z |E[£k1§k2£k3£k4]| < % Z |]E[£k1£k2£k3£k4]| .

k1,k2,k3,k4=0,...,N—1 0<k1<ka<k3z<ks<N-1

Let us consider the set EJ(\}) of (k1,ka, ks, kq) such that 0 < ky < kg < ks <ks < N—1and ky—k3 > N3
We have :

> IE[Ek Ernbraliall = > |Couv, (foTM ks foTheFsf foThi—ks)|
(k1,k27k37k4)€E1(\}> (kl’k27k37k4)€E§\})
2 1
< o (1115 + IR (KD + 80k ¢,
< coN? (Il + I (K + 30K ) supn'on.

n>1

Let us consider the set EI(\?) of (ki, ko, ks, kq) such that 0 < ky < ko < ks <ky < N—1and ky—k3 < N3
and ks — ko > rN5. We have :

Z |Cov (Ex, Ery Enalina)| = Z |Covy, (f o T~ f,(f.foTF ) o Ths—k2)|
(K1 ,ka ks k)€ B (k1,ka ks ka) e B
< 26¢yN? (||f||j§o + 2¢o || f12, (K + K}”)) sup n8(1 4 Kn)Prm.

14



Moreover, we have :

2 2
> [E[€k, &k |ElEroEra] | < > BEk&l | < N |B[fSoTH
(}Cl,kz,k&kz;)EE](\?) 0<k1<ka<N-1 k>0
2
< N o (1% + 1o (K5 + K§)) D o

k>0

Let us consider the set EJ(\“;’) of (ky,ka, ks, kq) such that 0 < kg < kg <ks <ks < N—1land ky—k;3 < N3
and ks — ky < *N3 and ke — k; > r(1+ r)N%. By the same method, we get :

Co 26

Z |E [fk‘l §k2 fksglm] | S N2 m

(k1 ko, ks ka)€E

Since the number of (k1, ko, k3, k4) such that 0 < k; < ko < k3 < k4 < N — 1 and that do not belong to
EV UEY UEY is bounded by N22(r + 1), we get :

(1713 + Beoll I (K + K (7)) supm® (1 + ).

n>1

sup % > B[y EkaSra ]l < +o00.

N
Nzl k1 ko, ks ka=0,...,N—1

Now, let us prove the point 2 of the hypothesis of theorem 1. Let ny, no, ng and n4 be four integers such
that 0 <mn; < ng <ng <ny. Let us consider any real numbers oy, , .., ap, and By, ..., Bn,. We have :

‘C’ov (eizzi"l ke ol Zidng Bkg’“)‘ = ‘C’ov,, (eizzim O"“fOTf(nH), (eiz}l’ing ﬁ"fOkans) o T"s—n2)

(1) (2)
<
D &) <1 + Kexp(i Z;:inl akaT’("L27k)) + Kexp(i Zziﬂj ,kaOTk”3>> Pnz—ns
ng N4
< oo (1 + Z coct|ag| + Z coc1|Be|(1 + ffn4—n3)> Prz—na-
k=nq k=n3

This gives the point 2 of the hypothesis of theorem 1 with ¢, ¢ := (1 + Ks)pp.

A.2 Proof of (b)

Let us define the function g = 2f — 1. This function is v-centered. More generally, for any integer m > 1,
let us define : g9, = 1 and gom+1 = g. We observe that, conditionally to w € M, the expectation of
(éx(w,-))™ is equal to g, o T*(w). Using the Fubini theorem and starting by integrating over [0;1]%,
we observe that, for any integers p > 1, we have : E[§,] = E,[g.g o T?] and that, for any integers
k1, ko, ks, ka, we have : B [§g, " €y "2y k] = Eb [H?Zl Gn; © Tkﬂ}. Hence, we can prove the point 1
of theorem 1 as we did for (a).

