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MODEL SELECTION FOR QUANTUM HOMODYNE TOMOGRAPHYJonas Kahn1Abstra
t. This paper deals with a non-parametri
 problem 
oming from physi
s, namely quantumtomography. That 
onsists in determining the quantum state of a mode of light through a homodynemeasurement. We apply several model sele
tion pro
edures: penalized proje
tion estimators, wherewe may use pattern fun
tions or wavelets, and penalized maximum likelihood estimators. In all these
ases, we get ora
le inequalities. In the former we also have a polynomial rate of 
onvergen
e forthe non-parametri
 problem. We �nish the paper with appli
ations of similar ideas to the 
alibrationof a photo
ounter, a measurement apparatus 
ounting the number of photons in a beam. Here themathemati
al problem redu
es similarly to a non-parametri
 missing data problem. We again getora
le inequalities, and better speed if the photo
ounter is good.Résumé. Nous nous intéressons à un problème de statistique non-paramétrique issu de la physique,et plus pré
isément à la tomographie quantique, 
'est-à-dire la détermination de l'état quantique d'unmode de la lumière via une mesure homodyne. Nous appliquons plusieurs pro
édures de séle
tion demodèles: des estimateurs par proje
tion pénalisés, où on peut utiliser soit des fon
tions motif, soit desondelettes, et l'estimateur du maximum de vraisemblan
e pénalisé. Dans 
haque 
as, nous obtenonsune inégalité ora
le. Nous prouvons également une vitesse de 
onvergen
e polynomiale pour 
e prob-lème non-paramétrique, pour les estimateurs par proje
tion. Nous appliquons ensuite des idées à la
alibration d'un photo
ompteur, l'appareil dénombrant le nombre de photons dans un rayon lumineux.Le problème mathématique se réduit dans 
e 
as à un problème non-paramétrique à données man-quantes. Nous obtenons à nouveau des inégalités ora
le, qui nous assurent des vitesses de 
onvergen
ed'autant meilleures que le photo
ompteur est bon.1991 Mathemati
s Subje
t Classi�
ation. 62G05, 81V80, 62P35.The dates will be set by the publisher.1. Introdu
tionQuantum me
hani
s introdu
es intrinsi
 randomness in physi
s: the result of a measurement, or any ma
ros
opi
intera
tion, on a physi
al system is not deterministi
. Therefore, a host of statisti
al problems 
an stemfrom it. Some are (almost) spe
i�
ally quantum, notably any question about whi
h measurement yields themaximum information, or whether simultaneously measuring n samples is more e�
ient than measuring themKeywords and phrases: density matrix, model sele
tion, pattern fun
tions estimator, penalized maximum likelihood estimator,penalized proje
tion estimators, quantum 
alibration, quantum tomography, wavelet estimator, Wigner fun
tion.
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2 TITLE WILL BE SET BY THE PUBLISHERsequentially [12℄. However, on
e we have 
hosen the measurement we 
arry out on our physi
al system, weare left with an entirely 
lassi
al statisti
al problem. This paper aims at applying model sele
tion methods àla Birgé-Massart to one su
h instan
e, whi
h is of interest both pra
ti
al, as physi
ists use this measurementquite often (the underlying physi
al system is elementary; it is the parti
le with one degree of freedom), andmathemati
al, as it yields a nonparametri
 inverse problem with un
ommon features.Moreover, as this 
lassi
al problem stemming from quantum me
hani
s 
ould be seen as an easy introdu
tionto the subje
t to 
lassi
al statisti
ians, we have added more general notions on quantum statisti
s at thebeginning of the appendix. The interested reader 
an get further a
quaintan
e with these 
on
epts through thetextbooks [13℄ and [15℄ or the review arti
le [3℄.More pre
isely, the problem we are interested in is quantum homodyne tomography. As an aside, we applythe results we get to the 
alibration of a photo
ounter, using a quantum tomographer as a tool. The word�Homodyne� refers to the experimental te
hnique used for this measurement, �rst implemented in [20℄, wherethe state of one mode of ele
tromagneti
 radiation, that is a pulse of laser light at a given frequen
y, is probedusing a referen
e laser beam at the same (�homo�) frequen
y. Respe
tively, �Tomography� is used be
ause oneof the physi
ists' favourite representations of the state, the Wigner fun
tion, 
an be re
overed from the data byinverting a Radon transform.Mathemati
ally, our data are samples from a probability distribution pρ on R× [0, π]. From this data, we wantto re
over the �density operator� ρ of the system. This is the most 
ommon representation of the state, that is amathemati
al obje
t whi
h en
odes all the information about the system. Perfe
t knowledge of the state meansknowing how the system will evolve and the probability distribution of the result of any measurement we might
arry out on the system. These laws of evolution and measurement 
an be expressed naturally enough withinthe density operator framework (see Appendix). The density operator is a non-negative tra
e-one self-adjointoperator ρ on L2(R) (in our parti
ular 
ase). We know the linear transform T whi
h takes ρ to pρ and 
anmake it expli
it in parti
ular bases su
h as the Fo
k basis. We may also settle for the Wigner fun
tion W ,another representation of the state. That is a two-dimensional real fun
tion with integral one, and pρ is theRadon transform of W .The �rst re
onstru
tion methods used the Wigner fun
tion as an intermediate representation: after 
olle
tingthe data in histograms and smoothing, one inverted the Radon transform to get an estimate of W . Thissmoothing, however, introdu
es hard-to-
ontrol bias. Pattern fun
tions (bidual bases) for the entries of thedensity operator ρ were introdu
ed in [8℄, yielding an unbiased estimator of those individual entries. They werelater extended to allow for low noise in the measurement. Maximum likelihood pro
edures are used sin
e [2℄.For both these estimators, we need an arbitrary 
ut-o� of the density operator, so that the model is �nite-dimensional. Consisten
y of these two estimators used with a sieve was established in [1℄. Then, a sharpadaptive kernel estimator for the Wigner fun
tion was devised in [5℄, and this even if there is noise in themeasurement (see subse
tion 3.6).In this paper, we devise penalized estimators that ful�ll ora
le-type inequalities among the L2-proje
tions onsubmodels, analyze the penalized maximum likelihood estimator and apply these estimators to the 
alibrationof a photo
ounter. Hen
e, we provide automati
 
