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Introduction

Random walks in random environment in Z d have been studied by many authors. For a general reference on this subject, we refer to chapter 6 of the book of Hughes [START_REF] Hughes | Random walks and random environments[END_REF] . Random walks with random orientations have been less studied. However these two subjects are not far from each other. Indeed, random walks with random orientations can be viewed as a degenerate case of random walks in random environment in the sense that transition probabilities are allowed to be null. But this difference is significant. Moreover random walks in Z 2 with random orientations can also be viewed as a question of oriented percolation (see section 12.8 of the Book of Grimmett [START_REF] Grimmett | Percolation[END_REF]).

The present paper contains an extension of the model introduced by Campanino and Pétritis in [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF] in another direction than the one chosen by Guillotin-Plantard and Le Ny in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF]. But our result will also apply to random walks of the form studied in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF]. Now, let us present the different models introduced in [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF] and in the present paper with their common ideas and their differences. Let us construct a random walk (M n = ( Xn , Ỹn )) n≥0 in Z 2 with random orientations as follows. Let (ξ k ) k∈Z be a stationary sequence of centered random variables with values in {-1; 1}. The orientations of the k th horizontal floor of Z 2 is given by ξ k . Once the environment fixed, the random walk (M n = ( Xn , Ỹn )) n will be such that M 0 = (0, 0) and such that the distribution of M n+1 -M n conditioned to σ(M k ; k = 0, ..., n) is uniform on {(0, 1); (0, -1); (ξ Ỹn , 0)}.

In [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], Campanino and Pétritis prove the transience of the random walk (M n ) n when (ξ k ) k∈Z is sequence of independent identically distributed random variables. Moreover, they point out the fact that the random walk (M n ) n≥0 is recurrent in the 'alternate' case where ξ k only depends on the parity of k. Hence the behaviour of this random walk depends on the randomness of the orientations (ξ k ) k∈Z .

In [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF], Guillotin-Plantard and Le Ny give a first generalization of the work of Campanino and Pétritis. They envisage the case when the orientations of the floors are taken independently with stationary probabilities. More precisely, they consider the following situation : Let (f k ) k∈Z be a stationary sequence of random variables with values in [0; 1] and with expectation equal to 1 2 defined on some probability space (M, F, ν). Let us consider the probability space given by (Ω 1 := M ×[0; 1] Z , F 1 := F ⊗(B([0; 1])) ⊗Z 2. There exist some C > 0, some (ϕ p,s ) p,s∈N and some integer r ≥ 1 such that for all positive integers p and s, we have ϕ p+1,s ≤ ϕ p,s , such that we have lim s→+∞ s 6 ϕ rs,s = 0 and such that, for all integers n 1 , n 2 , n 3 , n 4 with 0 ≤ n 1 ≤ n 2 ≤ n 3 ≤ n 4 , for all real numbers α n1 , ..., α n2 and β n3 , ..., β n4 , we have :

Cov e i P n 2 k=n 1 α k ξ k , e i P n 4 k=n 3 β k ξ k ≤ C 1 + n2 k=n1 |α k | + n4 k=n3 |β k | ϕ n3-n2,n4-n3 .
Then the random walk (M n ) n is transient.

This result is proved in section 3. We will see in its proof that this question is linked with n-1 k=0 ξ S k where (S m ) m≥0 is a simple symmetric random walk on Z independent of (ξ k ) k∈Z . Let us give some examples of stationary sequences (ξ k ) k∈Z to which this result applies.

Theorem 2. [(α-mixing condition)] Let (g k ) k∈Z be a stationary sequence of bounded real-valued random variables defined on some probability space (Ω, A, P) satisfying the following α-mixing condition : Then :

(a) If g k takes its values in {-1; 1}, if M g k dν = 0 and if (ξ k := g k ) k∈Z , then (M n ) n is transient. (b) If g k takes its values in [0; 1], if M g k dν = 1 2 and if (ξ k := ξk,g k ) k∈Z , then (M n ) n is transient.
We will prove that the hypotheses of theorem 1 are satisfied in the general context of strongly mixing dynamical systems. We say that (M, F, ν, T ) is an invertible dynamical system if (M, F, ν) is a probability space endowed with an invertible bi-measurable transformation T : M → M . Definition 3. We say that an invertible dynamical system (M, F, ν, T ) is strongly mixing if there exists c 0 > 0, there exist two real sequences (ϕ n ) n≥0 and (κ m ) m≥0 and, for any function g : M → C, there exist

K (1) g ∈ [0; +∞] and K (2)
g ∈ [0; +∞] such that, for all bounded functions g, h : M → C :

1. for all integer n ≥ 0, we have :

|Cov ν (g, h • T n )| ≤ c 0 g ∞ h ∞ + h ∞ K (1) g + g ∞ K (2) h ϕ n ;
2. for all integer m ≥ 0, we have :

K (1) g•T -m ≤ c 0 K (1) g and : K (2) h•T m ≤ c 0 K (2) h (1 + κ m ); 3. we have : K (1) g×h ≤ g ∞ K (1) h + h ∞ K (1) g and : K (2) g×h ≤ g ∞ K (2) h + h ∞ K (2) g ;
4. the sequence (ϕ n ) n≥0 is decreasing, the sequence (κ m ) m≥0 is increasing and there exists an integer r ≥ 1 such that :

sup n≥1 n 6 (1 + κ n )ϕ rn < +∞.
Proposition 4. Let (M, F, ν, T ) be a strongly mixing dynamical system. Let the sequence (ξ k ) be of one the two following kinds :

(a) ξ k = f • T k with f : M → {-1; 1} a ν-centered function such that K (1) f + K (2) f
< +∞. We suppose that there exists some real number c 1 > 0 such that, for any real number α, we have :

K (1) exp(iαf ) + K (2) exp(iαf ) ≤ c 1 |α|. (b) ξ k = ξk,f•T k with f : M → [0; 1] such that M f dν = 1
2 and such that there exists some c 1 > 0 such that, for any a, b ∈ C, we have K (1)

af +b + K (2) af +b ≤ c 1 |a|.
Then (ξ k ) k satisfies the hypothesis of theorem 1.

Proposition 4 is proved in appendix A. Theorem 2 will appear as a direct consequence (see appendix B). Our strong mixing property is satisfied by a large class of dynamical systems (endowed with some metric) with K

(1)

f and K (2)
f dominated by the Hölder constant of f of order η. Interesting examples are given by hyperbolic or quasi-hyperbolic dynamical systems. We quickly give some examples of such dynamical systems. In the case of the billiard transformation, because of the discontinuity of the transformation, our class of allowed functions will contain discontinuous functions.

Examples 2.1.

1. Let (M, F, ν, T ) where T is an ergodic algebraic automorphism of the torus or a diagonal transformation on a compact quotient of Sl d0 (R) by a discrete group. Let η > 0. According to [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF], the strong mixing property holds with K (1) g some η-Hölder constant of g along the unstable manifolds and with K

(2) h some η-Hölder constant of h along the stable-central manifolds and with ϕ n = α n for some α ∈ (0, 1) and κ m = m β for some β ≥ 0. Moreover K (1) g and K

(2) g are dominated by the Hölder constant of order η of g.

2.