Now, let us prove the point 2 of the hypothesis of theorem 1. We observe that, conditionally to w € M,
the & (w, ) are independent and that the expectation of exp(iuéy(w, -)) is hy o T*(w) with (h, 1= e~ +
2isin(u)f o T%. The modulus of this function is bounded by 1 and we have : max (K,(Li), K,g?) < 2¢1|ul.
Let nq, no, ng and nyg be four integers such that 0 < n; < ny < n3 < ng. Let us consider any real
numbers o, , .., &y, and By, ..., Bn,. We have :

Cowv, ( ﬁ R, o TF, ﬁ hg, OTk>’

k:nl k:ng

‘CO’U (ei ZZi”l anlk , ei ZZ;LS 5k€k) ‘ _

no N4
<c <1 + 2cpcy (Z |Oék| + Z ﬁk|>> (1 + "in4—n3)30n3—712'

k=n4 k=ng
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B Proof of theorem 2 : a-mixing condition

Let us define (M, F) = (RZ, B(R)®%). Let T : M — M be such that T ((wg)kez) = (wWkt1)rez- Let v be
the image probability measure on (M, F) of II :  — R” with II(w) = (£ (w));cz- The process (&)rez
(with respect to P) has the same distribution as (f o T*)ecz (with respect to v) with f : M — R given
by f ((wg)kez) = wo. According to [11], lemma 1.2, (M, F,v,T) is strongly mixing (in the sense of our
definition 3) with the following choice of K® and of K@ 1 g is o(f oT*, k < 0)-measurable, we
have Ks(,l) := 0; otherwise we have Kél) :=o00. If his o(f o T*, k > 0)-measurable, we have K,(f) = 0;

otherwise we have K ,(12) := 00. We conclude with proposition 4.

C Proof of example 2.1

C.1 Casel

Let n > 0. Let us denote by I'®) the set of stable-central manifolds and by I'* the set of unstable
manifolds. In [16], each v* € T'* is endowed with some metric d* and each 7€) € 7€) is endowed with
some metric d(*¢) such that there exist ¢ > 0, dy €]0;1[ and 8 > 0 such that, for any integer n > 0, for
any 7% € T* and any v(5¢) € T'(5:¢) we have :

e For any y,z € 7“» du(ya Z) > d(yv Z) and for any ylvzl € ,y(s,e), d(s’e)(ylwzl) 2 d(y/a Z/)'

e For any y, z € v*, there exists Viny € I'* such that 77" (y) and T~"(z) belong to Vin) and we have :
d"(T~"(y), T7"(2)) < €o(do)"d"(y; 2)-

(se)

e For any y, z € 7(¢), there exists ’y((i’)e) € I'>®) such that T"(y) and T™(z) belong to ’y(i)

have : d(s*e)(T"(y),T”(z)) < co(l+ nﬁ)d(s’e) (y, 2).

and we

We take :

K}l) = sup sup 7”(21) —f@) and KJ(F) = sup sup 7”((?2; 1C)l .
YUETY y,zEx iy#z (d (y7 Z))n (s:e) gD (s:0) y zey(s:e)iys#z (d w (yv Z))n

For these examples, the result follows from [16] (cf. lemme 1.3.1 in [16]).

C.2 Case 2 : Sinai billiard

Since the early work of Sinai [19], this billiard system has been studied by many authors (|1, 2, 3, 4, 8] and
others). Let us recall that a point of M is a couple (g, v) corresponds to a reflected unit speed vector v at
the position ¢ on some obstacle O; and is parametrised by (i,r¢) where i is the index of the obstacle O,
r the curvilinear of x on it and ¢ the measure of the angle (taken in [—7/2; 7/2]) made by v with the unit
normal vector 7(q) to O; at ¢ directed to the outside of the obstacle. We endow M with a metric d such
that : d((¢,r, @), (i,7",¢")) = |[r —r'| + |¢ — ¢’|. Let us denote by Ry the set of points in M corresponding
to a reflected vectors tangent to the obstacles, i.e. such that ¢ = £7/2. The transformation 7" defines
a Cl-diffeomorphism from M \ U;_, T *(Ro) onto M \ U;_, T*(Ro). Let us consider the set C,, of
connected components of M \ J{~_, T*(Ry). For all k = —m,...,m, T* is C' on each C belonging to
Cr. We will use the notations of Chernov in [6]. Let us consider the set I'* of homogeneous stable curves
and the set I'* of homogeneous unstable curves and the two separation times s (-, ) (in the future) and
s_(+,-) (in the past) considered in [6]. We recall that there exist two constants ¢; > 0 and d; €]0; 1[ such
that, for any nonnegative integer n, for any y and z in M, we have :

