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Transient random walk in Z2 with stationary orientations

Françoise Pène∗†

Abstract. In this paper, we extend a result of Campanino and Pétritis [5]. We study a random walk
in Z2 with random orientations. We suppose that the orientation of the kth floor is given by ξk, where
(ξk)k∈Z is a stationary sequence of random variables. Once the environment fixed, the random walk can
go either up or down or can stay in the present floor (but moving with respect to its orientation). This
model was introduced by Campanino and Pétritis in [5] when the (ξk)k∈Z is a sequence of independent
identically distributed random variables. In [10], Guillotin-Plantard and Le Ny extend this result to a
situation where the orientations of the floors are independent but chosen with stationary probabilities
(not equal to 0 and to 1). In the present paper, we generalize the result of [5] to some cases when (ξk)k

is stationary. Moreover we extend slightly a result of [10].

1 Introduction

Random walks in random environment in Zd have been studied by many authors. For a general reference
on this subject, we refer to chapter 6 of the book of Hughes [14] . Random walks with random orientations
have been less studied. However these two subjects are not far from each other. Indeed, random walks
with random orientations can be viewed as a degenerate case of random walks in random environment in
the sense that transition probabilities are allowed to be null. But this difference is significant. Moreover
random walks in Z2 with random orientations can also be viewed as a question of oriented percolation
(see section 12.8 of the Book of Grimmett [9]).

The present paper contains an extension of the model introduced by Campanino and Pétritis in [5] in
another direction than the one chosen by Guillotin-Plantard and Le Ny in [10]. But our result will also
apply to random walks of the form studied in [10]. Now, let us present the different models introduced
in [5], in [10] and in the present paper with their common ideas and their differences. Let us construct a
random walk (Mn = (X̃n, Ỹn))n≥0 in Z2 with random orientations as follows. Let (ξk)k∈Z be a stationary
sequence of centered random variables with values in {−1; 1}. The orientations of the kth horizontal floor
of Z2 is given by ξk. Once the environment fixed, the random walk (Mn = (X̃n, Ỹn))n will be such that
M0 = (0, 0) and such that the distribution of Mn+1 −Mn conditioned to σ(Mk; k = 0, ..., n) is uniform
on {(0, 1); (0,−1); (ξỸn

, 0)}.

In [5], Campanino and Pétritis prove the transience of the random walk (Mn)n when (ξk)k∈Z is
sequence of independent identically distributed random variables. Moreover, they point out the fact that
the random walk (Mn)n≥0 is recurrent in the ’alternate’ case where ξk only depends on the parity of k.
Hence the behaviour of this random walk depends on the randomness of the orientations (ξk)k∈Z.

In [10], Guillotin-Plantard and Le Ny give a first generalization of the work of Campanino and Pétritis.
They envisage the case when the orientations of the floors are taken independently with stationary
probabilities. More precisely, they consider the following situation : Let (fk)k∈Z be a stationary sequence
of random variables with values in [0; 1] and with expectation equal to 1

2 defined on some probability space
(M,F , ν). Let us consider the probability space given by (Ω1 := M× [0; 1]Z,F1 := F⊗(B([0; 1]))⊗Z, ν1 :=
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ν ⊗ (λ)⊗Z), where λ is the Lebesgue measure on [0; 1]. We define (ξ̃k,fk
)k∈Z on this space as follows :

ξ̃k,fk
(ω, (zm)m∈Z) := 2.1{zk≤fk(ω)} − 1.

This means that, once a realization of (fk)k given, the horizontal floors are oriented independently; the
kth floor being oriented to the right with probability fk. We will use this notation ξ̃k,fk

later in the
paper. In [10], Guillotin-Plantard and Le Ny prove that, if (ξk)k =

(
ξ̃k,fk

)
k
, then the corresponding

random walk (Mn)n is transient under the following condition :
∫

M
1√

f0(1−f0)
dν < +∞ (this implies

that 0 < f0 < 1 a.s.).

Let us notice that the (ξk)k studied in [10] is stationary. Conversely, if (ξk)k is stationary, then it can
be described by the approach of [10] by taking fk := 1{ξk=1} = 1

2 (ξk +1). But the method of [10] cannot
be applied to a function f0 that can be equal to 0 or 1 with a non-null probability.

In this paper, we are interested in the case when (ξk)k∈Z is a stationary sequence of random variables
satisfying some strong decorrelation properties. We state our main result in section 2 and prove it
in section 3. Examples are given in section 2 and detailed in the appendix. Our examples satisfy a
strong mixing condition. We complete this paper with a short discussion in section 4 about the model
envisaged by Guillotin-Plantard and Le Ny. We prove that their result remains true if the condition∫

M
1√

f0(1−f0)
dν < +∞ is replaced by

∫
M

1
[f0(1−f0)]p

dν < +∞, for some p > 0.

2 Main result, examples, strong mixing property

Theorem 1. Let (ξk)k∈Z be a stationary sequence of centered random variables with values in {−1; 1}
such that :

1. we have :
∑

p≥0

√
1 + p |E[ξ0ξp]| < +∞ and c′0 := supN≥1 N−2

∑
k1,k2,k3,k4=0,...,N−1 |E[ξk1ξk2ξk3ξk4 ]| <

+∞.

2. There exist some C > 0, some (ϕp,s)p,s∈N and some integer r ≥ 1 such that for all positive integers p
and s, we have ϕp+1,s ≤ ϕp,s, such that we have lims→+∞ s6ϕrs,s = 0 and such that, for all integers
n1, n2, n3, n4 with 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4, for all real numbers αn1 , ..., αn2 and βn3 , ..., βn4 , we
have : ∣∣∣Cov

(
ei

Pn2
k=n1

αkξk , ei
Pn4

k=n3
βkξk

)∣∣∣ ≤ C

(
1 +

n2∑
k=n1

|αk|+
n4∑

k=n3

|βk|

)
ϕn3−n2,n4−n3 .

Then the random walk (Mn)n is transient.

This result is proved in section 3. We will see in its proof that this question is linked with
∑n−1

k=0 ξSk

where (Sm)m≥0 is a simple symmetric random walk on Z independent of (ξk)k∈Z. Let us give some
examples of stationary sequences (ξk)k∈Z to which this result applies.

Theorem 2. [(α-mixing condition)] Let (gk)k∈Z be a stationary sequence of bounded real-valued random
variables defined on some probability space (Ω,A, P) satisfying the following α-mixing condition :

sup
n≥1

n6αn < +∞, with αn := sup
p≥0; m≥0

sup
A∈σ(g−p,...,g0)

sup
B∈σ(gn,...,gn+m)

|P(A ∩B)− P(A)P(B)| .

Then :

(a) If gk takes its values in {−1; 1}, if
∫

M
gk dν = 0 and if (ξk := gk)k∈Z, then (Mn)n is transient.

(b) If gk takes its values in [0; 1], if
∫

M
gk dν = 1

2 and if (ξk := ξ̃k,gk
)k∈Z, then (Mn)n is transient.
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We will prove that the hypotheses of theorem 1 are satisfied in the general context of strongly mixing
dynamical systems. We say that (M,F , ν, T ) is an invertible dynamical system if (M,F , ν) is a probability
space endowed with an invertible bi-measurable transformation T : M → M .

Definition 3. We say that an invertible dynamical system (M,F , ν, T ) is strongly mixing if there
exists c0 > 0, there exist two real sequences (ϕn)n≥0 and (κm)m≥0 and, for any function g : M → C,
there exist K

(1)
g ∈ [0;+∞] and K

(2)
g ∈ [0;+∞] such that, for all bounded functions g, h : M → C :

1. for all integer n ≥ 0, we have : |Covν(g, h ◦ Tn)| ≤ c0

(
‖g‖∞‖h‖∞ + ‖h‖∞K

(1)
g + ‖g‖∞K

(2)
h

)
ϕn;

2. for all integer m ≥ 0, we have : K
(1)
g◦T−m ≤ c0K

(1)
g and : K

(2)
h◦T m ≤ c0K

(2)
h (1 + κm);

3. we have : K
(1)
g×h ≤ ‖g‖∞K

(1)
h + ‖h‖∞K

(1)
g and : K

(2)
g×h ≤ ‖g‖∞K

(2)
h + ‖h‖∞K

(2)
g ;

4. the sequence (ϕn)n≥0 is decreasing, the sequence (κm)m≥0 is increasing and there exists an integer
r ≥ 1 such that : supn≥1 n6(1 + κn)ϕrn < +∞.