Let (M, F, ν, T ) where T is the Sinai billiard transformation (in T 2 ) with C 3 -convex scatterers and with finite horizon and where ν is the T invariant measure absolutely continuous with respect to the Lebesgue measure [START_REF] Sinai Ya | Dynamical systems with elastic reflections[END_REF]. Let m 0 ∈ Z + and η > 0. According to [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] (theorem 4.3), the strong mixing property holds with ϕ n = α n for some α ∈ (0, 1) and κ m = m β for some β ≥ 0, K

being some Hölder constant of g along the T -m0 (γ u )'s (where the γ u 's are the unstable curves) and K

(2) h being some Hölder constant of h along the T m0 (γ s )'s (where the γ s 's are the stable curves). The quantities K The first example is a direct consequence of [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]. The second example is a consequence of [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]. In appendix C, we give a precise definition of K for these examples (and a definition of C m for the Sinai billiard). For these systems, we can say a little more : Theorem 5. Let η ∈ (0, 1) and let (M, F, ν, T ) be a strongly mixing dynamical system (endowed with some metric) such that there exists α ∈ (0, 1) and β ≥ 0 such that ϕ n = α n and κ m = m β and such that K 

M g 0 dν = 1 2 , then (M n ) n is transient. (B) If (ξ k = 21 A • T k -1
) k∈Z with ν(A) = 1/2 and with A such that there exist c A > 0 and ζ > 0 such that, for every ε ∈]0; 1[, we have :

ν ({x ∈ M : d(x, A) < ε}) ≤ c A ε ζ , then (M n ) n is transient.
Conclusion (A) of theorem 5 follows directly from proposition 4. Conclusion (B) of theorem 5 is proved in appendix D.

Proof of theorem 1

Let us define T 0 := 0 and, for all n ≥ 1 : T n+1 := inf{k > T n : Ỹk = Ỹk-1 }. According to lemma 2.5 of [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], we have the following result :

Lemma 6. If (M Tn ) n≥0 is transient, then (M n ) n≥0 is transient
Now, still following [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], we construct a realization of (M Tn ) n . Let us consider a symmetric random walk (S n ) n on Z independent of (ξ k ) k∈Z . For any integer m ≥ 1 and any integer k, we define :

N m (k) := Card{j = 0, ..., m : S j = k}.
Let us also consider a sequence of independent random variables (ζ (y) i ) i≥1,y∈Z with geometric distribution with parameter 13 , and independent of ((ξ y ) y∈Z , (S p ) p≥1 ). In this lemma, ζ (y) i corresponds to the duration of the stay at the y th horizontal floor during the i th visit to this floor. According to the Borel-Cantelli lemma, it suffices to prove that : n≥1 P({(X n , S n ) = (0, 0)}) < +∞. We follow the scheme of the proof of [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF]. The difference will be in our way of estimating

I (1)
n and in the introduction of the sets U n . We will consider δ 1 , δ 2 , δ 3 , and γ such that :

0 < δ 1 < 2δ 2 , δ 1 + ( 27 2 + 16)δ 2 < 1 8 , δ 3 > 0, 1 4 -3δ 2 < δ 3 < 1 4 -5 2 δ 2 -δ 1 , δ3 2 -2δ 2 < β < δ3 2 -δ 2 , max(δ 1 , δ 2 ) < γ < 1 2 -22 max(δ 1 , δ 2 ).
The idea is that δ 1 , δ 2 , 1 4 -δ 3 and 1 8 -β are positive numbers very close to zero. As in [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF][START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF], let us define :

A n := {ω ∈ Ω : max ∈Z N n-1 ( ) ≤ n 1 2 +δ2 and max k=0,...,n |S k | < n 1 2 +δ1 }. Moreover, we define : U n := {ω ∈ A n : ∀x, y ∈ Z, |N n-1 (x) -N n-1 (y)| ≤ |x -y|n 1 2 +γ }.
The sketch of the proof is the following :

1. As in proposition 4.1 of [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], we have :

n≥1 P ({X n = 0 and S n = 0} \ A n ) < +∞. Actually we have : n≥1 P ({S n = 0} \ A n ) < +∞.
2. We will see in lemma 8 of the present paper that we have :

n≥1 P (A n \ U n ) < +∞. Therefore, we have : n≥0 P ({X n = 0 and S n = 0} \ U n ) < +∞; 3. Let us define B n := {ω ∈ U n : y∈Z ξ y N n-1 (y) > n (a)
As in lemma 4.5 of [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], there exists a real number C > 0 such that :

sup ω∈Un\Bn P ({X n = 0}|(S p ) p≥1 , (ξ k ) k∈Z ) ≤ C ln(n) n .
(b) We will prove that there exists some δ > 0 and some C > 0 such that :

∀ω ∈ U n , P (U n \ B n |(S p ) p ) (ω) ≤ C n -δ .
i. This probability is bounded by c n

1 2 +δ3 I n (ω) with I n (ω) = I (1) 
n (ω) + I (2) 
n (ω) and

I (1) n (ω) := {|t|≤n -1 2 -δ 3 +δ 2 } E e it P y∈Z ξyNn-1(y)(ω) (S p ) p e -t 2 n 1+2δ 3 2 dt and I (2) n (ω) := {|t|>n -1 2 -δ 3 +δ 2 } E e it P y∈Z Nn-1(y)(ω) (S p ) p e -t 2 n 1+2δ 3 2 dt.
ii. We will prove that n

1 2 +δ3 sup Un I (1) 
n = O(n -δ ) for some δ > 0 (see our lemma 9); iii. On the other hand, following [START_REF] Campanino | Random walks on randomly oriented lattices, Markov Process[END_REF], we have :

n 1 2 +δ3 I (2) n ≤ {|s|>n δ 2 } e -s 2 2 ds ≤ 2n -δ2 e -n 2δ 2 2 (c) We have P(S n = 0) ≤ C n -1 2 .
(d) Hence we have :

P (U n ∩ {X n = 0 and S n = 0} \ B n ) ≤ C n -1-δ ln(n).
We have to prove that points 2 and 3(b)(ii) are true with our choices of parameters. Indeed, all the other points are true for any positive δ 1 , δ 2 , δ 3 and for any sequence of random variables (ξ k ) k∈Z independent of (S p ) p . We notice that, for any integer n ≥ 1, we have :

n-1 j=0 ξ Sj = k∈Z ξ k N n-1 (k).
In our proof, we need some real numbers δ 1 , δ 2 , δ 3 , δ 4 , β, γ and ε > 0. We will suppose that :

δ 1 > 0, δ 2 > 0, δ 1 + ( 27 2 + 16)δ 2 < 1 8 , δ 3 > 0, δ 1 < δ 4 < 1 4 -δ 3 -5 2 δ 2 , 1 4 -3δ 2 < δ 3 < 1 4 -5 2 δ 2 , 5 3 δ 2 < 1 2 δ 3 , δ3 2 -2δ 2 < β < δ3 2 -δ 2 , 5 2 δ 3 > 1 2 + 6δ 2 + δ 1 , max(δ 1 , δ 2 ) < γ < 1 2 -22 max(δ 1 , δ 2
) and :

n δ1+11δ2 m≥ (r+1)n β 2 |E[ξ 0 ξ m ]| = O(n -ε ). (we have : m≥N |E[ξ 0 ξ m ]| ≤ N -1 2 m≥N √ m|E[ξ 0 ξ m ]|).
All these inequalities are true with the following choices of parameters :