ut-o�s for the estimators formerly mentioned. We 
an also
ast in the L2 proje
tion framework wavelets estimators used for inverting the Radon transform on 
lassi
alprobability densities, to whom the Wigner fun
tion does not belong. We also have �ner granularity for patternfun
tions, sin
e we threshold them one by one, instead of keeping a whole submatrix. We get an expli
itpolynomial rate of 
onvergen
e for this estimator. Noti
e that all our results are derived for �nite samples(all the previous works 
onsidered only the asymptoti
 regime). We have mainly worked under the idealizedhypothesis where there is no noise, however.The appendix is not logi
ally ne
essary for the arti
le. We have inserted it for ba
kground and as an invitationto this �eld. It �rst features a general introdu
tion to quantum statisti
s with a publi
 of 
lassi
al statisti
ians



TITLE WILL BE SET BY THE PUBLISHER 3in mind. We then des
ribe what quantum homodyne tomography pre
isely is. This latter subse
tion is largelybased on [5℄.Se
tion 2 formalizes the statisti
al problem at hand, with no need of the appendix, ex
ept the equations expli
itlyreferred to therein.Se
tion 3 aims at devising a model sele
tion pro
edure to 
hoose between L2-proje
tion estimators. We �rstgive general theorems (3.2 and 3.4) leading to ora
le-type inequalities for hard-thresholding estimators. We thenapply them to two bases. One is the Fo
k basis and the 
orresponding pattern fun
tions physi
ists have usedfor a while. For it we also prove a polynomial 
onvergen
e rate for any state with �nite energy. The other is awavelet basis for the Wigner fun
tion. We �nish with a short subse
tion des
ribing what 
hanges are entailedby the presen
e of noise. Espe
ially, we do not need to adapt our theorems if the noise is low enough, as longas we 
hange the dual basis.Se
tion 4 similarly applies a 
lassi
al theorem (4.2) to solve the question of whi
h (size of) model is best to usea maximum likelihood estimator on.Se
tion 5 swit
hes to the determination of a kind of measurement apparatus (and not any more on the statethat is sent in) using a known state and this same tomographer that was studied in the previous se
tions. Thelaw of our samples are then very similar and we apply the same type of te
hniques (penalized proje
tion andmaximum likelihood estimators). The fa
t that the POVM (mathemati
al modelling of a measurement) is aproje
tive measurement (see Appendix) enables us to work with L1-operator norm, however.2. The mathemati
al problemWe now des
ribe the mathemati
al problem at hand.We are given n independent identi
ally distributed random variables Yi = (Xi,Φi) with density pρ on [0, π)×R.This data is the result of a measurement on a physi
al system. Now the �state� of a system is des
ribed by amathemati
al obje
t, and there are two favourites for physi
al reasons: one is the density operator ρ, the otheris the Wigner fun
tion Wρ. We des
ribe them below.Therefore we are not a
tually interested in pρ, but rather in Wρ or (maybe preferably) ρ. The probabilitydistribution pρ of our samples 
an be retrieved if we know either ρ or Wρ.In other words we aim at estimating as pre
isely as possible ρ or Wρ from the data {Yi}. By � as pre
isely aspossible�, we mean that with a suitable notion of distan
e, we shall minimize E [d(ρ, ρ̂)]. Our 
hoi
e of distan
ewill be partly di
tated by mathemati
al tra
tability.We now brie�y explain what Wρ and ρ stand for.The Wigner fun
tion Wρ : R2 → R is the inverse Radon transform of pρ. In fa
t we would rather say that pρ isthe Radon transform of Wρ. Expli
itly:
pρ(x, φ) =

∫ ∞

−∞
W (x cosφ+ y sinφ, x sinφ− y cosφ)dy.Figure 1 might be of some help. An important remark is that the Wigner fun
tion is not a probability density,but only a quasi-probability density: a fun
tion with integral 1, but that may be negative at pla
es. Howeverits Radon transform is a true probability density, as it is pρ.Retrieving Wρ from Pρ then amounts to inverting the Radon transform, hen
e the name of tomography: thatis the same mathemati
al problem as with the brain imagery te
hnique 
alled Positron Emission Tomography.
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Figure 1. The value of pρ at (x, φ) is the integral of the Wigner fun
tion over the bold lineAs for ρ, this is a density operator on the Hilbert spa
e L2(R), that is a self-adjoint positive operator with tra
e
1. We denote the set of su
h operators by S(L2(R)). There is a linear transform T that takes ρ to pρ. Wegive it expli
itly using a basis of L2(R) known as the Fo
k basis. This orthonormal basis, whi
h has many ni
ephysi
al properties, is de�ned by:

ψk(x) = Hk(x)e−x2/2 (1)where Hk is the kth Hermite polynomial normalized su
h that ‖ψk‖2 = 1. The matrix entries of ρ in this basisare ρj,k = 〈ψj , ρψk〉. Then T 
an be written:
T : S(L2(R)) −→ L1(R × [0, π])

ρ 7→



pρ : (x, φ) 7→
∞∑

j,k=0

ρj,kψj(x)ψk(x)e−i(j−k)φ



 .Noti
e that as we have de�ned pre
isely the set of possible ρ, this mapping yields the set of possible pρ and Wρ.The relations between ρ, Wρ and pρ are further detailed in subse
tion A.2.Anyhow we may now state our problem as 
onsisting in inverting either the Radon transform or T from empiri
aldata.This is a 
lassi
al problem of non-parametri
 statisti
s, that we want to treat non-asymptoti
ally. We then takeestimators based on a model, that is a subset of the operators on L2(R), or equivalently of the two-dimensionalreal fun
tions. These models are usually ve
tor spa
es, whi
h may not be the domain of the obje
t to beestimated. To 
hoose a 
andidate within a given model, there are di�erent methods, two of whi
h we study,proje
tion estimators and maximum likelihood estimators. On
e we have a 
andidate within ea
h model, wethen use model sele
tion methods to 
hoose (almost) the best.We �rst study proje
tion estimators, for whi
h the most 
onvenient distan
e 
omes from the L2 norm
‖τ‖2 =

√∑
|λi(τ)|2 =

√∑

j,k

|τj,k|2,where the λi are the eigenvalues of τ , and the se
ond equality holds for τ written in any orthonormal basis.Noti
e that there is an isometry (up to a 
onstant) between the spa
e of density operators with L2-operator
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e of Wigner fun
tions with L2-Lebesgue norm, that is:
‖Wρ −Wτ‖2

2 =

∫ ∫
|Wρ(q, p) −Wτ (q, p)|2 dp dq =

1

2π
‖ρ− τ‖2

2.For maximum likelihood estimators, we have to make do with the weaker Hellinger distan
e (see later (23)) on
L1
(
R × [0, π]

), to whi
h pρ belongs. 3. Proje
tion estimatorsIn this se
tion, whi
h owes mu
h to [19℄, we apply penalization pro
edures to proje
tion estimators. The �rstsubse
tion explains that we want to obtain ora
le-type inequalities. In the se
ond we obtain a general inequalitywhere the left-hand side 
orresponds to an ora
le inequality, and where the remainder term in the right-handside depends on the penalty and on the large deviations of empiri
al 
oe�
ients. The two following subse
tionsgive two ways to 
hoose the penalty term large enough for this remainder term to be small enough. In se
tion 3.3this penalty is deterministi
. We design it and prove that it is a �good 
hoi
e� by keeping Hoe�ding's inequalityin mind. In se
tion 3.4, the penalty is random, and designed by taking Bernstein's inequality into a

ount.We next express these theorems in terms of two spe
i�
 bases. For the Fo
k basis, we obtain polynomial worst-
ase 
onvergen
e rates, using the stru
ture of states. For a wavelet basis, we noti
e we obtain a usual estimatorin 
lassi
al tomography. We �nish by saying what 
an be done if there is noise, that is (mainly) 
onvolution ofthe law of the sample by a Gaussian. We multiply the Fourier transform of the dual basis with the inverse ofthe Fourier transform of the Gaussian, and as long as we still have well-de�ned fun
tions, and we 
an re-useour theorems without 
hanges.3.1. Aim of model sele
tionLet's assume we are given a (
ountable) L2-basis (ei)i∈I of a spa
e in whi
h S(L2(R)) is in
luded (typi
ally
T (L2(R)), the tra
e-
lass operators on L2(R)). We may then try and �nd the 
oe�
ients of ρ in this basis.The natural way to do so is to �nd a dual basis (fi)i∈I su
h that 〈T(ei), fj〉 = δi,j for all i and j. Then, if
ρ =

∑
i ρiei we get 〈pρ, fi〉 = ρi for all i. And if the fi are well enough behaved, then 1

n

∑n
k=1 fi(Xk,Φk) = ρ̂itends to ρi by the law of large numbers.Now if we took ∑i ρ̂iei as an estimator of ρ, we would have an in�nite risk as the varian
e would be in�nite.We must therefore restri
t ourselves to models m ∈ M, that is Vect (ei, i ∈ m), where m is a �nite set, and Mis a set of models (we might take M smaller than the set of all �nite sets of N).We may then write the loss as

‖ρ̂m − ρ‖2
=
∑

i6∈m

|ρi|2 +
∑

i∈m

|ρi − ρ̂i|2where the �rst term is a bias (modelling error) and the se
ond term is an estimation error. The risk would havethis expression:
E

[
‖ρ̂m − ρ‖2

]
=
∑

i6∈m

|ρi|2 +
∑

i∈m

E
[
|ρi − ρ̂i|2

]where the expe
tation is taken with respe
t to pρ, sin
e ρ̂i depends on the (Xk,Φk).If we use an arbitrary model m, we probably do not strike a good balan
e between the bias term and thevarian
e term. The whole point of penalisation is to have a data-driven pro
edure to 
hoose the �best� model.