Proposition 4. Let (M,F , ν, T ) be a strongly mixing dynamical system. Let the sequence (ξk) be of
one the two following kinds :

(a) ξk = f ◦ T k with f : M → {−1; 1} a ν-centered function such that K
(1)
f + K

(2)
f < +∞. We

suppose that there exists some real number c1 > 0 such that, for any real number α, we have :
K

(1)
exp(iαf) + K

(2)
exp(iαf) ≤ c1|α|.

(b) ξk = ξ̃k,f◦T k with f : M → [0; 1] such that
∫

M
f dν = 1

2 and such that there exists some c1 > 0 such
that, for any a, b ∈ C, we have K

(1)
af+b + K

(2)
af+b ≤ c1|a|.

Then (ξk)k satisfies the hypothesis of theorem 1.

Proposition 4 is proved in appendix A. Theorem 2 will appear as a direct consequence (see appendix
B). Our strong mixing property is satisfied by a large class of dynamical systems (endowed with some met-
ric) with K

(1)
f and K

(2)
f dominated by the Hölder constant of f of order η. Interesting examples are given

by hyperbolic or quasi-hyperbolic dynamical systems. We quickly give some examples of such dynamical
systems. In the case of the billiard transformation, because of the discontinuity of the transformation,
our class of allowed functions will contain discontinuous functions.

Examples 2.1. 1. Let (M,F , ν, T ) where T is an ergodic algebraic automorphism of the torus or a
diagonal transformation on a compact quotient of Sld0(R) by a discrete group. Let η > 0. According
to [16], the strong mixing property holds with K

(1)
g some η-Hölder constant of g along the unstable

manifolds and with K
(2)
h some η-Hölder constant of h along the stable-central manifolds and with

ϕn = αn for some α ∈ (0, 1) and κm = mβ for some β ≥ 0. Moreover K
(1)
g and K

(2)
g are dominated

by the Hölder constant of order η of g.

2. Let (M,F , ν, T ) where T is the Sinai billiard transformation (in T2) with C3-convex scatterers and
with finite horizon and where ν is the T invariant measure absolutely continuous with respect to the
Lebesgue measure [19]. Let m0 ∈ Z+ and η > 0. According to [6] (theorem 4.3), the strong mixing
property holds with ϕn = αn for some α ∈ (0, 1) and κm = mβ for some β ≥ 0, K

(1)
g being some

Hölder constant of g along the T−m0(γu)’s (where the γu’s are the unstable curves) and K
(2)
h being

some Hölder constant of h along the Tm0(γs)’s (where the γs’s are the stable curves). The quantities
K

(1)
h and K

(2)
h will be dominating by C

(η,m0)
h = supC∈Cm

supx,y∈C, x6=y
|h(x)−h(y)|

max(d(T k(x),T k(y)); k=−m,...,m)η ,
where Cm is a set of open subsets of M on which Tm and T−m are C1.

The first example is a direct consequence of [16]. The second example is a consequence of [6]. In
appendix C, we give a precise definition of K

(1)
f and of K

(2)
f for these examples (and a definition of Cm

for the Sinai billiard). For these systems, we can say a little more :
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Theorem 5. Let η ∈ (0, 1) and let (M,F , ν, T ) be a strongly mixing dynamical system (endowed with
some metric) such that there exists α ∈ (0, 1) and β ≥ 0 such that ϕn = αn and κm = mβ and such that
K

(1)
h and K

(2)
h are both dominated by the η-Hölder constant of h. Then :

(A) If (ξk := ξ̃k,g0◦T k)k∈Z with g0 : M → [0; 1] a Hölder continuous function (of order η) such that∫
M

g0 dν = 1
2 , then (Mn)n is transient.

(B) If (ξk = 21A ◦ T k − 1)k∈Z with ν(A) = 1/2 and with A such that there exist cA > 0 and ζ > 0 such
that, for every ε ∈]0; 1[, we have : ν ({x ∈ M : d(x,A) < ε}) ≤ cAεζ , then (Mn)n is transient.

Conclusion (A) of theorem 5 follows directly from proposition 4. Conclusion (B) of theorem 5 is
proved in appendix D.

3 Proof of theorem 1

Let us define T0 := 0 and, for all n ≥ 1 : Tn+1 := inf{k > Tn : Ỹk 6= Ỹk−1}. According to lemma 2.5 of
[5], we have the following result :

Lemma 6. If (MTn
)n≥0 is transient, then (Mn)n≥0 is transient

Now, still following [5], we construct a realization of (MTn
)n. Let us consider a symmetric random

walk (Sn)n on Z independent of (ξk)k∈Z. For any integer m ≥ 1 and any integer k, we define :

Nm(k) := Card{j = 0, ...,m : Sj = k}.

Let us also consider a sequence of independent random variables (ζ(y)
i )i≥1,y∈Z with geometric distri-

bution with parameter 1
3 , and independent of ((ξy)y∈Z, (Sp)p≥1).

Lemma 7. The process (Xn, Sn)n≥1 with Xn :=
∑

y∈Z ξy

∑Nn−1(y)
i=1 ζ

(y)
i has the same distribution as

(MTn)n≥1.

In this lemma, ζ
(y)
i corresponds to the duration of the stay at the yth horizontal floor during the ith

visit to this floor. According to the Borel-Cantelli lemma, it suffices to prove that :
∑

n≥1 P({(Xn, Sn) =
(0, 0)}) < +∞. We follow the scheme of the proof of [5]. The difference will be in our way of estimating
I
(1)
n and in the introduction of the sets Un. We will consider δ1, δ2, δ3, and γ such that : 0 < δ1 < 2δ2,

δ1 + ( 27
2 + 16)δ2 < 1

8 , δ3 > 0, 1
4 − 3δ2 < δ3 < 1

4 −
5
2δ2 − δ1, δ3

2 − 2δ2 < β < δ3
2 − δ2, max(δ1, δ2) < γ <

1
2 − 22 max(δ1, δ2). The idea is that δ1, δ2, 1

4 − δ3 and 1
8 − β are positive numbers very close to zero.

As in [5, 10], let us define : An := {ω ∈ Ω : max`∈Z Nn−1(`) ≤ n
1
2+δ2 and maxk=0,...,n |Sk| < n

1
2+δ1}.

Moreover, we define : Un := {ω ∈ An : ∀x, y ∈ Z, |Nn−1(x)−Nn−1(y)| ≤
√
|x− y|n 1

2+γ}. The sketch
of the proof is the following :

1. As in proposition 4.1 of [5], we have :
∑

n≥1 P ({Xn = 0 and Sn = 0} \An) < +∞. Actually we
have :

∑
n≥1 P ({Sn = 0} \An) < +∞.

2. We will see in lemma 8 of the present paper that we have :
∑

n≥1 P (An \ Un) < +∞. Therefore,
we have :

∑
n≥0 P ({Xn = 0 and Sn = 0} \ Un) < +∞;

3. Let us define Bn := {ω ∈ Un :
∣∣∣∑y∈Z ξyNn−1(y)

∣∣∣ > n
1
2+δ3}. As in proposition 4.3 of [5], we have :∑

n≥0 P(Bn ∩ {Xn = 0 and Sn = 0}) < +∞. It remains to prove that :∑
n≥0 P (Un ∩ {Xn = 0 and Sn = 0} \Bn) < +∞.
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(a) As in lemma 4.5 of [5], there exists a real number C > 0 such that :

sup
ω∈Un\Bn

P ({Xn = 0}|(Sp)p≥1, (ξk)k∈Z) ≤ C

√
ln(n)

n
.

(b) We will prove that there exists some δ̃ > 0 and some C ′ > 0 such that :

∀ω ∈ Un, P (Un \Bn|(Sp)p) (ω) ≤ C ′n−δ̃.

i. This probability is bounded by c′n
1
2+δ3In(ω) with In(ω) = I

(1)
n (ω) + I

(2)
n (ω) and

I(1)
n (ω) :=

∫
{|t|≤n−

1
2−δ3+δ2}

E
[
eit

P
y∈Z ξyNn−1(y)(ω)

∣∣∣ (Sp)p

]
e−

t2n1+2δ3
2 dt

and
I(2)
n (ω) :=

∫
{|t|>n−

1
2−δ3+δ2}

E
[
eit

P
y∈Z Nn−1(y)(ω)

∣∣∣ (Sp)p

]
e−

t2n1+2δ3
2 dt.

ii. We will prove that n
1
2+δ3 supUn

I
(1)
n = O(n−δ) for some δ > 0 (see our lemma 9);

iii. On the other hand, following [5], we have :

n
1
2+δ3I(2)

n ≤
∫
{|s|>nδ2}

e−
s2
2 ds ≤ 2n−δ2e−

n2δ2
2

(c) We have P(Sn = 0) ≤ C ′′n−
1
2 .

