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Matchings and the variance of Lipschitz functions
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Abstract
We are interested in the rate function of the moderate deviation principle for the two-sample

matching problem. This is related to the determination of 1-Lipschitz functions with maximal
variance. We give an exact solution for random variables which have normal law, or are uniformly
distributed on the Euclidean ball.
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1 Introduction

Let Xi and Yi be independent random variables in Rd with common law µ, and set

Tn = inf
σ∈Sn

n∑
i=1

|Xi − Yσ(i)|,

where Sn denotes the set of permutations of {1, . . . , n}. In the case where d = 2 and µ is the
uniform distribution on the unit square, this is the canonical ‘two-sample matching problem’. In
this case, Ajtai, Komlòs and Tusnàdy [1] prove the following: there exists K > 0 such that

1
K

(n log n)1/2 < T 1
n < K(n log n)1/2, (1)

with probability 1 − o(1). Refinements of this result, as well as concentration inequalities, were
obtained by Shor [11] and Talagrand [12]. It is still an open problem to determine if (n log n)−1/2T 1

n

actually converges, even in expectation. In [5], large and moderate deviations results were obtained
in a fairly general setting by exploiting a connection with the Monge-Kantorovich problem. Let E
be a Borel subset of Rd and assume that µ ∈ M1(E), the space of probability measures on E. The
Monge-Kantorovich distance on M1(E) is defined by

W1(µ, ν) = inf
{∫

E×E
|x− y| π(dx, dy) : π ∈ Π(µ, ν)

}
, (2)

where Π(µ, ν) is the space of all Borel probability measures π on Rd × Rd with fixed marginals
µ(·) = π(· ×Rd) and ν = π(E × ·). We recall that, if F denotes the set of Lipschitz functions on E
with Lipschitz constant 1, then

W1(µ, ν) = ‖µ− ν‖F , (3)
∗Research supported by Science Foundation Ireland grant number SFI 04-RP1-I512.
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where

‖ν‖F = sup
{∣∣∣ ∫ fdν

∣∣∣ : f ∈ F
}

. (4)

If E is compact, then W1 metrises the weak topology on M1(E). Define the empirical measures

Ln =
1
n

n∑
i=1

δXi , Mn =
1
n

n∑
i=1

δYi .

It is an immediate consequence of the Birkhoff-von Neumann theorem that

1
n

Tn = W1(Ln,Mn).

Starting with this identity, large and moderate deviations results for the matching problem were
obtained in [5]. Before stating these, we recall some definitions from large deviation theory.

Let Zn be a sequence of random variables defined on a probability space (Ω,F , P), with values
in a topological space X equipped with the Borel σ-algebra B. We say that the sequence Zn satisfies
the large deviation principle (LDP) with rate function I and speed n, if for all B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
n

1
n

log P(Zn ∈ B) ≤ lim sup
n

1
n

log P(Zn ∈ B) ≤ − inf
x∈B̄

I(x).

Let (an)n≥1 be an increasing, positive sequence such that

an →∞,
an√
n
→ 0.

We say the the sequence Zn satisfies the moderate deviation principle (MDP) with rate function J
and speed a−2

n , if for all B ∈ B,

− inf
x∈B◦

J(x) ≤ lim inf
n

1
a2

n

log P
(√

n

an
Zn ∈ B

)
≤ lim sup

n

1
a2

n

log P
(√

n

an
Zn ∈ B

)
≤ − inf

x∈B̄
J(x).

Denote by F0 the set of f ∈ F such that
∫

fdµ = 0. For θ ∈ R, define

Λf (θ) = log Eµ [eθf ] = log
∫

E
eθf(x)dµ(x), Lf (θ) = Λf (θ) + Λf (−θ), (5)

and for x ∈ R, set
L∗f (x) = sup

θ∈R
θx− Lf (θ).

The following theorem is a slight generalisation of the main result in [5], where it was assumed
that E is compact for the LDP and that E is the unit square for the MDP. The proof is essentially
the same, combining large and moderate deviation results for empirical measures given in Wu [14]
(see section 3 for the unbounded case, which relies heavily on earlier work of Ledoux [7]) with
convergence rates for empirical measures in the Monge-Kantorovich distance due to Dudley [4]
and, for the unbounded case, Kalashnikov and Rachev (see [10, Theorem 11.1.6]).
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Theorem 1. Assume that either E is compact or µ is the standard Gaussian measure on Rd.