6 TITLE WILL BE SET BY THE PUBLISHERWe are aiming at 
hoosing a model with (almost) the lowest error. We would dream of obtaining:
m̂ = arg inf

m∈M
‖ρ̂m − ρ‖2

.That is of 
ourse too ambitious. Instead, we shall obtain the following kind of bound, 
alled an ora
le inequality:
E

[{
‖ρ̂m̂ − ρ‖2 −

(
C inf

m∈M

(
d2(ρ,m) + pen(m)

))}
∨ 0

]
≤ ǫn (2)where d2(ρ,m) is the bias of the model m, C is some 
onstant, independent of ρ, pen(m) is a penalty asso
iatedto the model m (the bigger the model, the bigger the penalty) and ǫn depends only on n the number ofobservations, and goes to 0 when n is going to in�nity. We shall try to take the penalty of the order of thevarian
e of the model.Noti
e that we have given in (2) an unusual form of ora
le inequality. These inequalities are more often writtenas

E

[
‖ρ̂m̂ − ρ‖2

]
≤

(
C inf

m∈M

(
d2(ρ,m) + E [pen(m)]

))
+ ǫn.Our form implies the latter.The strategy is the following:First, rewrite the proje
tion estimators as minimum 
ontrast estimators, that is minimizers of a fun
tion (
alledthe empiri
al 
ontrast fun
tion, and written γn), whi
h is the same for all models. We also demand that, forany m, this empiri
al 
ontrast fun
tion 
onverges to a 
ontrast fun
tion γ, the minimizer in m of whi
h is theproje
tion of ρ on m.Se
ond, �nd a penalty fun
tion that overestimates with high enough probability (γ − γn)(ρ̂m) for all m simul-taneously. Use of 
on
entration inequalities is pivotal at this point.Next se
tion makes all this more expli
it.3.2. Risk bounds and 
hoi
e of the penalty fun
tionFirst we noti
e that the minimum of

γ(τ) = ‖τ‖2 − 2〈τ, ρ〉
= ‖ρ− τ‖2 − ‖ρ‖2over a model m is attained at the proje
tion of ρ on m. Moreover

γn(τ) = ‖τ‖2 − 2
∑

i

1

n

n∑

k=1

τifi(Xk,Φk)
onverges in probability to γ for any m (and all τ su
h that ‖τ‖ = 1 simultaneously), as there is only a �niteset of i su
h that τi 6= 0 for τ ∈ m.Now the minimum of γn over m is attained by
τ =

∑

i∈m

1

n

n∑

k=1

fi(Xk,Φk)ei.



TITLE WILL BE SET BY THE PUBLISHER 7So we have su

eeded in writing proje
tion estimators as minimum 
ontrast estimators. We then de�ne our�nal estimator by:
ρ̂(n) = ρ̂m̂with

m̂ = arg min
m∈M

γn(ρ̂m) + penn(m)where penn is a suitably 
hosen fun
tion depending on n, m and possibly the data.We then get, for any m, for any τm ∈ m,
γn(ρ̂(n)) + penn(m̂) ≤ γn(ρ̂m) + penn(m) ≤ γn(τm) + penn(m). (3)What's more, for any m, for any τm ∈ m,

γn(τm) = ‖ρ− τm‖2 − ‖ρ‖2 − 2νn(τm) (4)with
νn(τ) = 〈τ, ρ〉 −

∑

i

n∑

k=1

τifi(Xk,Φk)

=
∑

i∈m

τi(ρi − ρ̂i) +
∑

i6∈m

τiρi.Putting together (3) and (4), we get, for all m and τm ∈ m:
∥∥∥ρ̂(n) − ρ

∥∥∥
2

≤ ‖τm − ρ‖2
+ 2νn(ρ̂(n) − τm) + penn(m) − penn(m̂).We then want to take penalties big enough to dominate the �u
tuations νn. Some manipulations will make thisexpression more tra
table. First we bound νn(ρ̂(n) − τm) by ∥∥ρ̂(n) − τm

∥∥χn(m ∪ m̂), with
χn(m) = sup

τ∈m
‖τ‖=1

νn(τ).Now the triangle inequality gives ∥∥ρ̂(n) − τm
∥∥ ≤

∥∥ρ̂(n) − ρ
∥∥+ ‖ρ− τm‖, so that:

∥∥∥ρ̂(n) − ρ
∥∥∥

2

≤ ‖ρ− τm‖2
+ 2χn(m ∪ m̂)

∥∥∥ρ− ρ̂(n)
∥∥∥+ 2χn(m ∪ m̂) ‖ρ− τm‖ − penn(m̂) + penn(m).For all α > 0, the following holds:

2ab ≤ αa2 + α−1b2 (5)Using this twi
e, we get, for all ǫ > 0:
ǫ

2 + ǫ

∥∥∥ρ− ρ̂(n)
∥∥∥

2

≤
(

1 +
2

ǫ

)
‖ρ− τm‖2

+ (1 + ǫ)χ2
n(m ∪ m̂) − penn(m̂) + penn(m).Noti
ing that χn(m ∪ m̂) ≤ χn(m) + χn(m̂) and putting our estimate of the error in the left-hand side:
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ǫ

2 + ǫ

∥∥∥ρ− ρ̂(n)
∥∥∥

2

−
{(

1 +
2

ǫ

)
‖ρ− τm‖2

+ 2 pen(m)

}
≤ (1 + ǫ)(χ2

n(m̂) + χ2
n(m)) − penn(m̂) − penn(m).Now what we want to avoid is that our penalty is less than the �u
tuations, so we separate this event and takeits expe
tation:

E

[{
ǫ

2 + ǫ

∥∥∥ρ− ρ̂(n)
∥∥∥

2

−
((

1 +
2

ǫ

)
‖ρ− τm‖2

+ 2 penn(m)

)}
∨ 0

]

≤ E
[{

(1 + ǫ)(χ2
n(m̂) + χ2

n(m)) − pen(m̂) − pen(m)
}
∨ 0
]

≤ 2E

[
sup
m

{
(1 + ǫ)χ2

n(m) − pen(m)
}
∨ 0

]
.