(d) Hence we have : P (Un ∩ {Xn = 0 and Sn = 0} \Bn) ≤ C ′′′n−1−δ̃
√

ln(n).

We have to prove that points 2 and 3(b)(ii) are true with our choices of parameters. Indeed, all the other
points are true for any positive δ1, δ2, δ3 and for any sequence of random variables (ξk)k∈Z independent
of (Sp)p. We notice that, for any integer n ≥ 1, we have :

∑n−1
j=0 ξSj

=
∑

k∈Z ξkNn−1(k). In our proof,
we need some real numbers δ1, δ2, δ3, δ4, β, γ and ε > 0. We will suppose that :

δ1 > 0, δ2 > 0, δ1 + ( 27
2 + 16)δ2 < 1

8 , δ3 > 0, δ1 < δ4 < 1
4 − δ3 − 5

2δ2, 1
4 − 3δ2 < δ3 < 1

4 −
5
2δ2,

5
3δ2 < 1

2δ3, δ3
2 − 2δ2 < β < δ3

2 − δ2, 5
2δ3 > 1

2 + 6δ2 + δ1, max(δ1, δ2) < γ < 1
2 − 22 max(δ1, δ2) and :

nδ1+11δ2
∑

m≥ (r+1)nβ

2

|E[ξ0ξm]| = O(n−ε).

(we have :
∑

m≥N |E[ξ0ξm]| ≤ N− 1
2
∑

m≥N

√
m|E[ξ0ξm]|). All these inequalities are true with the follow-

ing choices of parameters :

δ1 =
1

3000
, δ2 =

1
500

, δ3 =
1
4
− 11

4
δ2 = 489/2000, δ4 = 1/2500, β =

δ3

2
− 3

2
δ2 = 477/4000, γ =

1
4
.

Lemma 8. We have :
∑

n≥1 P (An \ Un) < +∞.

Proof. Let us consider any x, y ∈ Z with x 6= y and |x − y| ≤ 3n
1
2+δ1 . For any integer j ≥ 1, we

define the time τj(x) of the jth visit of (Sp)p to x and the number Nj(x, y) of visits of (Sp)p to y between
the times τj(x) and τj+1(x). According to [15, 20] (see [15] lemma 2), for any integer p ≥ 1, there exists
Kp > 0 such that, for any x′ 6= y,′ we have : E[(Nj(x′, y′))p] ≤ Kp|x′ − y′|p−1. According to [15], on the
set {τ1(x) ≤ τ1(y)}, we have :

(Nn−1(x)−Nn−1(y)) =
Nn−1(x)∑

j=1

(1−Nj(x, y)) +

τNn−1(x)+1(x)∑
k=n

1{Sk=y}.
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Let p be any positive integer. We have :

(Nn−1(x)−Nn−1(y))2p1{τ1(x)≤τ1(y)} ≤ 22p


Nn−1(x)∑

j=1

(1−Nj(x, y))

2p

+

τNn−1(x)+1(x)∑
k=n

1{Sk=y}

2p
 .

But, on An, since we have Nn−1(x) ≤ n
1
2+δ2 , we get :τNn−1(x)+1(x)∑

k=n

1{Sk=y}

2p

≤
(
NNn−1(x)(x, y)

)2p ≤

j
n

1
2 +δ2

k∑
j=1

(Nj(x, y))2p
.

Hence we have:

E


τNn−1(x)+1(x)∑

k=n

1{Sk=y}

2p

1An

 ≤ n
1
2+δ2K2p|x− y|2p−1

≤ K2p3p−1|x− y|p
(
n

1
2+max(δ1,δ2)

)p

.

Moreover, on An, we have :Nn−1(x)∑
j=1

(1−Nj(x, y))

2p

≤ max
k=1,...,

j
n

1
2 +δ2

k
 k∑

j=1

(1−Nj(x, y))

2p

.

Since
(∑k

j=1(1−Nj(x, y))
)

k≥1
is a martingale (see [15] lemma 2), according to a maximal inequality,

we have :∥∥∥∥∥∥∥ max
k=1,...,

j
n

1
2 +δ2

k
 k∑

j=1

(1−Nj(x, y))

2
∥∥∥∥∥∥∥

Lp

≤ p

p− 1
max

k=1,...,
j
n

1
2 +δ2

k
∥∥∥∥∥∥∥
 k∑

j=1

(1−Nj(x, y))

2
∥∥∥∥∥∥∥

Lp

.

Hence we have :

E


Nn−1(x)∑

j=1

(1−Nj(x, y))

2p

1An

 ≤ ( p

p− 1

)p

max
k=1,...,

j
n

1
2 +δ2

k E


 k∑

j=1

(1−Nj(x, y))

2p
 .

Let us write M2p
ν1,...,νl

= (2p)!Ql
i=1 νi!

. For any k = 1, ...,
⌊
n

1
2+δ2

⌋
, since the Njm

’s are independent and since
E [1−Nj(x, y)] = 0, we have :

E


 k∑

j=1

(1−Nj(x, y))

2p
 =

2p∑
l=1

∑
ν1+...+νl=2p; mini νi≥1

M2p
ν1,...,νl

∑
j1<...<jl

l∏
m=1

E [(1−Njm
(x, y))νm ] ,

≤
2p∑
l=1

∑
ν1+...+νl=2p; mini νi≥2

M2p
ν1,...,νl

∑
1≤j1<...<jl≤k

l∏
m=1

(2νmE [1 + (Njm(x, y))νm ])

≤
2p∑
l=1

∑
ν1+...+νl=2p; mini νi≥2

M2p
ν1,...,νl

∑
1≤j1<...<jl≤k

l∏
m=1

(
2νm(1 + Kνm

|x− y|νm−1
)

≤ C̃p

2p∑
l=1

|x− y|2p−l(n
1
2+δ2)l ≤ 2p3pC̃p|x− y|p(n 1

2+max(δ1,δ2))p.

6



Hence we get : E
[
(Nn−1(x)−Nn−1(y))2p1An

]
≤ C̃ ′

p|x− y|p(n 1
2+max(δ1,δ2))p. Therefore, according to the

Markov inequality, for any integer p ≥ 1, we have :

P (An \ Un) ≤
∑l

n
1
2 +δ1

m
x,y=−

l
n

1
2 +δ1

m P
(

An ∩
{
|Nn−1(x)−Nn−1(y)| >

√
|x− y|n 1

2+γ

})

≤

l
n

1
2 +δ1

m∑
x,y=−

l
n

1
2 +δ1

m
E[(Nn−1(x)−Nn−1(y))2p1An

]
|x− y|p(n 1

2+γ)p
≤ cp

(
5n

1
2+δ1

)2 (
nmax(δ1,δ2)−γ

)p

.

By taking p large enough, we get :
∑

n≥1 P(An \ Un) < +∞.

3.1 Estimates on Un

In this section, we suppose that we are in Un. We will estimate :

I(1)
n (ω) :=

∫
{|t|≤n−

1
2−δ3+δ2}

(
E
[
eit

P
y∈Z ξyNn−1(y)

∣∣∣ (Sp)p

]
(ω)
)

e−
t2n1+2δ3

2 dt.

Lemma 9. There exists a real number δ > 0 such that : supn≥1 nδ supω∈Un
n

1
2+δ3I

(1)
n (ω) < +∞.

To prove this lemma, we will use the following formula :

n
1
2+δ3I(1)

n (ω) = nδ2

∫
{|u|≤1}

(
E
[
eiun−

1
2−δ3+δ2

P
y∈Z ξyNn−1(y)

∣∣∣∣ (Sp)p

]
(ω)
)

e−
u2n2δ2

2 du.

The main idea is to prove that, in this formula, we can replace the term :

Bn(u)(ω) := E
[
eiun−

1
2−δ3+δ2

P
y∈Z ξyNn−1(y)

∣∣∣∣ (Sp)p

]
(ω)

by the term : An(u)(ω) := e
− u2

2n1+2δ3−2δ2

P
y,z E[ξyξz ](Nn−1(y)(ω))2

. More precisely let us prove that we have :

Lemma 10. There exists a real number δ0 > 0 such that we have :

sup
n≥1

nδ0 sup
ω∈Un

nδ2

∫
|u|≤1

|Bn(u)(ω)−An(u)(ω)| e−u2n2δ2
2 du < +∞. (1)

After proving 10, we will prove that lemma 9 is a consequence of it. We will use the following notation :
σ2

ξ :=
∑

m∈Z E[ξ0ξm].