(i) The sequence Tn/n satisfies the large deviation principle in R+ with rate function

I(x) = inf
f∈F0

L∗f (x). (6)

(ii) Let an be a positive sequence satisfying the following conditions:

1. As n →∞, an√
n
n1/k →∞, for some k > max{d, 2}.

2. For some δ,A > 0, anm ≤ Am−δ+1/2an, for all n, m > 0.

Then the sequence Tn/
√

nan satisfies the MDP in R+ with speed a−2
n and rate function

J(x) =
x2

4 supf∈F0

∫
E f2dµ

. (7)

In the case where µ is uniform measure on the unit square, it was conjectured in [5] that the
infimum in (6) and the supremum in (7) are both achieved by f = ϕ, where

ϕ(x, y) =
x + y√

2
, −1

2
≤ x, y ≤ 1

2
,

which yields J(x) = 3x2 and I = L∗ϕ, where

Lϕ(θ) = 2 log
[

4
θ2

(
cosh

(
θ

4
√

2

)
− 1
)]

.

Note that, in this case, any affine function f ∈ F0 with |∇f | = 1 has the same variance. As
explained in [5], the conjecture is true if, for all θ ∈ R, the supremum of Lf (θ) over f ∈ F0 is
achieved by f = ϕ. Note that this is true if, for all positive, even integers r, the supremum of
the rth cumulant Λ(r)

f (0) over f ∈ F0 is achieved by f = ϕ. In this paper, we compute the rate
functions I and J explicitly in the case where µ is the standard Gaussian measure on Rd. In this
case, the variance and all exponential moments are maximised by the linear function ϕ(x) = x1. We
also compute the moderate deviations rate function J in the case where µ is the uniform measure
on the unit ball in Rd; in this case too the variance is maximised by ϕ(x) = x1. Throughout the
paper, the space Rd is equipped with the canonical Euclidean structure, with norm | · | and scalar
product x.y .

2 Gaussian samples

In this section we show that for standard Gaussian samples the rate functions in the large and
moderate deviation principles can be explicitly calculated. Let γd denote the standard Gaussian
measure on Rd.

Proposition 2. For E = (Rd, | · |, γd),

I(x) = J(x) =
x2

4
.

3



Proof. For the moderate deviation problem, we use the classical spectral gap inequality for the
Gaussian measure (see e.g. [6]): for every locally Lipschitz f : Rd → R

Varγd(f) ≤
∫
|∇f |2 dγd.

This is an equality for affine functions. If f is 1-Lipschitz, this yields Varγd(f) ≤ 1, and this bound
is best possible (e.g. for f(x) = x1). Hence supF0

∫
f2dγd = 1 and this allows to calculate J .

For the large deviation problem, our starting point is Talagrand’s transportation cost inequality
[13]. Denoting Wp(µ, ν) := inf{

∫
|x − y|pdπ(x, y)}1/p where the infimum is with respect to prob-

ability measures on E × E with marginals µ and ν, this inequality reads as: for all probability
measure f dγd on Rd,

W2(γd, f dγd) ≤
√

2Entγd(f).

This inequality is an equality when f(x) = exp(〈t, x〉− |t|2/2), in which case the optimal transport
is just a translation by t. Consequently by Cauchy-Schwarz inequality

W1(γd, f dγd) ≤
√

2Entγd(f)

and the inequality is still sharp for the above examples (the reason being that the translation is
the optimal transportation for W1 and W2; in this case the length of the displacement is constant
so there was no loss when we applied Cauchy-Schwarz). So this inequality can be rewritten as for
a ≥ 0

inf
{

Entγd(f); W1

(
γd, f dγd

)
= a

}
=

a2

2
.

There is also a dual reformulation on the transportation cost inequality, put forward by Bobkov
and Götze [2]: for all Lipschitz functions f : Rd → R, and for all t ∈ R∫

et(f−
R

f dγd)dγd ≤ e
t2

2 .

The above inequality becomes an equality when f(x) = x1 for example. It follows that for f ∈ F0,

Lf (θ) = log
(∫

eθfdγd

)
+ log

(∫
e−θfdγd

)
≤ θ2 = Lϕ(θ),

where we have set ϕ(x) = x1. As explained in Section 4 of [5] this implies that for x ≥ 0,
I(x) = L∗ϕ(x) = x2

4 .