(6)Thus stated, our problem is to take a penalty large enough to make the right-hand side negligible, that isvanishing like 1/n.We shall use this form of χn(m):
χn(m) = sup

(τi)i∈m
P

τ2

i =1

∑

i∈m

τi(ρi − ρ̂i) =

√∑

i∈m

|ρi − ρ̂i|2so that
χn(m)2 =

∑

i∈m

|ρi − ρ̂i|2 =
∑

i∈m

∣∣∣∣∣ρi −
1

n

n∑

k=1

fi(Xk,Φk)

∣∣∣∣∣

2

. (7)3.3. Deterministi
 penaltyFirst we may try to 
raft a deterministi
 penalty.We plan to use Hoe�ding's inequality, re
alling that ρ̂i is a sum of independent variables:Lemma 3.1. : Hoe�ding's inequality [14℄ Let X1, . . . , Xn be independent random variables, su
h that Xitakes his values in [ai, bi] almost surely for all i ≤ n. Then for any positive x,
P

[
n∑

i=1

(
Xi − E [Xi]

)
≥ x

]
≤ exp

(
− 2x2

∑n
i=1(bi − ai)2

)
.We may also apply this inequality to −Xi so as to get a very probable lower bound on the sum of Xi.This is enough to prove:Theorem 3.2. Let ρ be a density operator. Assume that ea
h fi is bounded, where (fi)i∈I is the dual basis of

(ei)i∈I , as de�ned at the beginning of this se
tion. Let Mi = sup(x,φ)∈R×[0,π] fi(x, φ) − inf(x,φ)∈R×[0,π] fi(x, φ).Let (xi)i∈I be a family of positive real numbers su
h that ∑i∈I exp(−xi) = Σ <∞. Let
penn(m) =

∑

i∈Im

(1 + ǫ)
(
ln(Mi) +

xi

2

)M2
i

n
. (8)



TITLE WILL BE SET BY THE PUBLISHER 9Then the penalized proje
tion estimator satis�es:
E

[
ǫ

2 + ǫ

∥∥∥ρ̂(n) − ρ
∥∥∥

2
]

≤ inf
m∈M

(
1 +

2

ǫ

)
d2(ρ,m) + 2 penn(m) +

(1 + ǫ)Σ

n
. (9)Remark: Here the penalty depends only on the subspa
e spanned by the model m. So it is the same whether

M is small or large. The best we 
an do is then to take M = P(I), that is to 
hoose for every ve
tor ei whetherto keep the estimated 
oordinate ρ̂i or to put it to zero. In other words we get a hard-thresholding estimator:
ρ̂(n) =

∑

i∈I
ρ̂i1|ρ̂i|>αi

eiwith
αi =

√
(1 + ǫ)

(
ln(Mi) +

xi

2

)Mi√
n

(10)Proof. Considering (6), we have only to bound appropriately E
[
supm

(
(1 + ǫ)χ2

n(m) − pen(m)
)
∨ 0
].Now, by (7) and (8), both χ2

n(m) and penm are a sum of terms over m. As the positive part of a sum is smallerthan the sum of the positive parts, we obtain:
E

[
sup
m

{
(1 + ǫ)χ2

n(m) − pen(m)
}
∨ 0

]

≤ E

[
sup
m

{
∑

i∈m

(
(1 + ǫ) (ρ̂i − ρi)

2 − α2
i

}
∨ 0

)]

=
∑

i∈I
E








(1 + ǫ)

(
1

n

n∑

k=1

fi(Xk,Φk) − ρi

)2

− (1 + ǫ)
(
ln(Mi) +

xi

2

)M2
i

n




 ∨ 0



 .Ea
h of the expe
tations is evaluated using the following formula, valid for any positive fun
tion f :
E [f ] =

∫ ∞

0

P [f(x) ≥ y] dy. (11)Remembering (10) we noti
e that the inequality



(1 + ǫ)

(
1

n

n∑

k=1

fi(Xk,Φk) − ρi

)2

− (1 + ǫ)
(
ln(Mi) +

xi

2

)M2
i

n




 ∨ 0 ≥ yis equivalent to
∣∣∣∣∣
1

n

n∑

k=1

fi(Xk,Φk) − ρi

∣∣∣∣∣ ≥

√
α2

i + y

1 + ǫ
.



10 TITLE WILL BE SET BY THE PUBLISHERWe may then 
on
lude, using Hoe�ding's inequality on the se
ond line and the value (10) of αi on the fourthline:
E

[
sup
m

{
(1 + ǫ)χ2

n(m) − pen(m)
}
∨ 0

]
≤

∑

i∈I

∫ ∞

0

P




∣∣∣∣∣
1

n

n∑

k=1

fi(Xk,Φk) − ρi

∣∣∣∣∣ ≥

√
α2

i + y

1 + ǫ



 dy

=
∑

i∈I

∫ ∞

0

2 exp

(
−2n(α2

i + y)

(1 + ǫ)M2
i

)
dy

=
∑

i∈I
2 exp

(
− 2nα2

i

(1 + ǫ)M2
i

)
(1 + ǫ)M2

i

2n

=
1 + ǫ

n

∑

i∈I
exp(−xi)

=
(1 + ǫ)Σ

n
.