3.1.1 Proof of lemma 10

Our proof uses a method introduced by Jan (cf. [12], [13]). This method also gives a result of convergence
in distribution for

(
n−3/4

∑n−1
k=0 ξSn

)
n≥1

(see [17, 18]). Let n be an integer such that nβ ≥ 2. Let us fix

ω ∈ Un and u ∈ [−1; 1]. Let us recall that 0 < β < δ3
2 −δ2 et let us define : Ln :=

⌊
2

j
n

1
2 +δ1

k
+1

bnβc

⌋
(we have :

Ln ≤ 4n
1
2+δ1−β) and, for all integer k = 0, ..., Ln : α(k) := −

⌊
n

1
2+δ1

⌋
+kbnβc and α(Ln+1) :=

⌊
n

1
2+δ1

⌋
+1;

bk := e
iun−

1
2−δ3+δ2

Pα(k+1)−1
y=α(k)

ξyNn−1(y) and ak := e
− u2

2n1+2δ3−2δ2

Pα(k+1)−1
y=α(k)

σ2
ξ(Nn−1(y))2

. We have to estimate :
nδ2

∣∣∣E [∏Ln

k=0 bk

∣∣∣ (Sp)p

]
(ω)−

∏Ln

k=0 ak(ω)
∣∣∣ . Hence it is enough to estimate :

nδ2

Ln∑
k=0

∣∣∣∣∣E
[(

k−1∏
m=0

bm

)
(bk − ak)

(
Ln∏

m′=k+1

am′

)∣∣∣∣∣ (Sp)p

]
(ω)

∣∣∣∣∣ .
7



• We explain how we can restrict our study to the sum over the k such that (r + 1)4 ≤ k ≤ Ln − 1. Let
k ∈ {0, ..., Ln}. We have :

E

( α+θ∑
`=α+1

ξ`Nn−1(`)

)2

|(Sp)p

 (ω) ≤
α+θ∑

`=α+1

α+θ∑
m=α+1

|E[ξ`ξm]| Nn−1(`)(ω)Nn−1(m)(ω)

≤ θ
∑
m∈Z

|E[ξ0ξm]|n1+2δ2 .

Hence we have :

E [|bk − 1||(Sp)p] (ω) ≤ n−
1
2−δ3+δ2

(
E
[∣∣∣∑α(k+1)−1

y=α(k)
ξyNn−1(y)

∣∣∣ |(Sp)p

]
(ω)
)

≤ n−
1
2−δ3+δ2n

β
2

√∑
m∈Z

|E[ξ0ξm]|n 1
2+δ2 ≤ n−

3
4 δ3+

3
2 δ2

√∑
m∈Z

|E[ξ0ξm]|,

since we have β < δ3
2 − δ2. Moreover we have :

|ak(ω)− 1| ≤
σ2

ξ

∑α(k+1)−1
y=α(k)

(Nn−1(y)(ω))2

2n1+2δ3−2δ2
≤

σ2
ξn1+2δ2

2n1+2δ3−2δ2
nβσ2

ξn1+2δ2 ≤
n−

3
2 δ3+3δ2σ2

ξ

2
.

From which, we get :

nδ2

(r+1)4−1∑
k=0

E [|bk − ak||(Sp)p] (ω) + E [|bLn
− aLn

||(Sp)p] (ω) ≤ c0

(
n−

3
4 δ3+

5
2 δ2 + n−

3
2 δ3+4δ2

)
, (2)

with c0 := ((r + 1)4 + 1)
√∑

m∈Z |E[ξ0ξm]|+ 1
2σ2

ξ . Let us recall that 5
3δ2 < 1

2δ3.

Hence, it remains to estimate :

nδ2

Ln−1∑
k=(r+1)4

∣∣∣∣∣E
[(

k−1∏
m=0

bm

)
(bk − ak)

Ln∏
m′=k+1

am′ |(Sp)p

]∣∣∣∣∣ . (3)

• Let us introduce some holes in the indices m in order to use our decorrelation hypothesis. Let us
control the following quantity :

B̃n := nδ2

Ln−1∑
k=(r+1)4

∣∣∣∣∣∣E
k−(r+1)4∏

m=0

bm

 3∏
j=1

 k−(r+1)j∏
m=k−(r+1)j+1+1

bm

− 1

 k−1∏
m′′=k−r

bm′′(bk − ak)
Ln∏

m′=k+1

am′

∣∣∣∣∣∣ (Sp)p

∣∣∣∣∣∣ .
We have :

B̃n(ω) ≤ nδ2

Ln−1∑
k=(r+1)4

3∏
j=1

∥∥∥∥∥∥
 k−(r+1)j∏

m=k−(r+1)j+1+1

bm

− 1

∥∥∥∥∥∥
L∞(Un)

‖bk − ak‖L∞(Un).

On Un, we have : |bk − 1| ≤ n−
1
2−δ3+δ2nβn

1
2+δ2 ≤ n−δ3+2δ2+β .

Analogously, we get :
∣∣∣(∏k−(r+1)j

m=k−(r+1)j+1+1 bm

)
− 1
∣∣∣ ≤ r(r + 1)jn−δ3+2δ2+β . On the other hand, we

have : |ak − 1| ≤ 1
2n−2δ3+4δ2+βσ2

ξ . Therefore, since we have β < δ3
2 − δ2, we get :

B̃n ≤ 4nδ2n
1
2+δ1−βr3(r + 1)6

(
1 +

1
2
σ2

ξ

)(
n−δ3+2δ2+β

)4
= O

(
n

1
2−

5
2 δ3+6δ2+δ1

)
.

The control of the quantity B̃n comes from the fact that 5
2δ3 > 1

2 + 6δ2 + δ1.

8



It remains to estimate : nδ2
∑Ln−1

k=(r+1)4+1

∑
1≤j0<j1≤j2≤4 Cn,k,j0,j1,j2 , where Cn,k,j0,j1,j2 is the fol-

lowing quantity :∣∣∣∣∣∣E
k−(r+1)4∏

m=0

bm

 k−(r+1)j1∏
m=k−(r+1)j2+1

bm

 k−1∏
m=k−(r+1)j0+1

bm

 (bk − ak)
Ln∏

m′=k+1

am′

∣∣∣∣∣∣ (Sp)p

∣∣∣∣∣∣ ,
with the convention :

∏β
m=α bm = 1 if β < α. Let j0, j1, j2 be fixed. We have : Cn,k,j0,j1,j2 ≤

Dn,k,j0,j1,j2 + En,k,j0,j1,j2 , with :

Dn,k,j0,j1,j2 :=

∣∣∣∣∣Cov|(Sp)p
(∆n,k,j1,j2 ,Γn,k,j0)

Ln∏
m′=k+1

am′

∣∣∣∣∣
and En,k,j0,j1,j2 :=

∣∣∣∣∣E [∆n,k,j1,j2 | (Sp)p] E [Γn,k,j0 | (Sp)p]
Ln∏

m′=k+1

am′

∣∣∣∣∣ .
with ∆n,k,j1,j2 :=

∏k−(r+1)4

m=0 bm

∏k−(r+1)j1

m′=k−(r+1)j2+1
bm′ and Γn,k,j0 :=

(∏k−1
m=k−(r+1)j0+1 bm

)
(bk−ak).

• Control of the covariance terms (thanks to our decorrelation hypothesis). Let j0, j1, j2 be fixed.
Let k = (r + 1)4, ..., Ln − 1. We have :

Dn,k,j0,j1,j2 ≤

∣∣∣∣∣∣Cov|(Sp)p

∆n,k,j1,j2 ,

k∏
m=k−(r+1)j0+1

bm

 Ln∏
m′=k+1

am′

∣∣∣∣∣∣+
+

∣∣∣∣∣∣Cov|(Sp)p

∆n,k,j1,j2 ,
k−1∏

m=k−(r+1)j0+1

bm

 Ln∏
m′=k

am′

∣∣∣∣∣∣ .
But we have :

∏θ1+θ2
m=θ1+1 bm = e

iun−
1
2−δ3+δ2

Pα(θ1+θ2+1)−1

`=α(θ1)
ξ`Nn−1(`)

. Therefore, according to point 2
of the hypothesis of our theorem, we have :

Dn,k,j0,j1,j2 ≤ 2C

(
1 + n−

1
2−δ3+δ2

∑
`∈Z

Nn−1(`)

)
ϕp,s

with p := bnβc((r +1)j1 − (r +1)j0) and s := bnβc(r +1)j0 −1. Let us notice that we have : p ≥ rs.
Since

∑
`∈Z Nn−1(`) = n, we have :

nδ2

Ln−1∑
k=(r+1)4

Dn,k,j0,j1,j2 ≤ 4C
(
n1−δ3+δ1−β+2δ2

)
n−6β sup

s≥nβ

s6ϕrs,s

≤ 4C
(
n1− 9

8+δ1+( 27
2 +16)δ2

)
sup
s≥nβ

s6ϕrs,s,

since β > δ3
2 − 2δ2 and δ3 > 1

4 − 3δ2. We end this point by noticing that δ1 + ( 27
2 + 16)δ2 < 1

8 .