3 Euclidean unit ball

The goal of this section is to calculate the rate function in the moderate deviation principle for
random variables with uniform distribution on the d-dimensional Euclidean ball Bd

2 ⊂ Rd:

Theorem 3. For E =
(
Bd

2 , | · |,1Bd
2
(x) dx

Vol
(
Bd

2

)),
J(x) =

d + 2
4

x2.
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In view of (7), this is a consequence of the following result, which asserts that among 1-Lipschitz
functions, linear functions have maximal variance on the ball:

Theorem 4. Let f : Bd
2 → R be a 1-Lipschitz function (for the Euclidean distance) such that∫

Bd
2
f(x) dx = 0. Then ∫

Bd
2

f2(x) dx ≤
∫

Bd
2

x2
1 dx =

Vol(Bd
2)

d + 2
·

Proof. The direct approach to such a statement consists in proving that there exist maximizing
functions, by Ascoli theorem. Then perturbing such a maximizer f , one is easily convinced that
it should satisfy the Eikonal equation |∇f | = 1 a.e. in Bd

2 . However we do not know how to push
this method further. This is why we adopt another strategy, which is unfortunately very specific
to the ball. We are going to derive, by classical spectral analysis, a Poincaré type inequality of the
following form: for every locally Lipschitz f : Bd

2 → R with
∫
Bd

2
f = 0,∫

Bd
2

f(x)2dx ≤
∫

Bd
2

ϕ(x)|∇f(x)|2dx,

where the function ϕ is adjusted so that the inequality becomes and equality for linear functionals
f0(x) = x.e for any e ∈ Rd. As a consequence if

∫
Bd

2
f = 0,

∫
Bd

2

f2 ≤
∫

Bd
2

ϕ|∇f |2 ≤

(∫
Bd

2

ϕ

)(
sup
Bd

2

|∇f |

)2

.

Note that both inequalities become equalities for the function f(x) = x1 (and more generally for
f(x) = x.e for any unit vector e ∈ Rd). Hence the inequality between the first and the last term
can be written as ∫

Bd
2

f2 ≤

(∫
Bd

2

x2
1 dx

)(
sup
Bd

2

|∇f |

)2

.

For 1-Lipschitz functions we would get as claimed
∫
Bd

2
f2 ≤

∫
Bd

2
x2

1 dx.

Let us briefly sketch how to choose ϕ. Assume that for all f : Bd
2 → R with

∫
Bd

2
f = 0,∫

Bd
2

f(x)2dx ≤
∫

Bd
2

ϕ(x)|∇f(x)|2dx

and that there is equality for a non-constant function f0. We follow the classical method to obtain
the corresponding Euler-Lagrange equation: let u be a smooth bounded function with

∫
Bd

2
u = 0.

Then
∫

(f0 + εu)2 ≤
∫

ϕ|∇(f0 + εu)|2 for every ε ∈ R. Since there is equality for ε = 0, the first
order term in ε vanishes, that is

∫
f0u =

∫
ϕ∇f0.∇u. Stokes formula then yields∫

Bd
2

f0u = −
∫

Bd
2

u∇.(ϕ∇f0) +
∫

Sd−1

uϕ n.∇f0,

where n denotes the unit outer normal to the sphere. Since this is true for every u with integral 0
(i.e. orthogonal to constants in L2(Bd

2 , dx)) we obtain there is a constant c such that f0 satisfies{
f0 +∇.(ϕ∇f0) = c on Bd

2

ϕ n.∇f0 = 0 on Sd−1
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If e is a unit vector in Rd, and f0(x) = x.e is an equality case of a Poincaré inequality involving a
smooth function ϕ then necessarily ϕ is identically zero on the unit sphere Sd−1 and there exists a
constant ce such that

x.e +∇ϕ(x).e = ce, ∀x ∈ Bd
2 .

This is assumed to be true for every unit vector e so that x + ∇ϕ(x) is actually independent of
x ∈ Bd

2 . Hence here exist a ∈ R, b ∈ Rd such that ϕ(x) = a− b.x− |x|2/2. Since ϕ vanishes on the
unit sphere we conclude

ϕ(x) =
1− |x|2

2
, x ∈ Bd

2 .

The Poincaré inequality involving this function is proved in the next theorem.

Theorem 5. Let d ≥ 1 and integer. Let f : Bd
2 → R be a Lipschitz function such that,

∫
Bd

2
f = 0.

Then ∫
Bd

2

f2(x) dx ≤
∫

Bd
2

1− |x|2

2
|∇f |2 dx,

with equality when f is a linear function.