�3.4. Random penaltyThe most obvious way to improve on Theorem 3.2 is to use sharper inequalities than Hoe�ding's. Indeedthe range of fi might be mu
h larger than its standard deviation, so that we gain mu
h by using Bernstein'sinequality:Lemma 3.3. : Bernstein's inequality [4℄ Let X1, . . . , Xn be independent, bounded, random variables. Thenwith
M = sup

i
‖Xi‖∞ , v =

n∑

i=1

E
[
X2

i

]
,for any positive x

P

[
n∑

i=1

(Xi − E [Xi]) ≥
√

2vx+
M

3
x

]
≤ exp(−x).With this tool, we may devise a hard-thresholding estimator where the thresholds are data-dependent:Theorem 3.4. Let (yi)i∈I be positive numbers su
h that ∑i∈I e

−yi = Σ <∞. Let then
xi = 2 ln(‖fi‖∞) + yi.Let the penalty be a sum of penalties over the ve
tors we admit in the model. That is, for any δ ∈ (0, 1), forany i ∈ I, de�ne

peni
n =

1 + ǫ

n

(√
2

1 − δ
xi

(
Pn [f2

i ] +
1

n
‖fi‖2

∞ (
1

3
+

1

δ
)xi

)
+

‖fi‖∞
3
√
n
xi

)2 (12)



TITLE WILL BE SET BY THE PUBLISHER 11and the penalty of the model m:
penn(m) =

∑

i∈m

peni
n .Then there is a 
onstant C su
h that:

E

[(
ǫ

2 + ǫ

∥∥∥ρ̂(n) − ρ
∥∥∥

2

−
(

inf
m∈Mn

(
1 +

2

ǫ

)
d2(ρ,m) + 2 penn(m)

))
∨ 0

]
≤ CΣ

nwhere Mn is the set of models m for whi
h i ∈ m→ xi ≤ n.Remark: As with the deterministi
 penalty, we end up with a hard-thresholding estimator. Morally, that is,forgetting all the small δ whose origin is te
hni
al, the threshold is
√

2Pn [f2
i ] ln ‖fi‖2

∞
n

.Proof. On
e again we have to dominate the right-hand side of (6). We �rst subtra
t and add, inside thatexpression, what 
ould be seen as a target for the penalty. Writing
Mi = ‖fi‖∞ , vi = nE

[
f2

i

]
, αi =

√
2vixi +

Mi

3
xi (13)we have

E

[
sup
m

(
(1 + ǫ)χ2

n(m) − pen(m)
)
∨ 0

]

≤ E

[
sup
m

(1 + ǫ)

(
χ2

n(m) −
∑

i∈m

1

n2
α2

i

)
∨ 0

]
+ E

[(
∑

i∈m

1 + ǫ

n2
α2

i − pen(m)

)
∨ 0

]
. (14)Using (7), we bound the �rst term as a sum of expe
tations.

E

[
sup
m

(1 + ǫ)

(
χ2

n(m) −
∑

i∈m

1

n2
α2

i

)
∨ 0

]
≤ (1 + ǫ)

∑

i∈m

E








∣∣∣∣∣ρi −

1

n

n∑

k=1

fi(Xk,Φk)

∣∣∣∣∣

2

− 1

n2
α2

i



 ∨ 0



 .We now bound ea
h of these expe
tations using (11).
E








∣∣∣∣∣ρi −

1

n

n∑

k=1

fi(Xk,Φk)

∣∣∣∣∣

2

− 1

n2
α2

i



 ∨ 0



 =

∫ ∞

0

P

[∣∣∣∣∣ρi −
1

n

n∑

k=1

fi(Xk,Φk)

∣∣∣∣∣ ≥
√
y +

α2
i

n2

]
dy. (15)We 
hange variables in the integral, 
hoosing ξ de�ned by:

√
y +

α2
i

n2
=

√
2viξ + Mi

3 ξ

n2
. (16)



12 TITLE WILL BE SET BY THE PUBLISHERUsing Bernstein's inequality, the integrand in (15) is upper bounded by 2 exp(−ξ). Given the value of αi (13),the range of the integral is now from xi to ∞. Finally, taking the square on both sides of (16), then using (5),we get:
dy = 2

√
2viξ + Mi

3 ξ

n2

(
Mi

3
+

√
2vi

2
√
ξ

)
dξ

=
2

n2

(
vi +

M2
i

9
ξ +

Mi

2

√
2vi

√
x

)
dξ

≤ 2

n2

(
2vi +

11M2
i

18
ξ

)
dξ.Hen
e

E








∣∣∣∣∣ρi −

1

n

n∑

k=1

fi(Xk,Φk)

∣∣∣∣∣

2

− 1

n2
α2

i



 ∨ 0



 ≤ 4

n2

∫ ∞

xi

exp(−ξ)
(

2vi +
11M2

i

18
ξ

)
dξ

=
4

n2

(
2vi +

11M2
i

18
(1 + xi)

)
exp(−xi). (17)Let us now look over the se
ond term of (14). We noti
e, through (12) and (13), that this term is of the form:

1 + ǫ

n2

∑

i∈m

E

[((
ai +

Mixi

3

)2

−
(
bi +

Mixi

3

)2
)

∨ 0

]
≤ 1 + ǫ

n2

∑

i∈m

E
[
2
(
a2

i − b2i
)
∨ 0
]
,with

a2
i − b2i = 2vixi −

2

1 − δ

(
nPn

[
f2

i

]
xi +M2

i

(
1

3
+

1

δ

)
x2

i

)
.Using again (11), we end up with:

E

[(
∑

i∈m

1 + ǫ

n2
α2

i − pen(m)