• Control of the term with the product of the expectations. Let j0, j1, j2 be fixed. Let k = (r +
1)4, ..., Ln − 1. We can notice that En,k,j0,j1,j2 is bounded by the following quantity :

Fn,k,j0 :=

∣∣∣∣∣∣E
 k∏

m=k−(r+1)j0+1

bm −

 k−1∏
m=k−(r+1)j0+1

bm

 ak

∣∣∣∣∣∣ (Sp)p

∣∣∣∣∣∣ .
We approximate the terms with exponential using Taylor expansions.
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– First we explain that, in Fn,k,j0 , we can replace

k∏
m=k−(r+1)j0+1

bm = exp

iun−
1
2−δ3+δ2

α(k+1)−1∑
`=α(k−(r+1)j0+1)

ξ`Nn−1(`)


by the formula given by the second order Taylor expansion of the exponential function :

1 + iun−
1
2−δ3+δ2

α(k+1)−1∑
`=α(k−(r+1)j0+1)

ξ`Nn−1(`)−
u2

2n1+2δ3−2δ2

 α(k+1)−1∑
`=α(k−(r+1)j0+1)

ξ`Nn−1(`)

2

. (4)

Indeed, the induced error is less than : 1
6n−

3
2−3δ3+3δ2E

[∣∣∣∑α(k+1)−1

`=α(k−(r+1)j0+1)
ξ`Nn−1(`)

∣∣∣3 |(Sp)p

]
.

Moreover, we have :

E


∣∣∣∣∣∣

α(k+1)−1∑
`=α(k−(r+1)j0+1)

ξ`Nn−1(`)

∣∣∣∣∣∣
4

|(Sp)p

 ≤
α(k+1)−1∑

y1,y2,y3,y4=α(k−(r+1)j0+1)

|E[ξy1ξy2ξy3ξy4 ]|
(
n

1
2+δ2

)4

≤ c′0n
2+4δ2(r + 1)6n2β ,

according to the hypothesis of our theorem. Hence, taking the sum over k = (r+1)4, ..., Ln−1
and multiplying by nδ2 , this substitution induces a total error bounded by :

(c′0)
3/4

6
nδ2+

1
2+δ1−βn−

3
2−3δ3+3δ2n

3
2+3δ2(r + 1)

9
2 n

3
2 β

and so by : (c′0)
3/4

6 n7δ2+
1
2+δ1−3δ3+

1
2 β(r + 1)

9
2 . Since β < δ3

2 − δ2, δ3 > 1
4 − 3δ2 and δ1 + ( 27

2 +
16)δ2 < 1

8 , we have : 7δ2 + 1
2 + δ1 − 3δ3 + 1

2β ≤ − 1
16 .

– Let us introduce Yk :=
∑α(k)−1

`=α(k−(r+1)j0+1)
ξ`Nn−1(`) and Zk :=

∑α(k+1)−1

`=α(k)
σ2

ξNn−1(`)2. We

explain that, in Fn,k,j0 , we can replace
(∏k−1

m=k−(r+1)j0+1 bm

)
ak = e

iu

n
1
2 +δ3−δ2

Yk− u2

2n1+2δ3−2δ2
Zk

by the formula given by the Taylor expansion of the exponential function at the second order :

1 +
iu

n
1
2+δ3−δ2

Yk −
u2

2n1+2δ3−2δ2
Zk +

1
2

(
iu

n
1
2+δ3−δ2

Yk −
u2

2n1+2δ3−2δ2
Zk

)2

. (5)

Indeed the modulus of the error between these two quantities is less than :

1
6

E

[∣∣∣∣ iu

n
1
2+δ3−δ2

Yk −
u2

2n1+2δ3−2δ2
Zk

∣∣∣∣3 |(Sp)p

]
≤ 4

3
E

[∣∣∣∣ 1
n

1
2+δ3−δ2

Yk

∣∣∣∣3 +
∣∣∣∣ 1
2n1+2δ3−2δ2

Zk

∣∣∣∣3 |(Sp)p

]
.

We control the first term as in the preceding point. Moreover, we have :∣∣n−1−2δ3+2δ2Zk

∣∣3 ≤ n−3−6δ3+6δ2
(
σ2

ξ

)3
n3βn3+6δ2 ≤ n−6δ3+12δ2+3β

(
σ2

ξ

)3
.

Hence, taking the sum over k = (r + 1)4, ..., Ln − 1 and multiplying by nδ2 , we get a quantity

bounded by : 2n
1
2+δ1−6δ3+13δ2+2β

(
σ2

ξ

)3

and we have : 1
2 + δ1 − 6δ3 + 13δ2 + 2β < 0.

– Now, we show that in formula (5), we can omit the term with (Zk)2. Indeed, we have :

nδ2

Ln−1∑
(r+1)4

(
n−1−2δ3+2δ2Zk

)2 ≤ 2nδ2+
1
2+δ1−β−2−4δ3+4δ2n2β(σ2

ξ )2n2+4δ2

≤ 2n−
1
5−

2
5 δ1− 2

5 δ2(σ2
ξ )2

since β < δ3
2 − δ2 and 5

2δ3 > 1
2 + 6δ2 + δ1.
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– Hence, it remains to estimate the following quantity called Gn,k,j0 :∣∣∣∣E [ iu

n
1
2+δ3−δ2

(Yk + Wk)− u2

2n1+2δ3−2δ2
(Yk + Wk)2 − iu

n
1
2+δ3−δ2

Yk+

+
u2

2n1+2δ3−2δ2
Zk +

u2

2n1+2δ3−2δ2
(Yk)2 +

iu

n
1
2+δ3−δ2

Yk
u2

2n1+2δ3−2δ2
Zk

∣∣∣∣ (Sp)p

]∣∣∣∣ ,
with Wk :=

∑α(k+1)−1

`=α(k)
ξ`Nn−1(`). We get :

Gn,k,j0 =
∣∣∣∣E [− u2

2n1+2δ3−2δ2
(Yk + Wk)2 +

u2

2n1+2δ3−2δ2
Zk +

u2

2n1+2δ3−2δ2
(Yk)2

∣∣∣∣ (Sp)p

]∣∣∣∣
=

u2

2n1+2δ3−2δ2

∣∣∣E [ (Wk)2 + 2WkYk − Zk

∣∣∣ (Sp)p

]∣∣∣ .
Let us notice that we have :

Zk :=
α(k+1)−1∑
`=α(k)

E[(ξ`)2]Nn−1(`)2 + 2
∑

m≤`−1

E[ξ`ξm]Nn−1(`)2

 .

– Let us show that, in the last expression of Gn,k,j0 , we can replace Zk by :

Z̃k :=
α(k+1)−1∑
`=α(k)

E[(ξ`)2]Nn−1(`)2 + 2
∑

m≤`−1

E[ξ`ξm]Nn−1(`)Nn−1(m)

 .

Indeed, by definition of Un, we have :
u2

2n1+2δ3−2δ2
E
[∣∣∣Zk − Z̃k

∣∣∣ ∣∣∣ (Sp)p

]
≤

≤ 1
n1+2δ3−2δ2

α(k+1)−1∑
`=α(k)

∑
m≤`−1

|E[ξ`ξm]|Nn−1(`)|Nn−1(m)−Nn−1(`)|

≤ n−
1
4−2δ3+3δ2+β+ γ

2

∑
m≥1

√
m|E[ξ0ξm]|.

Hence, taking the sum over k = (r + 1)4, ..., Ln − 1 and multiplying by nδ2 , we get a quantity
bounded by : 4n

1
4+δ1−2δ3+4δ2+

γ
2
∑

m≥1

√
m|E[ξ0ξm]|. But, since δ3 > 1

4 − 3δ2 and γ < 1
2 −

22 max(δ1, δ2), we have : 1
4 + δ1 − 2δ3 + 4δ2 + γ

2 < 0

– Hence we have to estimate :

G̃n,k,j0 =
u2

2n1+2δ3−2δ2

∣∣∣E [ (Wk)2 + 2WkYk − Z̃k

∣∣∣ (Sp)p

]∣∣∣ .
We have :

E
[
(Wk)2

∣∣ (Sp)p

]
=

α(k+1)−1∑
`=α(k)

E[(ξ`)2](Nn−1(`))2 + 2
`−1∑

m=α(k)

E[ξ`ξm]Nn−1(`)Nn−1(m)

 .