Proof. For d = 1 this may be proved using the classical method:∫ 1

−1
f2 =

1
4

∫
[−1,1]2

(
f(y)− f(x)

)2
dxdy =

1
2

∫
−1<x<y<1

(
f(y)− f(x)

)2
dxdy

=
1
2

∫
−1<x<y<1

(∫ y

x
f ′(t) dt

)2
dxdy ≤ 1

2

∫
−1<x<y<1

(y − x)
(∫ y

x
f ′(t)2dt

)
dxdy

=
∫ 1

−1

1− t2

2
f ′(t)2dt.

For d ≥ 2 the statement follows from the next theorem and an approximation argument, based on
the density of polynomials in the space H1(Bd

2).

Theorem 6. Let d ≥ 2. Let f be a polynomial function in d variables, such that
∫
Bd

2
f = 0. Then∫

Bd
2

f2(x) dx ≤
∫

Bd
2

1− |x|2

2
|∇f |2 dx,

with equality if and only if f is a linear function.

Proof. It is enough to prove that for every integer m the inequality is valid for f ∈ Rm[T1, . . . , Td],
the set of polynomials in d variables with total degree at most m. Let us consider the operator

L := ∇.

(
1− |x|2

2
∇f

)
=

1− |x|2

2
∆f − x.∇f.

Note that when f ∈ Rm[T1, . . . , Td] is a polynomial of total degree at most m then so is Lf .
Moreover for smooth functions f, g on Rd it holds∫

Bd
2

1− |x|2

2
∇f.∇g dx = −

∫
Bd

2

f∇.

(
1− |x|2

2
∇g

)
dx +

∫
Sn−1

1− |x|2

2
f(x)x.∇g(x) dx

= −
∫

Bd
2

f Lg.
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In particular
∫
Bd

2
f Lg =

∫
Bd

2
Lf g, so L can be viewed as a self-adjoint operator of Rm[T1, . . . , Td]

equipped with the scalar product (f, g) 7→
∫
Bd

2
fg. It follows that the restriction of L to Rm[T1, . . . , Td]

can be diagonalized. The relation∫
Bd

2

1− |x|2

2
|∇f |2 dx = −

∫
Bd

2

f Lf,

also implies that the eigenvalues of f are non-positive and that the kernel of L is the set of constant
functions.

We will be done if we prove that the none of the eigenvalues of L (on any Rm[T1, . . . , Td])
is in (−1, 0), i.e. that L has spectral gap 1. Indeed if 0 ≥ −λ1 ≥ · · · ≥ λK denote the non-
zero eigenvalues of L (with repetition) and (f0 = Vol(Bd

2)−1/2, f1, . . . , fK) is an orthonormal basis
of corresponding eigenvectors, the hypothesis

∫
Bd

2
f = 0 means that f is orthogonal to constant

functions (i.e. the kernel of L). Hence one can write

f =
∑
i≥1

cifi and Lf = −
∑
i≥1

ciλifi.

Consequently∫
Bd

2

f2 =
∑
i≥1

c2
i and

∫
Bd

2

1− |x|2

2
|∇f |2dx =

∫
Bd

2

f (−Lf) =
∑
i≥1

λic
2
i .

So the claimed inequality follows from λi ≥ 1 for all non-zero (opposite) eigenvalues.

Let −λ be a non-zero eigenvalue of L on Rm[T1, . . . , Td] and let f be a corresponding eigenfunc-
tion. Plainly f is not constant and verifies Lf = −λf . Let k ≥ 1 denote the total degree of f . Let
us write f = g + h where h has total degree at most k − 1 and g is a homogeneous polynomial of
degree k and identify the terms of degree k in the latter equality. Note that

x.∇(xa1
1 · · ·xan

n ) = (a1+· · ·+an)xa1
1 · · ·xan

n and ∆(xa1
1 · · ·xan

n ) =
n∑

i=1

ai(ai−1)xa1
1 · · ·xai−2

i · · ·xan
n .

So in the particular case k = 1, it holds −λf = −Lf = −Lg = −x.∇g = −g so λ = 1 so f = g,
h = 0 and λ = 1. Hence among functions of degree 1, linear functions are the only eigenfunctions;
the corresponding eigenvalue is -1. This is not a surprise in view of our choice of ϕ.