)
∨ 0

]

≤ 1 + ǫ

n2

∑

i∈m

2

1 − δ
xi

∫ ∞

0

P

[
(1 − δ)vi −

(
nPn

[
f2

i

]
+M2

i

(
1

3
+

1

δ

)
xi

)
≥ y

]
dy. (18)We 
an again make use of Bernstein's inequality:

P

[
vi −

n∑

k=1

f2
i (Xk,Φk) ≥

√
2nE [f4

i ] ξ +

∥∥f2
i

∥∥
∞ ξ

3

]
≤ exp(−ξ).Noti
ing that f2

i is non-negative everywhere, so that E
[
f4

i

]
≤ E

[
f2

i

] ∥∥f2
i

∥∥
∞, and using (5), we get:

P

[
(1 − δ)vi ≥ nPn

[
f2

i

]
+M2

i

(
1

3
+

1

δ

)
ξ

]
≤ exp(−ξ).
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alling (18), we get
∫ ∞

0

P

[
(1 − δ)vi −

(
nPn

[
f2

i

]
+M2

i

(
1

3
+

1

δ

)
xi

)
≥ y

]
dy =

∫ ∞

0

exp

(
−xi −

y

M2
i

(
1
3 + 1

δ

)
)

dy

= exp(−xi)M
2
i

(
1

3
+

1

δ

)
exp

(
− xi

M2
i

(
1
3 + 1

δ

)
)

≤ exp(−yi)

(
1

3
+

1

δ

)
.With that and (17), we are left with:

E

[
sup
m

{
(1 + ǫ)χ2

n(m) − pen(m)
}
∨ 0

]
≤ C

n2

∑

i∈I
e−xi(vi +M2

i (1 + xi)) + xie
−yi .Repla
ing xi with its value, and overestimating vi by nM2

i we obtain (under the 
ondition that 2 lnMi+yi ≤ n):
E

[
sup
m

{
(1 + ǫ)χ2

n(m) − pen(m)
}
∨ 0

]
≤ C

(
Σ

n
+

Σ

n2

)
.

�Remark: The logarithmi
 fa
tor in the penalty (that would not be here if we took only the varian
e) 
omesfrom the multitude of models allowed by a hard-thresholding estimator. By sele
ting fewer models (for examplethe square matri
es obtained by trun
ating the density operator) and using a random penalty, we 
an get rid ofthis term. However, 
rafting the penalty requires mu
h more work and more powerful inequalities (Talagrand's).An interested reader may have a look at the se
tion 3.4 of [16℄.3.5. Appli
ations with two basesWe now give two bases that are reasonable when applying these theorems. As 
an be seen from (2), a goodbasis should approximate well any density operator (so that the bias term gets low fast when m is big), withdual ve
tors having a low varian
e. With the �rst of the two bases, we have this interesting phenomenon thatwe obtain a polynomial 
onvergen
e rate under the mere physi
al hypothesis that the state has �nite energy.3.5.1. Photon basisHere we shall take as our (ei)i∈I a slight variation of the matrix entries of our density operator with respe
t tothe Fo
k basis (1).More pre
isely, we worked in the previous subse
tions with real 
oe�
ients. To apply Theorems 3.4 and 3.2,we then need to parametrize ρ with real 
oe�
ients. The matrix entries are a priori 
omplex. However, usingthe fa
t that ρ is self-adjoint, we may separate the real and imaginary parts.We use a double index for i and de�ne the orthonormal basis, denoting by Ej,k the null matrix ex
ept for a 1in 
ase (j, k):
ej,k =






1√
2
(Ej,k + Ek,j) if j < k

i√
2
(Ek,j − Ej,k) if k < j

Ej,j ifj = k

.



14 TITLE WILL BE SET BY THE PUBLISHERThen, using a tilde to distinguish it from the matrix entries, with ρ̃j,k = 〈ρ, ej,k〉,we have
〈ψj , ρψk〉 =






1√
2
(ρ̃j,k + iρ̃k,j) if j < k

1√
2
(ρ̃k,j − iρ̃j,k) if j > k

ρ̃j,j if j = k.The asso
iated f̃j,k are well-known. They are a slight variation of the usual �pattern fun
tions� (see AppendixA.2, and (37) therein), the behaviour of whi
h may be found in [1℄. Notably, we know that:
N∑

j,k=0

‖fj,k‖2
∞ ≤ CN7/3. (19)As the upper bounds on the supremum of f̃j,k may not be sharp, the best way to apply the above theorems(espe
ially Theorem (3.2)) would probably be to tabulate these maxima for the (j, k) we plan to use.The interest of this basis is that it is a priori adapted to the stru
ture of our problem: if we have a bound onthe energy (let's say it is lower than H + 1

2 ), we get worst-
ase estimates on the 
onvergen
e speed with thedeterministi
 penalty: indeed, the energy of a state ρ may be written 1
2 +

∑
j jρj,j , so that

∑

j≥N

ρ̃j,j ≤ H

N
.Moreover, by positivity of the operator,

ρ̃2
j,k + ρ̃2

k,j ≤ ρ̃j,j ρ̃k,k.If we look at the models N su
h that IN = {(j, k) : j < N, k < N}, we 
an get:
d2(ρ,N) ≤

∞∑

j,k=0

ρ̃2
j,k −

N∑

j,k=0

ρ̃2
j,k

≤ (
∑

j≥0

ρ̃j,j)
2 − (

N∑

j=0

ρ̃j,j)
2

≤ 1 − (1 − H

N
)2

≤ 2H

Nwhere we have used that the density operator has tra
e one.We substitute in (9) and get:
E

[∥∥∥ρ̂(n) − ρ
∥∥∥

2
]

≤ C

(
H

N
+ penn(N) +

1

n

)
.Now, using the bounds on in�nite norms (19), the penalty is less than:

penn(N) = C
N7/3 ln(N)

n
.