δ 1 = 1 3000 , δ 2 = 1 500 , δ 3 = 1 4 - 11 4 δ 2 = 489/2000, δ 4 = 1/2500, β = δ 3 2 - 3 2 δ 2 = 477/4000, γ = 1 4 .
Lemma 8. We have :

n≥1 P (A n \ U n ) < +∞.
Proof. Let us consider any x, y ∈ Z with x = y and |x -y| ≤ 3n 1 2 +δ1 . For any integer j ≥ 1, we define the time τ j (x) of the j th visit of (S p ) p to x and the number N j (x, y) of visits of (S p ) p to y between the times τ j (x) and τ j+1 (x). According to [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF][START_REF] Spitzer | Principles of random walk[END_REF] (see [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF] lemma 2), for any integer p ≥ 1, there exists K p > 0 such that, for any x = y, we have :

E[(N j (x , y )) p ] ≤ K p |x -y | p-1 .
According to [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF], on the set {τ 1 (x) ≤ τ 1 (y)}, we have :

(N n-1 (x) -N n-1 (y)) = Nn-1(x) j=1 (1 -N j (x, y)) + τ N n-1 (x)+1 (x) k=n 1 {S k =y} .
Let p be any positive integer. We have :

(N n-1 (x) -N n-1 (y)) 2p 1 {τ1(x)≤τ1(y)} ≤ 2 2p      Nn-1(x) j=1 (1 -N j (x, y))   2p +   τ N n-1 (x)+1 (x) k=n 1 {S k =y}   2p    . But, on A n , since we have N n-1 (x) ≤ n 1 2 +δ2 , we get :   τ N n-1 (x)+1 (x) k=n 1 {S k =y}   2p ≤ N Nn-1(x) (x, y) 2p ≤ j n 1 2 +δ 2 k j=1 (N j (x, y)) 2p .
Hence we have:

E      τ N n-1 (x)+1 (x) k=n 1 {S k =y}   2p 1 An    ≤ n 1 2 +δ2 K 2p |x -y| 2p-1 ≤ K 2p 3 p-1 |x -y| p n 1 2 +max(δ1,δ2) p .
Moreover, on A n , we have :

  Nn-1(x) j=1 (1 -N j (x, y))   2p ≤ max k=1,..., j n 1 2 +δ 2 k   k j=1 (1 -N j (x, y))   2p . Since k j=1 (1 -N j (x, y))
k≥1 is a martingale (see [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF] lemma 2), according to a maximal inequality, we have :

max k=1,..., j n 1 2 +δ 2 k   k j=1 (1 -N j (x, y))   2 L p ≤ p p -1 max k=1,..., j n 1 2 +δ 2 k   k j=1 (1 -N j (x, y))   2 L p .
Hence we have :

E      Nn-1(x) j=1 (1 -N j (x, y))   2p 1 An    ≤ p p -1 p max k=1,..., j n 1 2 +δ 2 k E      k j=1 (1 -N j (x, y))   2p    .
Let us write M 2p ν1,...,ν l = (2p)! Q l i=1 νi! . For any k = 1, ..., n 1 2 +δ2 , since the N jm 's are independent and since E [1 -N j (x, y)] = 0, we have :

E      k j=1 (1 -N j (x, y))   2p    = 2p l=1 ν1+...+ν l =2p; mini νi≥1 M 2p ν1,...,ν l j1<...<j l l m=1 E [(1 -N jm (x, y)) νm ] , ≤ 2p l=1 ν1+...+ν l =2p; mini νi≥2 M 2p ν1,...,ν l 1≤j1<...<j l ≤k l m=1 (2 νm E [1 + (N jm (x, y)) νm ]) ≤ 2p l=1 ν1+...+ν l =2p; mini νi≥2 M 2p ν1,...,ν l 1≤j1<...<j l ≤k l m=1 2 νm (1 + K νm |x -y| νm-1 ≤ Cp 2p l=1 |x -y| 2p-l (n 1 2 +δ2 ) l ≤ 2p3 p Cp |x -y| p (n 1 2 +max(δ1,δ2) ) p .
Hence we get :

E (N n-1 (x) -N n-1 (y)) 2p 1 An ≤ C p |x -y| p (n 1 2 +max(δ1,δ2) ) p .
Therefore, according to the Markov inequality, for any integer p ≥ 1, we have :

P (A n \ U n ) ≤ l n 1 2 +δ 1 m x,y=- l n 1 2 +δ 1 m P A n ∩ |N n-1 (x) -N n-1 (y)| > |x -y|n 1 2 +γ ≤ l n 1 2 +δ 1 m x,y=- l n 1 2 +δ 1 m E[(N n-1 (x) -N n-1 (y)) 2p 1 An ] |x -y| p (n 1 2 +γ ) p ≤ c p 5n 1 2 +δ1
2 n max(δ1,δ2)-γ p .

By taking p large enough, we get : n≥1 P(A n \ U n ) < +∞.

Estimates on U n

In this section, we suppose that we are in U n . We will estimate :

I (1) n (ω) := {|t|≤n -1 2 -δ 3 +δ 2 } E e it P y∈Z ξyNn-1(y) (S p ) p (ω) e -t 2 n 1+2δ 3 2 dt.
Lemma 9. There exists a real number δ > 0 such that :

sup n≥1 n δ sup ω∈Un n 1 2 +δ3 I (1) 
n (ω) < +∞.

To prove this lemma, we will use the following formula :

n 1 2 +δ3 I (1) n (ω) = n δ2 {|u|≤1} E e iun -1 2 -δ 3 +δ 2 P y∈Z ξyNn-1(y) (S p ) p (ω) e -u 2 n 2δ 2 2 du.
The main idea is to prove that, in this formula, we can replace the term :

B n (u)(ω) := E e iun -1 2 -δ 3 +δ 2 P y∈Z ξyNn-1(y) (S p ) p (ω)
by the term :

A n (u)(ω) := e - u 2 2n 1+2δ 3 -2δ 2 P y,z E[ξyξz](Nn-1(y)(ω)) 2
. More precisely let us prove that we have :

Lemma 10. There exists a real number δ 0 > 0 such that we have :

sup n≥1 n δ0 sup ω∈Un n δ2 |u|≤1 |B n (u)(ω) -A n (u)(ω)| e -u 2 n 2δ 2 2 du < +∞. (1) 
After proving 10, we will prove that lemma 9 is a consequence of it. We will use the following notation :

σ 2 ξ := m∈Z E[ξ 0 ξ m ].

Proof of lemma 10

Our proof uses a method introduced by Jan (cf. [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF], [START_REF] Jan | Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés à des systèmes dynamiques[END_REF]). This method also gives a result of convergence in distribution for n -3/4 n-1 k=0 ξ Sn n≥1

(see [START_REF] Borgne | Exemples de systèmes dynamiques quasi-hyperboliques  décorrélations lentes[END_REF][START_REF] Borgne | Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes[END_REF]). Let n be an integer such that n β ≥ 2. Let us fix

ω ∈ U n and u ∈ [-1; 1]. Let us recall that 0 < β < δ3 2 -δ 2 et let us define : L n := 2 j n 1 2 +δ 1 k +1 n β
(we have : ξyNn-1(y) and a k := e

L n ≤ 4n
- u 2 2n 1+2δ 3 -2δ 2 Pα (k+1) -1 y=α (k) σ 2 ξ (Nn-1(y)) 2
. We have to estimate :

n δ2 E Ln k=0 b k (S p ) p (ω) - Ln k=0 a k (ω) .
Hence it is enough to estimate :

n δ2 Ln k=0 E k-1 m=0 b m (b k -a k ) Ln m =k+1 a m (S p ) p (ω) .
• We explain how we can restrict our study to the sum over the k such that (r + 1) 4 ≤ k ≤ L n -1. Let k ∈ {0, ..., L n }. We have :