Assuming now that k ≥ 2, we see that

Lf = Lg + Lh =
(
−|x|

2

2
∆g − x.∇g

)
+
(

Lh +
1
2
∆g

)
where the first term is homogeneous of degree k and the second one is of degree at most k − 1.
Identifying terms of degree k in the equation Lf = −λf thus yields

|x|2

2
∆g + x.∇g = λg, x ∈ Bd

2 . (8)
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Since g is homogeneous of degree k the above equation will allow us to get information about λ.
First recall that x.∇g = k g. Also if we consider the 0-homogeneous function g̃(x) = g(x/|x|), then
for x 6= 0, g(x) = |x|kg̃(x). Differentiating twice we get for x 6= 0

∆g(x) = ∆(|x|k)g̃(x) +∇
(
|x|k

)
.∇g̃(x) + |x|k∆g̃(x)

= k(k + d− 2)|x|k−2g̃(x) + |x|k∆g̃(x),

since the gradient of g̃ is tangential and the one of |x|k is radial. Recall that the restriction of ∆g̃
to the unit sphere Sd−1 coincides with the spherical gradient of g, denoted by ∆Sd−1g or ∆0g for
shortness. Hence for x ∈ Sd−1

∆g(x) = k(k + d− 2)g(x) + ∆0g(x), x ∈ Sd−1. (9)

As we recall later this relation is very useful in the study of the spherical Laplacian. Combining
(8) with the later relation and x.∇g = k g, yields for x ∈ Sd−1,

1
2
(
∆0g(x) + k(k + d− 2)g(x)

)
+ kg(x) = λg(x).

Therefore as a function on the sphere g satisfies

∆0g =
(
2λ− 2k − k(k + d− 2)

)
g.

Since g is homogeneous and non-zero on Rd it is non-zero on the sphere. Therefore g is an eigenfunc-
tion of the spherical Laplacian. This operator is well studied: its eigenfunctions are the restrictions
to the sphere of homogeneous harmonic polynomials (the spherical harmonics, see e.g. [8]). Its
spectrum is

Spect(∆Sd−1) =
{
− `(` + d− 2); ` ∈ N

}
,

as one can deduce it from (9). Consequently the eigenvalues of L are of the form −λ with

λ ∈ {0, 1}
⋃(

(0,+∞) ∩
{

k +
1
2
(
k(k + d− 2)− `(` + d− 2)

)
; k, ` ∈ N, k ≥ 2

})
.

In particular λ ∈ N/2, and showing that λ 6= 1/2 will be enough to show that there is no eigenvalue
between −1 and 0. The following lemma shows that λ cannot take the value 1/2. It also shows
that the eigenvalue −1 only appears for functions of degree d = 1. The proof is complete.

Lemma 7. Let d ≥ 2 be an integer. Then for all k, ` ∈ N, with k ≥ 2

k +
1
2
(
k(k + d− 2)− `(` + d− 2)

)
6∈
{1

2
, 1
}

.

Proof. First note that

2k + k(k + d− 2)− `(` + d− 2) = k2 + dk −
(
`2 + (d− 2)`

)
=

(
k +

d

2

)2
−
(d

2

)2
−
(
` +

d− 2
2

)2
+
(d− 2

2

)2

= (k + ` + d− 1)(k − ` + 1)− (d− 1).

Assume that 2k + k(k + d− 2)− `(` + d− 2) ∈ {1, 2}. This is equivalent to

(k + ` + d− 1)(k − ` + 1) ∈ {d, d + 1}.

By hypothesis k + ` + d − 1 ≥ d + 1. Hence the above inclusion forces k − ` + 1 = 1. Thus k = `
and 2k + d− 1 ∈ {d, d + 1} or 2k ∈ {1, 2}. This is a contradiction with k ≥ 2.
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Remark 1. The operator L = (1 − |x|2)∆/2 − x.∇, x ∈ Bd
2 that we considered looks like the

ultraspherical generators Lm. Recall that for smooth enough f on ]− 1, 1[,

Lmf(x) = (1− x2)f ′′(x)−mxf ′(x), x ∈]− 1, 1[.

It has been studied in details, see e.g. [9]. Its spectral gap is of size 1/m. For integer values of m,
Lm is the projection of the spherical Laplacian ∆Sm onto ] − 1, 1[. In dimension d = 1, it holds
L = L2/2. Hence the knowledge of the spectral gap of L2 is another explanation for Theorem 5 in
dimension d = 1.

For d ≥ 2, the operator L does not coincide with the projection onto Bd
2 of the spherical

Laplacian on Sd+1. However the reasoning of this note allows to study some properties of the
spectrum of the d dimensional analogues of Lm, where the variable x is in Bd

2 .

Remark 2. It is not hard to check that on the equilateral triangle, linear functions do not have
maximal variance among 1-Lipschitz functions. They are beaten by the distance to a vertex.

Acknowledgements: We would like to thank Dominique Bakry and Naoufel Ben Abdallah for
useful discussions.
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