Hence we have :

E
[
(Wk)2 + 2WkYk

∣∣ (Sp)p

]
=

α(k+1)−1∑
`=α(k)

E[(ξ`)2](Nn−1(`))2 + 2
`−1∑

m=α(k−(r+1)j0+1)

E[ξ`ξm]Nn−1(`)Nn−1(m)

 .
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We get :

G̃n,k,j0 =
u2

n1+2δ3−2δ2

∣∣∣∣∣∣
α(k+1)−1∑
`=α(k)

∑
m≤α(k−(r+1)j0+1)−1

E[ξ`ξm]Nn−1(`)Nn−1(m)

∣∣∣∣∣∣
≤ u2

n1+2δ3−2δ2
nβ

∑
m≥ (r+1)nβ

2

|E[ξ0ξm]|n1+2δ2 ≤ n−2δ3+4δ2+β
∑

m≥ (r+1)nβ

2

|E[ξ0ξm]|.

Hence, taking the sum over k = (r + 1)4, ..., Ln − 1 of these quantities and multiplying by nδ2 , we
get a quantity bounded by :

4n
1
2+δ1−2δ3+5δ2

∑
m≥ (r+1)nβ

2

|E[ξ0ξm]| ≤ 4nδ1+11δ2
∑

m≥ (r+1)nβ

2

|E[ξ0ξm]|,

since δ3 > 1
4 −3δ2. To conclude it suffices to notice that : nδ1+11δ2

∑
m≥ (r+1)nβ

2
|E[ξ0ξm]| = O(n−ε).

3.1.2 Proof of lemma 9

Let us consider n ≥ 2. According to lemma 10, it suffices to prove that there exists a real number δ′ > 0
such that we have :

sup
n≥1

nδ′ sup
ω∈Un

nδ2

∫
|u|≤1

exp

(
− u2

2n1+2δ3−2δ2

∑
y,z

E[ξyξz](Nn−1(y)(ω))2
)

e−
u2n2δ2

2 du < +∞.

Let us take ω ∈ Un. We have :

exp

(
− u2

2n1+2δ3−2δ2

∑
y,z

E[ξyξz](Nn−1(y)(ω))2
)

= exp

(
− u2

2n1+2δ3−2δ2
σ2

ξ

∑
y

(Nn−1(y)(ω))2
)

.

Let us define : pn := Card{y ∈ Z : Nn−1(y) ≥ n
1
2−δ4

3 }. We have :

n =

j
n

1
2 +δ1

k∑
y=−

j
n

1
2 +δ1

k Nn−1(y) ≤ pnn
1
2+δ2 +

n
1
2−δ4

3

(
3n

1
2+δ1 − pn

)

≤ pnn
1
2+δ2

(
1− n−(δ2+δ4)

3

)
+ n1+δ1−δ4 .

Since δ1 < δ4, we have : pn ≥ n−
1
2−δ2

(
n− n1−(δ4−δ1)

)
≥ n

1
2−δ2

(
1− n−(δ4−δ1)

)
≥ c0n

1
2−δ2 , with c0 :=

1− 2−(δ4−δ1). Hence we have :
∑

y∈Z(Nn−1(y)(ω))2 ≥ pn

(
n

1
2−δ4

3

)2

≥ c0n
3
2−δ2−2δ4

9 and

e
−

u2 P
y σ2

ξ(Nn−1(y)(ω))2

2n1+2δ3−2δ2 ≤ e
−

u2σ2
ξc0n

3
2−δ2−2δ4

18n1+2δ3−2δ2

≤ e−
u2
18 σ2

ξc0n
1
2 +δ2−2δ3−2δ4

.

Therefore, we have :

nδ2

∫
|u|≤1

e
− u2

2n1+2δ3−2δ2

P
y,z E[ξyξz ](Nn−1(y)(ω))2

e−
u2n2δ2

2 du ≤

12



≤ nδ2

∫
|u|≤1

e−
u2
18 σ2

ξc0n
1
2 +δ2−2δ3−2δ4

du

≤ n−
1
4+δ4+

1
2 δ2+δ3

∫
R

e−
v2
18 σ2

ξc0 dv.

This ends the proof since δ4 + δ3 + 1
2δ2 < 1

4 .

4 About the model of Guillotin-Plantard and Le Ny

In this section, we prove that the hypothesis
∫

M
1√

f0(1−f0)
dν < +∞ of Guillotin-Plantard and Le Ny

in [10] can be replaced by the existence of p ≥ 1 such that
∫

M
1

(f0(1−f0))p dν < +∞, for some p > 0. In
this situation, there is no need to introduce the set Un; we take Un = An. If we take δ1 > 0, δ2 > 0 and
δ3 > 0, all the points (of the sketch of the proof of section 3) except the point 3(b)(ii) come in the same
way without the need of the hypothesis

∫
M

1√
f0(1−f0)

dν < +∞. It remains to estimate :

sup
ω∈An

n
1
2+δ3I(1)

n (ω) := n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E
[
eit

P
y∈Z ξyNn−1(y)

∣∣∣ (Sp)p

]
(ω)e−

t2n1+2δ3
2 dt.

Let us take ω ∈ An. We suppose δ3 > 2δ2 and δ1 < δ4 < 1
4 − δ3− δ2

2 . The idea of Guillotin-Plantard and
Le Ny is to write :

n
1
2+δ3

∣∣∣I(1)
n

∣∣∣ ≤ n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E

∏
y∈Z

|cos(tNn−1(y)) + i(2fy − 1) sin(tNn−1(y))|

∣∣∣∣∣∣ (Sp)p

 e−
t2n1+2δ3

2 dt

≤ n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E

∏
y∈Z

√
1− 4fy(1− fy) sin2(tNn−1(y))

∣∣∣∣∣∣ (Sp)p

 e−
t2n1+2δ3

2 dt

≤ n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E

∏
y∈Z

√
1− fy(1− fy)

16
π2

(tNn−1(y))2

∣∣∣∣∣∣ (Sp)p

 e−
t2n1+2δ3

2 dt

≤ n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E

∏
y∈Z

e−
8

π2 fy(1−fy)t2Nn−1(y)2

∣∣∣∣∣∣ (Sp)p

 e−
t2n1+2δ3

2 dt

since |tNn−1(y)| ≤ n−
1
2−δ3+δ2n

1
2+δ2 = n2δ2−δ3 . Hence, if n is large enough, then |tNn−1(y)| will be

uniformly less than π
2 and |sin(tNn−1(y))| ≥ 2

π |tNn−1(y)|. We also use the fact that, for positive u, we
have : 1− u ≤ e−u. According to the Hölder inequality with

∑
y

Nn−1(y)2P
k Nn−1(k)2 = 1, we have :

n
1
2+δ3

∣∣∣I(1)
n

∣∣∣ ≤ n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E
[
e−

8
π2 f0(1−f0)t

2 P
k Nn−1(k)2

∣∣∣ (Sp)p

]
e−

t2n1+2δ3
2 dt.

Now, we use the fact that, since δ4 > δ1, there exists a constant c such that we have :

∀ω′ ∈ An,
∑
y∈Z

(Nn−1(y))2(ω′) ≥ cn
3
2−δ2−2δ4 .

This has been proved in the previous section entitled ’proof of lemma 9’. Hence, under the hypothesis∫
M

1√
f0(1−f0)

dν < +∞ of Guillotin-Plantard and Le Ny, we have :

n
1
2+δ3

∣∣∣I(1)
n (ω)

∣∣∣ ≤ n
1
2+δ3

∫
{|t|≤n−

1
2−δ3+δ2}

E
[
e−

8c
π2 f0(1−f0)t

2n
3
2−δ2−2δ4

]
e−

t2n1+2δ3
2 dt

≤ n−
1
4+δ3+

δ2
2 +δ4

∫
R

E

[
1√

f0(1− f0)

]
e−

8
π2 v2

dv

13



with the change of variable v = t
√

f0(1− f0)n
3
2−δ2−2δ4 . This gives the result of Guillotin-Plantard and

Le Ny since − 1
4 + δ3 + δ2

2 + δ4 < 0. We adapt this argument to our hypothesis. Now let us replace the
hypothesis

∫
M

1√
f0(1−f0)

dν < +∞ by
∫

M
1

[f0(1−f0)]p
dν < +∞ for some p > 0. Let us take δ3 > 2δ2 and

δ1 < δ4 < 1
4 − δ3 − δ2

2 − δ2
p . We have :

n
1
2+δ3

∫
{|t|≤n

− 3
4 +

δ2
2 +δ4+

δ2
p }

E
[
e−

8
π2 f0(1−f0)t

2n
3
2−δ2−2δ4

]
e−

t2n1+2δ3
2 dt ≤ 2n

1
2+δ3n−

3
4+

δ2
2 +δ4+

δ2
p

≤ 2n−
1
4+δ3+

δ2
2 +δ4+

δ2
p .