E   α+θ =α+1 ξ N n-1 ( ) 2 |(S p ) p   (ω) ≤ α+θ =α+1 α+θ m=α+1 |E[ξ ξ m ]| N n-1 ( )(ω)N n-1 (m)(ω) ≤ θ m∈Z |E[ξ 0 ξ m ]|n 1+2δ2 .
Hence we have :

E [|b k -1||(S p ) p ] (ω) ≤ n -1 2 -δ3+δ2 E α (k+1) -1 y=α (k) ξ y N n-1 (y) |(S p ) p (ω) ≤ n -1 2 -δ3+δ2 n β 2 m∈Z |E[ξ 0 ξ m ]|n 1 2 +δ2 ≤ n -3 4 δ3+ 3 2 δ2 m∈Z |E[ξ 0 ξ m ]|,
since we have β < δ3 2 -δ 2 . Moreover we have :

|a k (ω) -1| ≤ σ 2 ξ α (k+1) -1 y=α (k) (N n-1 (y)(ω)) 2 2n 1+2δ3-2δ2 ≤ σ 2 ξ n 1+2δ2 2n 1+2δ3-2δ2 n β σ 2 ξ n 1+2δ2 ≤ n -3 2 δ3+3δ2 σ 2 ξ 2 .
From which, we get :

n δ2 (r+1) 4 -1 k=0 E [|b k -a k ||(S p ) p ] (ω) + E [|b Ln -a Ln ||(S p ) p ] (ω) ≤ c 0 n -3 4 δ3+ 5 2 δ2 + n -3 2 δ3+4δ2 , (2) 
with c 0 := ((r + 1)

4 + 1) m∈Z |E[ξ 0 ξ m ]| + 1 2 σ 2 ξ .
Let us recall that 5 3 δ 2 < 1 2 δ 3 . Hence, it remains to estimate :

n δ2 Ln-1 k=(r+1) 4 E k-1 m=0 b m (b k -a k ) Ln m =k+1 a m |(S p ) p . (3) 
• Let us introduce some holes in the indices m in order to use our decorrelation hypothesis. Let us control the following quantity :

Bn := n δ2 Ln-1 k=(r+1) 4 E     k-(r+1) 4 m=0 b m   3 j=1     k-(r+1) j m=k-(r+1) j+1 +1 b m   -1   k-1 m =k-r b m (b k -a k ) Ln m =k+1 a m (S p ) p  
We have :

Bn (ω) ≤ n δ2 Ln-1 k=(r+1) 4 3 j=1   k-(r+1) j m=k-(r+1) j+1 +1 b m   -1 L ∞ (Un) b k -a k L ∞ (Un) .
On U n , we have :

|b k -1| ≤ n -1 2 -δ3+δ2 n β n 1 2 +δ2 ≤ n -δ3+2δ2+β .
Analogously, we get :

k-(r+1) j m=k-(r+1) j+1 +1 b m -1 ≤ r(r + 1) j n -δ3+2δ2+β
. On the other hand, we have :

|a k -1| ≤ 1 2 n -2δ3+4δ2+β σ 2 ξ .
Therefore, since we have β < δ3 2 -δ 2 , we get :

Bn ≤ 4n δ2 n 1 2 +δ1-β r 3 (r + 1) 6 1 + 1 2 σ 2 ξ n -δ3+2δ2+β 4 = O n 1 2 -5 2 δ3+6δ2+δ1 .
The control of the quantity Bn comes from the fact that 5 2 δ 3 > 1 2 + 6δ 2 + δ 1 .

It remains to estimate : n δ2 Ln-1 k=(r+1) 4 +1 1≤j0<j1≤j2≤4 C n,k,j0,j1,j2 , where C n,k,j0,j1,j2 is the following quantity :

E     k-(r+1) 4 m=0 b m     k-(r+1) j 1 m=k-(r+1) j 2 +1 b m     k-1 m=k-(r+1) j 0 +1 b m   (b k -a k ) Ln m =k+1 a m (S p ) p   ,
with the convention :

β m=α b m = 1 if β < α.
Let j 0 , j 1 , j 2 be fixed. We have : C n,k,j0,j1,j2 ≤ D n,k,j0,j1,j2 + E n,k,j0,j1,j2 , with :

D n,k,j0,j1,j2 := Cov |(Sp)p (∆ n,k,j1,j2 , Γ n,k,j0 ) Ln m =k+1 a m and E n,k,j0,j1,j2 := E [ ∆ n,k,j1,j2 | (S p ) p ] E [ Γ n,k,j0 | (S p ) p ] Ln m =k+1 a m . with ∆ n,k,j1,j2 := k-(r+1) 4 m=0 b m k-(r+1) j 1 m =k-(r+1) j 2 +1 b m and Γ n,k,j0 := k-1 m=k-(r+1) j 0 +1 b m (b k -a k ).
• Control of the covariance terms (thanks to our decorrelation hypothesis). Let j 0 , j 1 , j 2 be fixed.

Let k = (r + 1) 4 , ..., L n -1. We have :

D n,k,j0,j1,j2 ≤ Cov |(Sp)p   ∆ n,k,j1,j2 , k m=k-(r+1) j 0 +1 b m   Ln m =k+1 a m + + Cov |(Sp)p   ∆ n,k,j1,j2 , k-1 m=k-(r+1) j 0 +1 b m   Ln m =k a m .
But we have : ξ Nn-1( )

. Therefore, according to point 2 of the hypothesis of our theorem, we have :

D n,k,j0,j1,j2 ≤ 2C 1 + n -1 2 -δ3+δ2 ∈Z N n-1 ( ) ϕ p,s
with p := n β ((r + 1) j1 -(r + 1) j0 ) and s := n β (r + 1) j0 -1. Let us notice that we have : p ≥ rs.

Since

∈Z N n-1 ( ) = n, we have :

n δ2 Ln-1 k=(r+1) 4 D n,k,j0,j1,j2 ≤ 4C n 1-δ3+δ1-β+2δ2 n -6β sup s≥n β s 6 ϕ rs,s ≤ 4C n 1-9 8 +δ1+( 27 2 +16)δ2 sup s≥n β s 6 ϕ rs,s , since β > δ3 2 -2δ 2 and δ 3 > 1 4 -3δ 2 .
We end this point by noticing that δ 1 + ( 27 2 + 16)δ 2 < 1 8 . • Control of the term with the product of the expectations. Let j 0 , j 1 , j 2 be fixed. Let k = (r + 1) 4 , ..., L n -1. We can notice that E n,k,j0,j1,j2 is bounded by the following quantity :

F n,k,j0 := E   k m=k-(r+1) j 0 +1 b m -   k-1 m=k-(r+1) j 0 +1 b m   a k (S p ) p   .
We approximate the terms with exponential using Taylor expansions.