e If y and z belong to the same homogeneous unstable curve, then s (z,y) € Z,, moreover T~ "(y)
and T~ "(z) belong to a same homogeneous unstable curve and we have : d(T"(y), T "(2)) < ¢16,"
and 5. (T~"(2), T-"(y)) > 1+ 5. (2, ).
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e If y and z belong to the same homogeneous stable curve, then s_(z,y) € Z,, moreover T"(y) and
T™(z) belong to a same homogeneous stable curve and we have : d(T™(y),T™(z)) < c¢161" and
s—(I"(x), T"(y)) Z n+s_(z,y).

With these notations, according to [6] (theorem 4.3 in [6] and the remark after theorem 4.3 in [6]), this
system is strongly mixing with :

K}l) ‘= sup sup 7|f(y) S_ {(j))‘ and K}(f) = sup sup 7”(?/) S_ {(j))|
Ty ety gz OV TE Y eyt OV
sy(y,z) >m+1 s—(y,z) >2m—+1

D Proof of conclusion (B) of theorem 5

We will use b and ¢ of proposition 2.1. First let us notice that there exists ¢/4; > 0 such that, for every
e €]0; 1], there exists a Lipschitz continuous function f. such that : |14 — follp1) < cagS,  [|felloe <

1 and C’}:) < % It suffices to take f. = max (O, 1-— M).

€

e Let us prove that : 3° -, v/1+p|E[§&,]| < +oo. This quantity can be rewritten :

42\/1 +p|Cov, (14,14 0TP)]

p=>0

and is less than : 4Zp>0 VI+plCovy(fp-2/¢, fp2/¢ 0 TP) + 2cAp~2|. Moreover, we have :

oy o fy oo T S o (14 K2, 452, Yo7 < (122607

e Let us prove that :

sup N2 > IE[Eky §ko s Eal| < 00

Nzl k1 ko ks ka=0,...,N—1
We use the notations EJ(\}), EJ(\?) and E](\?) and the calculations done in section A.1l.

— To estimate Z(kl,kQ,kg,k4)eE§vl)uE§§) |E[€k, Eky ks Ery]|, We replace each & by gy oT*, with gn =
2 (fN%Z - Ey[fN%z]). We have : || — gn © T%|| 11,y < 4caN 2. This substitution makes a
total error in O(N?). Moreover, according to the calculations of section A.1, we have :
1
> [Elgn o T* gy 0 T gy 0 T* gy o TH]| < CN*(14+CS)) (14+NF/3)aN* = O(N?).

(k1.k2 ks, k) EEY UES

— With the same technique, we get : Z(kl,kQ,ks,k;;)EEl(\?) |Covy, €k, Ekys Ekylry)| = O(N?). More-

2
over, as in section A.1, we have : Z(kl,kg,ks,k4)eE§3) B [Eky €k JEL [ER5ERy)]| < N? (Zkzo |E[§0§k]|>
and we have already proved that : >, 4 [E[§o&k]| < +o0.

— The sum of |E[£k1§k2§k3§k4“ over the k = (kl,k2,k‘3, k4) such that 0 S kl S kQ S k?g S k4 but
that do not belong to EJ(\}) U E](\?) U EI(\?) is controlled as in section A.1.

e Let us prove point 2 of hypothesis of theorem 1. By replacing each & by é,(C”S_M) = hpy—ny o T,
with hy = 2 (fN% - EU[fN%}), we make a total error in (14202, [ax| + Y02, [Bk]) (ns —
n2)~7. Moreover, according to the calculations done in section A.1, we have :
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. N2 gng—mng .y gng—ng
’Cm} (el 2okZny by b 2okzng Pt ) ‘ <

n2 ng
< <1+( Dol + ) ﬂkDCOO;(:Lan) (14 (n4 — ng)®)ams "2
k=n k=ng
no ng .
< C (1 + Z v | + Z /8k|> (1+ (ng —n3)?)(ng — ny) <™ "2,

k:n1 k::n3

This gives the point 2 of the hypothesis of theorem 1 with ¢, s = p~7 + (1 + s7)p7/¢6P.
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