On the other hand, let cp = supu>0 upe−u, we have :

n
1
2+δ3

∫
{n−

3
4 +

δ2
2 +δ4+

δ2
p <|t|<n−

1
2−δ3+δ2}

E
[
e−

8
π2 f0(1−f0)t

2n
3
2−δ2−2δ4

]
e−

t2n1+2δ3
2 dt ≤

≤ 2n
1
2+δ3n−

1
2−δ3+δ2

∫
M

e−
8

π2 f0(1−f0)n
2δ2

p

dν ≤ n−δ2cp

(
π2

8

)p ∫
M

[f0(1− f0)]−p dν.

A Proof of proposition 4

In cases (a) and (b), (ξk)k is a stationary sequence of bounded centered random variables

A.1 Proof of (a)

We have :
∑

p≥0

√
1 + p|E[ξ0ξp]| =

∑
p≥0

√
1 + p|Eν [f.f◦T p]| which is less than : c0‖f‖∞

(
‖f‖∞ + K

(1)
f + K

(2)
f

)∑
p≥0

√
1 + pϕp

and hence is finite. Let us consider an integer N ≥ 1. We have :

1
N2

∑
k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| ≤
24
N2

∑
0≤k1≤k2≤k3≤k4≤N−1

|E[ξk1ξk2ξk3ξk4 ]| .

Let us consider the set E
(1)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N −1 and k4−k3 ≥ N

1
3

We have :∑
(k1,k2,k3,k4)∈E

(1)
N

|E[ξk1ξk2ξk3ξk4 ]| =
∑

(k1,k2,k3,k4)∈E
(1)
N

∣∣Covν

(
f ◦ T k1−k3f ◦ T k2−k3f, f ◦ T k4−k3

)∣∣
≤ c0N

4
(
‖f‖4∞ + ‖f‖3∞(K(2)

f + 3c0K
(1)
f )
)

ϕ
dN

1
3 e

≤ c0N
2
(
‖f‖4∞ + ‖f‖3∞(K(2)

f + 3c0K
(1)
f )
)

sup
n≥1

n6ϕn.

Let us consider the set E
(2)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N −1 and k4−k3 < N

1
3

and k3 − k2 ≥ rN
1
3 . We have :∑

(k1,k2,k3,k4)∈E
(2)
N

|Cov (ξk1ξk2 , ξk3ξk4)| =
∑

(k1,k2,k3,k4)∈E
(2)
N

∣∣Covν

(
f ◦ T k1−k2f, (f.f ◦ T k4−k3) ◦ T k3−k2

)∣∣
≤ 26c0N

2
(
‖f‖4∞ + 2c0‖f‖3∞(K(2)

f + K
(1)
f )
)

sup
n≥1

n6(1 + κn)ϕrn.

14



Moreover, we have :

∑
(k1,k2,k3,k4)∈E

(2)
N

|E[ξk1ξk2 ]E[ξk3ξk4 ]| ≤

 ∑
0≤k1≤k2≤N−1

|E[ξk1ξk2 ]|

2

≤

N
∑
k≥0

∣∣Eν [f.f ◦ T k]
∣∣2

≤ N2

c0

(
‖f‖2∞ + ‖f‖∞(K(1)

f + K
(2)
f )
)∑

k≥0

ϕk

2

.

Let us consider the set E
(3)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N −1 and k4−k3 < N

1
3

and k3 − k2 < rN
1
3 and k2 − k1 ≥ r(1 + r)N

1
3 . By the same method, we get :∑

(k1,k2,k3,k4)∈E
(3)
N

|E [ξk1ξk2ξk3ξk4 ]| ≤ N2 c026

(1 + r)6
(
‖f‖4∞ + 3c0‖f‖3∞(K(2)

f + K
(1)
f )
)

sup
n≥1

n6(1 + κn)ϕrn.

Since the number of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N − 1 and that do not belong to
E

(1)
N ∪ E

(2)
N ∪ E

(3)
N is bounded by N22(r + 1)3, we get :

sup
N≥1

1
N2

∑
k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| < +∞.

Now, let us prove the point 2 of the hypothesis of theorem 1. Let n1, n2, n3 and n4 be four integers such
that 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4. Let us consider any real numbers αn1 , .., αn2 and βn3 , ..., βn4 . We have :∣∣∣Cov

(
ei

Pn2
k=n1

αkξk , ei
Pn4

k=n3
βkξk

)∣∣∣ = ∣∣∣Covν

(
ei

Pn2
k=n1

αkf◦T−(n2−k)

,
(
ei

Pn4
k=n3

βkf◦T k−n3
)
◦ Tn3−n2

)∣∣∣
≤ c0

(
1 + K

(1)

exp
“

i
Pn2

k=n1
αkf◦T−(n2−k)

” + K
(2)

exp
“

i
Pn4

k=n3
βkf◦T k−n3

”)ϕn3−n2

≤ c0

(
1 +

n2∑
k=n1

c0c1|αk|+
n4∑

k=n3

c0c1|βk|(1 + κn4−n3)

)
ϕn3−n2 .

This gives the point 2 of the hypothesis of theorem 1 with ϕp,s := (1 + κs)ϕp.

A.2 Proof of (b)

Let us define the function g = 2f −1. This function is ν-centered. More generally, for any integer m ≥ 1,
let us define : g2m = 1 and g2m+1 = g. We observe that, conditionally to ω ∈ M , the expectation of
(ξk(ω, ·))m is equal to gm ◦ T k(ω). Using the Fubini theorem and starting by integrating over [0; 1]Z,
we observe that, for any integers p ≥ 1, we have : E[ξ0ξp] = Eν [g.g ◦ T p] and that, for any integers
k1, k2, k3, k4, we have : E [ξk1

n1ξk2
n2ξk3

n3ξk4
n4 ] = Eν

[∏4
j=1 gnj

◦ T kj

]
. Hence, we can prove the point 1

of theorem 1 as we did for (a).

Now, let us prove the point 2 of the hypothesis of theorem 1. We observe that, conditionally to ω ∈ M ,
the ξk(ω, ·) are independent and that the expectation of exp(iuξk(ω, ·)) is hu ◦ T k(ω) with (hu := e−iu +
2i sin(u)f ◦ T k. The modulus of this function is bounded by 1 and we have : max

(
K

(1)
hu

,K
(2)
hu

)
≤ 2c1|u|.

Let n1, n2, n3 and n4 be four integers such that 0 ≤ n1 ≤ n2 < n3 ≤ n4. Let us consider any real
numbers αn1 , .., αn2 and βn3 , ..., βn4 . We have :∣∣∣Cov

(
ei

Pn2
k=n1

αkξk , ei
Pn4

k=n3
βkξk

)∣∣∣ = ∣∣∣∣∣Covν

(
n2∏

k=n1

hαk
◦ T k,

n4∏
k=n3

hβk
◦ T k

)∣∣∣∣∣
≤ c0

(
1 + 2c0c1

(
n2∑

k=n1

|αk|+
n4∑

k=n3

|βk|

))
(1 + κn4−n3)ϕn3−n2 .

15



B Proof of theorem 2 : α-mixing condition

Let us define (M,F) = (RZ,B(R)⊗Z). Let T : M → M be such that T ((ωk)k∈Z) = (ωk+1)k∈Z. Let ν be
the image probability measure on (M,F) of Π : Ω → RZ with Π(ω) = (ξk(ω))k∈Z. The process (ξk)k∈Z
(with respect to P) has the same distribution as (f ◦ T k)k∈Z (with respect to ν) with f : M → R given
by f ((ωk)k∈Z) = ω0. According to [11], lemma 1.2, (M,F , ν, T ) is strongly mixing (in the sense of our
definition 3) with the following choice of K

(1)
· and of K

(2)
· . If g is σ(f ◦ T k, k ≤ 0)-measurable, we

have K
(1)
g := 0; otherwise we have K

(1)
g := ∞. If h is σ(f ◦ T k, k ≥ 0)-measurable, we have K

(2)
h := 0;

otherwise we have K
(2)
h := ∞. We conclude with proposition 4.