-First we explain that, in F n,k,j0 , we can replace

k m=k-(r+1) j 0 +1 b m = exp   iun -1 2 -δ3+δ2 α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n-1 ( )  
by the formula given by the second order Taylor expansion of the exponential function :

1 + iun -1 2 -δ3+δ2 α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n-1 ( ) - u 2 2n 1+2δ3-2δ2   α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n-1 ( )   2 . (4)
Indeed, the induced error is less than :

1 6 n -3 2 -3δ3+3δ2 E α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n-1 ( ) 3 |(S p ) p .
Moreover, we have :

E    α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n-1 ( ) 4 |(S p ) p    ≤ α (k+1) -1 y1,y2,y3,y4=α (k-(r+1) j 0 +1) |E[ξ y1 ξ y2 ξ y3 ξ y4 ]| n 1 2 +δ2 4 ≤ c 0 n 2+4δ2 (r + 1) 6 n 2β ,
according to the hypothesis of our theorem. Hence, taking the sum over k = (r + 1) 4 , ..., L n -1 and multiplying by n δ2 , this substitution induces a total error bounded by :

(c 0 ) 3/4 6 n δ2+ 1 2 +δ1-β n -3 2 -3δ3+3δ2 n 3 2 +3δ2 (r + 1) 9 2 n 3 2 β
and so by :

(c 0 ) 3/4 6 n 7δ2+ 1 2 +δ1-3δ3+ 1 2 β (r + 1) 9 2 . Since β < δ3 2 -δ 2 , δ 3 > 1 4 -3δ 2 and δ 1 + ( 27 2 + 16)δ 2 < 1 8 , we have : 7δ 2 + 1 2 + δ 1 -3δ 3 + 1 2 β ≤ -1 16 . -Let us introduce Y k := α (k) -1 =α (k-(r+1) j 0 +1) ξ N n-1 ( ) and Z k := α (k+1) -1 =α (k) σ 2 ξ N n-1 ( ) 2 .
We explain that, in F n,k,j0 , we can replace

k-1 m=k-(r+1) j 0 +1 b m a k = e iu n 1 2 +δ 3 -δ 2 Y k - u 2 2n 1+2δ 3 -2δ 2 Z k
by the formula given by the Taylor expansion of the exponential function at the second order :

1 + iu n 1 2 +δ3-δ2 Y k - u 2 2n 1+2δ3-2δ2 Z k + 1 2 iu n 1 2 +δ3-δ2 Y k - u 2 2n 1+2δ3-2δ2 Z k 2 .
(

) 5 
Indeed the modulus of the error between these two quantities is less than :

1 6 E iu n 1 2 +δ3-δ2 Y k - u 2 2n 1+2δ3-2δ2 Z k 3 |(S p ) p ≤ 4 3 E 1 n 1 2 +δ3-δ2 Y k 3 + 1 2n 1+2δ3-2δ2 Z k 3 |(S p ) p .
We control the first term as in the preceding point. Moreover, we have :

n -1-2δ3+2δ2 Z k 3 ≤ n -3-6δ3+6δ2 σ 2 ξ 3 n 3β n 3+6δ2 ≤ n -6δ3+12δ2+3β σ 2 ξ 3 .
Hence, taking the sum over k = (r + 1) 4 , ..., L n -1 and multiplying by n δ2 , we get a quantity bounded by : 2n

1 2 +δ1-6δ3+13δ2+2β σ 2 ξ 3
and we have :

1 2 + δ 1 -6δ 3 + 13δ 2 + 2β < 0.
-Now, we show that in formula (5), we can omit the term with (Z k ) 2 . Indeed, we have :

n δ2 Ln-1 (r+1) 4 n -1-2δ3+2δ2 Z k 2 ≤ 2n δ2+ 1 2 +δ1-β-2-4δ3+4δ2 n 2β (σ 2 ξ ) 2 n 2+4δ2 ≤ 2n -1 5 -2 5 δ1-2 5 δ2 (σ 2 ξ ) 2 since β < δ3 2 -δ 2 and 5 2 δ 3 > 1 2 + 6δ 2 + δ 1 .
-Hence, it remains to estimate the following quantity called G n,k,j0 :

E iu n 1 2 +δ3-δ2 (Y k + W k ) - u 2 2n 1+2δ3-2δ2 (Y k + W k ) 2 - iu n 1 2 +δ3-δ2 Y k + + u 2 2n 1+2δ3-2δ2 Z k + u 2 2n 1+2δ3-2δ2 (Y k ) 2 + iu n 1 2 +δ3-δ2 Y k u 2 2n 1+2δ3-2δ2 Z k (S p ) p , with W k := α (k+1) -1 =α (k)
ξ N n-1 ( ). We get :

G n,k,j0 = E - u 2 2n 1+2δ3-2δ2 (Y k + W k ) 2 + u 2 2n 1+2δ3-2δ2 Z k + u 2 2n 1+2δ3-2δ2 (Y k ) 2 (S p ) p = u 2 2n 1+2δ3-2δ2 E (W k ) 2 + 2W k Y k -Z k (S p ) p .
Let us notice that we have :

Z k := α (k+1) -1 =α (k)   E[(ξ ) 2 ]N n-1 ( ) 2 + 2 m≤ -1 E[ξ ξ m ]N n-1 ( ) 2   .
-Let us show that, in the last expression of G n,k,j0 , we can replace Z k by :

Zk := α (k+1) -1 =α (k)   E[(ξ ) 2 ]N n-1 ( ) 2 + 2 m≤ -1 E[ξ ξ m ]N n-1 ( )N n-1 (m)   .
Indeed, by definition of U n , we have :

u 2 2n 1+2δ3-2δ2 E Z k -Zk (S p ) p ≤ ≤ 1 n 1+2δ3-2δ2 α (k+1) -1 =α (k) m≤ -1 |E[ξ ξ m ]|N n-1 ( )|N n-1 (m) -N n-1 ( )| ≤ n -1 4 -2δ3+3δ2+β+ γ 2 m≥1 √ m|E[ξ 0 ξ m ]|.
Hence, taking the sum over k = (r + 1) 4 , ..., L n -1 and multiplying by n δ2 , we get a quantity bounded by : 4n

1 4 +δ1-2δ3+4δ2+ γ 2 m≥1 √ m|E[ξ 0 ξ m ]|. But, since δ 3 > 1 4 -3δ 2 and γ < 1 2 - 22 max(δ 1 , δ 2 ), we have : 1 4 + δ 1 -2δ 3 + 4δ 2 + γ 2 < 0 -Hence we have to estimate : Gn,k,j0 = u 2 2n 1+2δ3-2δ2 E (W k ) 2 + 2W k Y k -Zk (S p ) p .
We have :

E (W k ) 2 (S p ) p = α (k+1) -1 =α (k)   E[(ξ ) 2 ](N n-1 ( )) 2 + 2 -1 m=α (k) E[ξ ξ m ]N n-1 ( )N n-1 (m)   .
Hence we have :

E (W k ) 2 + 2W k Y k (S p ) p = α (k+1) -1 =α (k)   E[(ξ ) 2 ](N n-1 ( )) 2 + 2 -1 m=α (k-(r+1) j 0 +1) E[ξ ξ m ]N n-1 ( )N n-1 (m)   .
We get :

Gn,k,j0 = u 2 n 1+2δ3-2δ2 α (k+1) -1 =α (k) m≤α (k-(r+1) j 0 +1) -1 E[ξ ξ m ]N n-1 ( )N n-1 (m) ≤ u 2 n 1+2δ3-2δ2 n β m≥ (r+1)n β 2 |E[ξ 0 ξ m ]|n 1+2δ2 ≤ n -2δ3+4δ2+β m≥ (r+1)n β 2 |E[ξ 0 ξ m ]|.
Hence, taking the sum over k = (r + 1) 4 , ..., L n -1 of these quantities and multiplying by n δ2 , we get a quantity bounded by :

4n 1 2 +δ1-2δ3+5δ2 m≥ (r+1)n β 2 |E[ξ 0 ξ m ]| ≤ 4n δ1+11δ2 m≥ (r+1)n β 2 |E[ξ 0 ξ m ]|, since δ 3 > 1 4 -3δ 2 .
To conclude it suffices to notice that :

n δ1+11δ2 m≥ (r+1)n β 2 |E[ξ 0 ξ m ]| = O(n -ε ).

Proof of lemma 9

Let us consider n ≥ 2. According to lemma 10, it suffices to prove that there exists a real number δ > 0 such that we have :

sup n≥1 n δ sup ω∈Un n δ2 |u|≤1 exp - u 2 2n 1+2δ3-2δ2 y,z E[ξ y ξ z ](N n-1 (y)(ω)) 2 e -u 2 n 2δ 2 2 du < +∞.
Let us take ω ∈ U n . We have :

exp - u 2 2n 1+2δ3-2δ2 y,z E[ξ y ξ z ](N n-1 (y)(ω)) 2 = exp - u 2 2n 1+2δ3-2δ2 σ 2 ξ y (N n-1 (y)(ω)) 2 .
Let us define :

p n := Card{y ∈ Z : N n-1 (y) ≥ n 1 2 -δ 4 3
}. We have :

n = j n 1 2 +δ 1 k y=- j n 1 2 +δ 1 k N n-1 (y) ≤ p n n 1 2 +δ2 + n 1 2 -δ4 3 3n 1 2 +δ1 -p n ≤ p n n 1 2 +δ2 1 - n -(δ2+δ4) 3 + n 1+δ1-δ4 .
Since δ 1 < δ 4 , we have :

p n ≥ n -1 2 -δ2 n -n 1-(δ4-δ1) ≥ n 1 2 -δ2 1 -n -(δ4-δ1) ≥ c 0 n 1 2 -δ2 , with c 0 := 1 -2 -(δ4-δ1
) . Hence we have :

y∈Z (N n-1 (y)(ω)) 2 ≥ p n n 1 2 -δ 4 3 2 ≥ c0n 3 2 -δ 2 -2δ 4 9 and e - u 2 P y σ 2 ξ (N n-1 (y)(ω)) 2 2n 1+2δ 3 -2δ 2 ≤ e - u 2 σ 2 ξ c 0 n 3 2 -δ 2 -2δ 4 18n 1+2δ 3 -2δ 2 ≤ e -u 2 18 σ 2 ξ c0n 1 2 +δ 2 -2δ 3 -2δ 4 .
Therefore, we have :

n δ2 |u|≤1 e - u 2 2n 1+2δ 3 -2δ 2 P y,z E[ξyξz](Nn-1(y)(ω)) 2 e -u 2 n 2δ 2 2 du ≤ ≤ n δ2 |u|≤1 e -u 2 18 σ 2 ξ c0n 1 2 +δ 2 -2δ 3 -2δ 4 du ≤ n -1 4 +δ4+ 1 2 δ2+δ3 R e -v 2 18 σ 2 ξ c0 dv.
This ends the proof since

δ 4 + δ 3 + 1 2 δ 2 < 1 4 .
4 About the model of Guillotin-Plantard and Le Ny

In this section, we prove that the hypothesis

M 1 √ f0(1-f0)
dν < +∞ of Guillotin-Plantard and Le Ny in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF] can be replaced by the existence of p ≥ 1 such that M 1 (f0(1-f0)) p dν < +∞, for some p > 0. In this situation, there is no need to introduce the set U n ; we take U n = A n . If we take δ 1 > 0, δ 2 > 0 and δ 3 > 0, all the points (of the sketch of the proof of section 3) except the point 3(b)(ii) come in the same way without the need of the hypothesis

M 1 √ f0(1-f0)
dν < +∞. It remains to estimate :

sup ω∈An n 1 2 +δ3 I (1) n (ω) := n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E e it P y∈Z ξyNn-1(y) (S p ) p (ω)e -t 2 n 1+2δ 3 2 dt.
Let us take ω ∈ A n . We suppose

δ 3 > 2δ 2 and δ 1 < δ 4 < 1 4 -δ 3 -δ2 2 .
The idea of Guillotin-Plantard and Le Ny is to write :

n 1 2 +δ3 I (1) n ≤ n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E   y∈Z |cos(tN n-1 (y)) + i(2f y -1) sin(tN n-1 (y))| (S p ) p   e -t 2 n 1+2δ 3 2 dt ≤ n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E   y∈Z 1 -4f y (1 -f y ) sin 2 (tN n-1 (y)) (S p ) p   e -t 2 n 1+2δ 3 2 dt ≤ n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E   y∈Z 1 -f y (1 -f y ) 16 π 2 (tN n-1 (y)) 2 (S p ) p   e -t 2 n 1+2δ 3 2 dt ≤ n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E   y∈Z e -8 π 2 fy(1-fy)t 2 Nn-1(y) 2 (S p ) p   e -t 2 n 1+2δ 3 2 dt since |tN n-1 (y)| ≤ n -1 2 -δ3+δ2 n 1 2 +δ2 = n 2δ2-δ3
. Hence, if n is large enough, then |tN n-1 (y)| will be uniformly less than π 2 and |sin(tN n-1 (y))| ≥ 2 π |tN n-1 (y)|. We also use the fact that, for positive u, we have : 1 -u ≤ e -u . According to the Hölder inequality with y Nn-1(y) 2 P k Nn-1(k) 2 = 1, we have :

n 1 2 +δ3 I (1) n ≤ n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E e -8 π 2 f0(1-f0)t 2 P k Nn-1(k) 2 (S p ) p e -t 2 n 1+2δ 3 2 dt.
Now, we use the fact that, since δ 4 > δ 1 , there exists a constant c such that we have :

∀ω ∈ A n , y∈Z (N n-1 (y)) 2 (ω ) ≥ cn 3 2 -δ2-2δ4 .
This has been proved in the previous section entitled 'proof of lemma 9'. Hence, under the hypothesis

M 1 √ f0(1-f0)
dν < +∞ of Guillotin-Plantard and Le Ny, we have :

n 1 2 +δ3 I (1) n (ω) ≤ n 1 2 +δ3 {|t|≤n -1 2 -δ 3 +δ 2 } E e -8c π 2 f0(1-f0)t 2 n 3 2 -δ 2 -2δ 4 e -t 2 n 1+2δ 3 2 dt ≤ n -1 4 +δ3+ δ 2 2 +δ4 R E 1 f 0 (1 -f 0 ) e -8 π 2 v 2 dv with the change of variable v = t f 0 (1 -f 0 )n 3 2 -δ2-2δ4
. This gives the result of Guillotin-Plantard and Le Ny since -1 4 + δ 3 + δ2 2 + δ 4 < 0. We adapt this argument to our hypothesis. Now let us replace the hypothesis M 1 √ f0(1-f0) dν < +∞ by M 1 [f0(1-f0)] p dν < +∞ for some p > 0. Let us take δ 3 > 2δ 2 and δ 1 < δ 4 < 1 4 -δ 3 -δ2 2 -δ2 p . We have :

n 1 2 +δ3 {|t|≤n -3 4 + δ 2 2 +δ 4 + δ 2 p } E e -8 π 2 f0(1-f0)t 2 n 3 2 -δ 2 -2δ 4 e -t 2 n 1+2δ 3 2 dt ≤ 2n 1 2 +δ3 n -3 4 + δ 2 2 +δ4+ δ 2 p ≤ 2n -1 4 +δ3+ δ 2 2 +δ4+ δ 2 p .
On the other hand, let c p = sup u>0 u p e -u , we have :

n 1 2 +δ3 {n -3 4 + δ 2 2 +δ 4 + δ 2 p <|t|<n -1 2 -δ 3 +δ 2 } E e -8 π 2 f0(1-f0)t 2 n 3 2 -δ 2 -2δ 4 e -t 2 n 1+2δ 3 2 dt ≤ ≤ 2n 1 2 +δ3 n -1 2 -δ3+δ2 M e -8 π 2 f0(1-f0)n 2δ 2 p dν ≤ n -δ2 c p π 2 8 p M [f 0 (1 -f 0 )] -p dν.
A Proof of proposition 4