C Proof of example 2.1

C.1 Case 1

Let η > 0. Let us denote by Γ(s,e) the set of stable-central manifolds and by Γu the set of unstable
manifolds. In [16], each γu ∈ Γu is endowed with some metric du and each γ(s,e) ∈ Γ(s,e) is endowed with
some metric d(s,e) such that there exist c̃0 > 0, δ0 ∈]0; 1[ and β > 0 such that, for any integer n ≥ 0, for
any γu ∈ Γu and any γ(s,e) ∈ Γ(s,e), we have :

• For any y, z ∈ γu, du(y, z) ≥ d(y, z) and for any y′, z′ ∈ γ(s,e), d(s,e)(y′, z′) ≥ d(y′, z′).

• For any y, z ∈ γu, there exists γu
(n) ∈ Γu such that T−n(y) and T−n(z) belong to γu

(n) and we have :
du(T−n(y), T−n(z)) ≤ c̃0(δ0)ndu(y, z).

• For any y, z ∈ γ(s,e), there exists γ
(s,e)
(n) ∈ Γ(s,e) such that Tn(y) and Tn(z) belong to γ

(s,e)
(n) and we

have : d(s,e)(Tn(y), Tn(z)) ≤ c̃0(1 + nβ)d(s,e)(y, z).

We take :

K
(1)
f := sup

γu∈Γu

sup
y,z∈γu:y 6=z

|f(y)− f(z)|
(du(y, z))η

and K
(2)
f := sup

γ(s,e)∈Γ(s,e)
sup

y,z∈γ(s,e):y 6=z

|f(y)− f(z)|
(d(s,e)(y, z))η

.

For these examples, the result follows from [16] (cf. lemme 1.3.1 in [16]).

C.2 Case 2 : Sinai billiard

Since the early work of Sinai [19], this billiard system has been studied by many authors ([1, 2, 3, 4, 8] and
others). Let us recall that a point of M is a couple (q, v) corresponds to a reflected unit speed vector v at
the position q on some obstacle Oi and is parametrised by (i, rϕ) where i is the index of the obstacle Oi,
r the curvilinear of x on it and ϕ the measure of the angle (taken in [−π/2;π/2]) made by v with the unit
normal vector ~n(q) to Oi at q directed to the outside of the obstacle. We endow M with a metric d such
that : d((i, r, ϕ), (i, r′, ϕ′)) = |r− r′|+ |ϕ−ϕ′|. Let us denote by R0 the set of points in M corresponding
to a reflected vectors tangent to the obstacles, i.e. such that ϕ = ±π/2. The transformation Tn defines
a C1-diffeomorphism from M \

⋃n
k=0 T−k(R0) onto M \

⋃n
k=0 T k(R0). Let us consider the set Cm of

connected components of M \
⋃m

k=−m T k(R0). For all k = −m, ...,m, T k is C1 on each C belonging to
Cm. We will use the notations of Chernov in [6]. Let us consider the set Γs of homogeneous stable curves
and the set Γu of homogeneous unstable curves and the two separation times s+(·, ·) (in the future) and
s−(·, ·) (in the past) considered in [6]. We recall that there exist two constants c1 > 0 and δ1 ∈]0; 1[ such
that, for any nonnegative integer n, for any y and z in M , we have :

• If y and z belong to the same homogeneous unstable curve, then s+(x, y) ∈ Z+, moreover T−n(y)
and T−n(z) belong to a same homogeneous unstable curve and we have : d(T−n(y), T−n(z)) ≤ c1δ1

n

and s+(T−n(x), T−n(y)) ≥ n + s+(x, y).
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• If y and z belong to the same homogeneous stable curve, then s−(x, y) ∈ Z+, moreover Tn(y) and
Tn(z) belong to a same homogeneous stable curve and we have : d(Tn(y), Tn(z)) ≤ c1δ1

n and
s−(Tn(x), Tn(y)) ≥ n + s−(x, y).

With these notations, according to [6] (theorem 4.3 in [6] and the remark after theorem 4.3 in [6]), this
system is strongly mixing with :

K
(1)
f := sup

γu∈Γu

sup
y, z ∈ γu; y 6= z;
s+(y, z) ≥ m + 1

|f(y)− f(z)|
(δ1)ηs+(y,z)

and K
(2)
f := sup

γs∈Γs

sup
y, z ∈ γs; y 6= z;
s−(y, z) ≥ m + 1

|f(y)− f(z)|
(δ1)ηs−(y,z)

.

D Proof of conclusion (B) of theorem 5

We will use b and δ of proposition 2.1. First let us notice that there exists c′A > 0 such that, for every
ε ∈]0; 1[, there exists a Lipschitz continuous function fε such that : ‖1A − fε‖L1(ν) ≤ cAεζ , ‖fε‖∞ ≤
1 and C

(1)
fε

≤ c′A
ε . It suffices to take fε = max

(
0, 1− d(·,A)

ε

)
.

• Let us prove that :
∑

p≥0

√
1 + p|E[ξ0ξp]| < +∞. This quantity can be rewritten :

4
∑
p≥0

√
1 + p|Covν(1A,1A ◦ T p)|

and is less than : 4
∑

p≥0

√
1 + p|Covν(fp−2/ζ , fp−2/ζ ◦ T p) + 2cAp−2|. Moreover, we have :

|Covν(fp−2/ζ , fp−2/ζ ◦ T p)| ≤ c0

(
1 + K

(1)
f

p−2/ζ
+ K

(2)
f

p−2/ζ

)
αp ≤ c0

(
1 + 2c′Ap2/ζ

)
αp.

• Let us prove that :
sup
N≥1

N−2
∑

k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| < +∞.

We use the notations E
(1)
N , E

(2)
N and E

(3)
N and the calculations done in section A.1.

– To estimate
∑

(k1,k2,k3,k4)∈E
(1)
N ∪E

(3)
N

|E[ξk1ξk2ξk3ξk4 ]|, we replace each ξk by gN ◦T k, with gN :=

2
(
f

N
−2
ζ
− Eν [f

N
−2
ζ

]
)
. We have : ‖ξk − gN ◦ T k‖L1(ν) ≤ 4cAN−2. This substitution makes a

total error in O(N2). Moreover, according to the calculations of section A.1, we have :∑
(k1,k2,k3,k4)∈E

(1)
N ∪E

(3)
N

∣∣E[gN ◦ T k1gN ◦ T k2gN ◦ T k3gN ◦ T k4 ]
∣∣ ≤ CN4(1+C(1)

gN
)(1+Nβ/3)αN

1
3 = O(N2).

– With the same technique, we get :
∑

(k1,k2,k3,k4)∈E
(2)
N

|Covν(ξk1ξk2 , ξk3ξk4)| = O(N2). More-

over, as in section A.1, we have :
∑

(k1,k2,k3,k4)∈E
(2)
N

|Eν [ξk1ξk2 ]Eν [ξk3ξk4)]| ≤ N2
(∑

k≥0 |E[ξ0ξk]|
)2

and we have already proved that :
∑

k≥0 |E[ξ0ξk]| < +∞.

– The sum of |E[ξk1ξk2ξk3ξk4 ]| over the k = (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 but
that do not belong to E

(1)
N ∪ E

(2)
N ∪ E

(3)
N is controlled as in section A.1.

• Let us prove point 2 of hypothesis of theorem 1. By replacing each ξk by ξ̂
(n3−n2)
k := hn3−n2 ◦ T k,

with hN := 2
(
f

N
−7
ζ
− Eν [f

N
−7
ζ

]
)
, we make a total error in

(
1 +

∑n2
k=n1

|αk|+
∑n4

k=n3
|βk|

)
(n3 −

n2)−7. Moreover, according to the calculations done in section A.1, we have :
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∣∣∣Cov
(
ei

Pn2
k=n1

αk ξ̂
n3−n2
k , ei

Pn4
k=n3

βk ξ̂
n3−n2
k

)∣∣∣ ≤
≤ c0

(
1 + (

n2∑
k=n1

|αk|+
n4∑

k=n3

|βk|)c0C
(1)
hn3−n2

)
(1 + (n4 − n3)β)αn3−n2

≤ C

(
1 +

n2∑
k=n1

|αk|+
n4∑

k=n3

|βk|

)
(1 + (n4 − n3)β)(n3 − n2)

7
ζ αn3−n2 .

This gives the point 2 of the hypothesis of theorem 1 with ϕp,s = p−7 + (1 + sβ)p7/ζδp.
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