In cases (a) and (b), (ξ k ) k is a stationary sequence of bounded centered random variables

A.1 Proof of (a)

We have :

p≥0 √ 1 + p|E[ξ 0 ξ p ]| = p≥0 √ 1 + p|E ν [f.f •T p ]| which is less than : c 0 f ∞ f ∞ + K (1) f + K (2) f p≥0
√ and hence is finite. Let us consider an integer N ≥ 1. We have :

1 N 2 
k1,k2,k3,k4=0,...,N -1

|E[ξ k1 ξ k2 ξ k3 ξ k4 ]| ≤ 24 N 2 0≤k1≤k2≤k3≤k4≤N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| .
Let us consider the set E

(1)

N of (k 1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and k 4 -k 3 ≥ N 1 3
We have :

(k1,k2,k3,k4)∈E (1) N |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| = (k1,k2,k3,k4)∈E (1) N Cov ν f • T k1-k3 f • T k2-k3 f, f • T k4-k3 ≤ c 0 N 4 f 4 ∞ + f 3 ∞ (K (2) 
f + 3c 0 K (1) f ) ϕ N 1 3 ≤ c 0 N 2 f 4 ∞ + f 3 ∞ (K (2) 
f + 3c 0 K (1) f ) sup n≥1 n 6 ϕ n .
Let us consider the set E

(2)

N of (k 1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and k 4 -k 3 < N 1 3
and k 3 -k 2 ≥ rN 1 3 . We have :

(k1,k2,k3,k4)∈E (2) N |Cov (ξ k1 ξ k2 , ξ k3 ξ k4 )| = (k1,k2,k3,k4)∈E (2) N Cov ν f • T k1-k2 f, (f.f • T k4-k3 ) • T k3-k2 ≤ 2 6 c 0 N 2 f 4 ∞ + 2c 0 f 3 ∞ (K (2) f + K (1) f ) sup n≥1 n 6 (1 + κ n )ϕ rn .
Moreover, we have :

(k1,k2,k3,k4)∈E (2) N |E[ξ k1 ξ k2 ]E[ξ k3 ξ k4 ]| ≤   0≤k1≤k2≤N -1 |E[ξ k1 ξ k2 ]|   2 ≤   N k≥0 E ν [f.f • T k ]   2 ≤ N 2   c 0 f 2 ∞ + f ∞ (K (1) 
f + K (2) f ) k≥0 ϕ k   2 .
Let us consider the set E

(3)

N of (k 1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and k 4 -k 3 < N 1 3 and k 3 -k 2 < rN 1 3 and k 2 -k 1 ≥ r(1 + r)N 1 3
. By the same method, we get :

(k1,k2,k3,k4)∈E (3) N |E [ξ k1 ξ k2 ξ k3 ξ k4 ]| ≤ N 2 c 0 2 6 (1 + r) 6 f 4 ∞ + 3c 0 f 3 ∞ (K (2) 
f + K (1) f ) sup n≥1 n 6 (1 + κ n )ϕ rn .
Since the number of (k

1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and that do not belong to E (1) 
N ∪ E

N ∪ E

N is bounded by N 2 2(r + 1) 3 , we get : 

sup N ≥1 1 N 2 
β k ξ k = Cov ν e i P n 2 k=n 1 α k f •T -(n 2 -k) , e i P n 4 k=n 3 β k f •T k-n 3 • T n3-n2 ≤ c 0 1 + K (1) 
exp

" i P n 2 k=n 1 α k f •T -(n 2 -k) " + K (2) exp " i P n 4 k=n 3 β k f •T k-n 3 " ϕ n3-n2 ≤ c 0 1 + n2 k=n1 c 0 c 1 |α k | + n4 k=n3 c 0 c 1 |β k |(1 + κ n4-n3 ) ϕ n3-n2 .
This gives the point 2 of the hypothesis of theorem 1 with ϕ p,s := (1 + κ s )ϕ p .

A.2 Proof of (b)

Let us define the function g = 2f -1. This function is ν-centered. More generally, for any integer m ≥ 1, let us define : g 2m = 1 and g 2m+1 = g. We observe that, conditionally to ω ∈ M , the expectation of (ξ k (ω, •)) m is equal to g m • T k (ω). Using the Fubini theorem and starting by integrating over [0; 1] Z , we observe that, for any integers p ≥ 1, we have : E[ξ 0 ξ p ] = E ν [g.g • T p ] and that, for any integers

k 1 , k 2 , k 3 , k 4 , we have : E [ξ k1 n1 ξ k2 n2 ξ k3 n3 ξ k4 n4 ] = E ν 4 
j=1 g nj • T kj . Hence, we can prove the point 1 of theorem 1 as we did for (a). Now, let us prove the point 2 of the hypothesis of theorem 1. We observe that, conditionally to ω ∈ M , the ξ k (ω, •) are independent and that the expectation of exp

(iuξ k (ω, •)) is h u • T k (ω) with (h u := e -iu + 2i sin(u)f • T k .
The modulus of this function is bounded by 1 and we have : max K

(1) hu , K (2) hu ≤ 2c 1 |u|.
Let n 1 , n 2 , n 3 and n 4 be four integers such that 0 ≤ n 1 ≤ n 2 < n 3 ≤ n 4 . Let us consider any real numbers α n1 , .., α n2 and β n3 , ..., β n4 . We have :

Cov e i P n 2 k=n 1 α k ξ k , e i P n 4 k=n 3 β k ξ k = Cov ν n2 k=n1 h α k • T k , n4 k=n3 h β k • T k ≤ c 0 1 + 2c 0 c 1 n2 k=n1 |α k | + n4 k=n3 |β k | (1 + κ n4-n3 )ϕ n3-n2 .

B Proof of theorem 2 : α-mixing condition

Let us define (M, F) = (R Z , B(R) ⊗Z ). Let T : M → M be such that T ((ω k ) k∈Z ) = (ω k+1 ) k∈Z . Let ν be the image probability measure on (M, F) of Π : Ω → R Z with Π(ω) = (ξ k (ω)) k∈Z . The process (ξ k ) k∈Z (with respect to P) has the same distribution as (f • T k ) k∈Z (with respect to ν) with f : M → R given by f ((ω k ) k∈Z ) = ω 0 . According to [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF], lemma 1.2, (M, F, ν, T ) is strongly mixing (in the sense of our definition 3) with the following choice of K

• and of K

• . If g is σ(f • T k , k ≤ 0)-measurable, we have K

(1) g := 0; otherwise we have K Let η > 0. Let us denote by Γ (s,e) the set of stable-central manifolds and by Γ u the set of unstable manifolds. In [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF], each γ u ∈ Γ u is endowed with some metric d u and each γ (s,e) ∈ Γ (s,e) is endowed with some metric d (s,e) such that there exist c0 > 0, δ 0 ∈]0; 1[ and β > 0 such that, for any integer n ≥ 0, for any γ u ∈ Γ u and any γ (s,e) ∈ Γ (s,e) , we have :

• For any y, z ∈ γ u , d u (y, z) ≥ d(y, z) and for any y , z ∈ γ (s,e) , d (s,e) (y , z ) ≥ d(y , z ).

• For any y, z ∈ γ u , there exists γ u (n) ∈ Γ u such that T -n (y) and T -n (z) belong to γ u (n) and we have : d u (T -n (y), T -n (z)) ≤ c0 (δ 0 ) n d u (y, z).

• For any y, z ∈ γ (s,e) , there exists γ (s,e) (n) ∈ Γ (s,e) such that T n (y) and T n (z) belong to γ (s,e) (n) and we have : d (s,e) (T n (y), T n (z)) ≤ c0 (1 + n β )d (s,e) (y, z). For these examples, the result follows from [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF] (cf. lemme 1.3.1 in [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]).

C.2 Case 2 : Sinai billiard

Since the early work of Sinai [START_REF] Sinai Ya | Dynamical systems with elastic reflections[END_REF], this billiard system has been studied by many authors ([1, 2, 3, 4, 8] and others). Let us recall that a point of M is a couple (q, v) corresponds to a reflected unit speed vector v at the position q on some obstacle O i and is parametrised by (i, rϕ) where i is the index of the obstacle O i , r the curvilinear of x on it and ϕ the measure of the angle (taken in [-π/2; π/2]) made by v with the unit normal vector n(q) to O i at q directed to the outside of the obstacle. We endow M with a metric d such that : d((i, r, ϕ), . For all k = -m, ..., m, T k is C 1 on each C belonging to C m . We will use the notations of Chernov in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]. Let us consider the set Γ s of homogeneous stable curves and the set Γ u of homogeneous unstable curves and the two separation times s + (•, •) (in the future) and s -(•, •) (in the past) considered in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]. We recall that there exist two constants c 1 > 0 and δ 1 ∈]0; 1[ such that, for any nonnegative integer n, for any y and z in M , we have : This gives the point 2 of the hypothesis of theorem 1 with ϕ p,s = p -7 + (1 + s β )p 7/ζ δ p .

• If

  , ν 1 := 2 Main result, examples, strong mixing property Theorem 1. Let (ξ k ) k∈Z be a stationary sequence of centered random variables with values in {-1; 1} such that : 1. we have : p≥0 √ 1 + p |E[ξ 0 ξ p ]| < +∞ and c 0 := sup N ≥1 N -2 k1,k2,k3,k4=0,...,N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| < +∞.

sup n≥1 n 6

 6 α n < +∞, with α n := sup p≥0; m≥0 sup A∈σ(g-p,...,g0) sup B∈σ(gn,...,gn+m) |P(A ∩ B) -P(A)P(B)| .

h

  will be dominating by C (η,m0) h = sup C∈Cm sup x,y∈C, x =y |h(x)-h(y)| max(d(T k (x),T k (y)); k=-m,...,m) η , where C m is a set of open subsets of M on which T m and T -m are C 1 .

h

  are both dominated by the η-Hölder constant of h. Then : (A) If (ξ k := ξk,g0•T k ) k∈Z with g 0 : M → [0; 1] a Hölder continuous function (of order η) such that

Lemma 7 .

 7 The process (X n , S n ) n≥1 with X n := y∈Z ξ distribution as (M Tn ) n≥1 .

1 2 1 2 1 2 +δ1 +1; b k := e iun - 1 2-δ 3 +δ 2

 11112 +δ1-β ) and, for all integer k = 0, ..., L n : α (k) := -n +δ1 +k n β and α (Ln+1) := n Pα (k+1) -1 y=α (k)

θ1+θ2 m=θ1+1 b m = e iun - 1 2-δ 3 +δ 2

 12 Pα (θ 1 +θ 2 +1) -1 =α (θ 1 )

1 C. 1

 11 . If h is σ(f • T k , k ≥ 0)-measurable, we have K (2) h := 0; otherwise we have K (2)h := ∞. We conclude with proposition 4.C Proof of example 2.Case 1

  γ u ∈Γ u sup y,z∈γ u :y =z |f (y) -f (z)| (d u (y, z)) η and K (2) f := sup γ (s,e) ∈Γ (s,e) sup y,z∈γ (s,e) :y =z |f (y) -f (z)| (d (s,e) (y, z)) η .

  (i, r , ϕ )) = |r -r | + |ϕ -ϕ |.Let us denote by R 0 the set of points in M corresponding to a reflected vectors tangent to the obstacles, i.e. such that ϕ = ±π/2. The transformationT n defines a C 1 -diffeomorphism from M \ n k=0 T -k (R 0 ) onto M \ n k=0 T k (R 0 ). Let us consider the set C m of connected components of M \ m k=-m T k (R 0 )

1 n 2 ( 1 + (n 4 -≤ C 1 7 ζ

 121417 y and z belong to the same homogeneous unstable curve, then s + (x, y) ∈ Z + , moreover T -n (y) and T -n (z) belong to a same homogeneous unstable curve and we have :d(T -n (y), T -n (z)) ≤ c 1 δ and s + (T -n (x), T -n (y)) ≥ n + s + (x, y). n 3 ) β )α n3-n2 k | (1 + (n 4 -n 3 ) β )(n 3 -n 2 ) α n3-n2 .

  |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| < +∞.Now, let us prove the point 2 of the hypothesis of theorem 1. Let n 1 , n 2 , n 3 and n 4 be four integers such that 0 ≤ n 1 ≤ n 2 ≤ n 3 ≤ n 4 . Let us consider any real numbers α n1 , .., α n2 and β n3 , ..., β n4 . We have :

				k1,k2,k3,k4=0,...,N -1
	Cov e i	P n 2 k=n 1	α k ξ k , e i	P n 4 k=n 3

+δ3 }. As in proposition 4.3 of [5], we have : n≥0 P(B n ∩ {X n = 0 and S n = 0}) < +∞. It remains to prove that : n≥0 P (U n ∩ {X n = 0 and S n = 0} \ B n ) < +∞.

• If y and z belong to the same homogeneous stable curve, then s -(x, y) ∈ Z + , moreover T n (y) and

T n (z) belong to a same homogeneous stable curve and we have : d(T n (y), T n (z)) ≤ c 1 δ 1 n and s -(T n (x), T n (y)) ≥ n + s -(x, y).

With these notations, according to [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] (theorem 4.3 in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] and the remark after theorem 4.3 in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]), this system is strongly mixing with :

D Proof of conclusion (B) of theorem 5

We will use b and δ of proposition 2.1. First let us notice that there exists c A > 0 such that, for every ε ∈]0; 1[, there exists a Lipschitz continuous function f ε such that :

This quantity can be rewritten :

and is less than :

. Moreover, we have :

• Let us prove that : sup

k1,k2,k3,k4=0,...,N -1

We use the notations E

N , E

N and E

N and the calculations done in section A.1. -To estimate (k1,k2,k3,k4)∈E (1)

. This substitution makes a total error in O(N 2 ). Moreover, according to the calculations of section A.1, we have :

-With the same technique, we get :

). Moreover, as in section A.1, we have : (k1,k2,k3,k4)∈E (2)

and we have already proved that :

N ∪ E

N ∪ E

N is controlled as in section A.1.

• Let us prove point 2 of hypothesis of theorem 1. By replacing each ξ k by ξ(n3-n2)

ζ ] , we make a total error in 1 +