TITLE WILL BE SET BY THE PUBLISHER 15Optimizing in N (N = C(Hn)3/10), we get
E

[∥∥∥ρ̂(n) − ρ
∥∥∥

2
]

≤ CH7/10 ln(H)n−3/10 ln(n). (20)This estimate holds true for any state and is non-asymptoti
. It is generally rather pessimisti
, though. Formany 
lassi
al states, su
h as squeezed states or thermal states, ρj,j ≡ A exp(−B/n), the same 
al
ulationyields a rate for the square of the L2-distan
e as n−1 ln(n)β for some β. In su
h a 
ase, the penalized estimatorautomati
ally 
onverges at this latter rate.3.5.2. WaveletsAnother try 
ould be to use fun
tions known for their good approximations properties. To this end we look atthe Wigner fun
tion and write it in a wavelet basis.Re
all that wavelets on R are an orthonormal basis su
h that all fun
tions are s
aled translations of a samefun
tion, the mother wavelet. In multis
ale analysis, we use a 
ountable basis ψj,k : x 7→ 2j/2ψ0,0(2
jx+ k), for

j and k integers. Let Vi = {ψj,k : j ≤ i}. There is a φ, 
alled father wavelet, su
h that the φk(x) = φ(x + k)for k ∈ Z are a basis of the ve
tor spa
e generated by all the wavelets of larger or equal s
ale, that is V0. Wemay 
hoose them with 
ompa
t support, or lo
alized both in frequen
y and position. So they harvest lo
alinformation and 
an fet
h this whatever the regularity of the fun
tion to be approximated, as they exist atseveral s
ales.From a one-dimensional wavelet basis ψj,k : x 7→ 2j/2ψ0,0(2
jx + k), C3 and zero mean, with a father wavelet

φj,k, also C3, we shall make a tensor produ
t basis on L2(R2): let I = (j, k, ǫ) be indi
es, with j integer (s
ale),
k = (kx, ky) ∈ Z

2 (position), and ǫ ∈ 0, 1, 2, 3. Let
ΨI(x, y) =






φj,k(x)φj,k(y) if ǫ = 0
φj,k(x)ψj,k(y) if ǫ = 1
ψj,k(x)φj,k(y) if ǫ = 2
ψj,k(x)ψj,k(y) if ǫ = 3We may then de�ne a multis
ale analysis from the one-dimensional one (written V ,W): V0 = V0 ⊗ V0 and forall j ∈ Z, Vj+1 = Vj ⊕Wj , so that Wj+1 = Vj ⊗Wj ⊕Wj ⊗ Vj ⊕ Vj ⊗Wj .For any j, Vj ∪

⋃
k≥j Wk is then an orthonormal basis of L2(R2). We hereafter 
hoose our models as subspa
esspanned by �nite subsets of the basis ve
tors for well-
hosen j.It 
an be shown that:

γI(x, φ) =
1

4π

∫ ∞

−∞
|u| Ψ̂I(u cosφ, u sinφ)eixuduful�lls this property:

[γI ,Kf ] = 〈ΨI , f〉.Noti
ing that
γI(x, φ) = 2jγ0,0,ǫ(2

jx− kx cosφ− ky sinφ, φ),



16 TITLE WILL BE SET BY THE PUBLISHERwe see that these fun
tions have the same dilation properties as wavelets, and they are �translated� in a waythat depends on φ, through sinusoids. Their normalizations, though, explode with j; this derives from invertingthe Radon transform being an ill-posed problem.We 
an now apply Theorem 3.4. Before doing so, though, we restri
t ourselves to a �nite subdomain of R2,whi
h we denote D, and put the Wigner fun
tion to zero outside this domain, that we should 
hoose big enoughto ensure this does not 
ost too mu
h.Then, M is the set of all models 
hara
terized by
m =

{
(j1, k, 0) : 2j1k ∈ D

}
∪
{
(j, k, ǫ) : (j, k, ǫ) ∈ I′

m ⊂ {(j, k, ǫ) : ǫ = 1; 2; 3, j1 < j < j0, 2
jk ∈ D}

}
.To have good approximating properties, we 
hoose 2j1 ≡ n1/7 and 2j0 ≡ n

(lnn)2 . The proje
tion estimator withina model is then:
f̂ =

∑

I∈m

αIΨIwith
αI =

1

n

n∑

i=1

γI(Xi,Φi).Denoting Bǫ = ‖γ0,0,ǫ‖∞, the translation of Theorem 3.4 gives (noti
e that applying (3.2) would be awkward,as the varian
e of γI is like 2j whereas its maximum is like 22j):Theorem 3.5. Let yI be su
h that ∑I exp(−yI) = Σ ≤ ∞. For example yI = j. Let then:
xI = 2(j + ln(Bǫ)) + yI .We 
hoose an α ∈ (0, 1) and the penalty (and restraining ourselves to the m su
h that I ∈ m→ xI ≤ n):

pen(m) =
1 + ǫ′

n

∑

I∈M
2

(√
2

1 − α
xI

(
Pn [γ2

I ] +
1

n
22jB2

ǫ

(1

3
+

1

α

)
xI

)
+

2jBǫ

3
√
n
xI

)2

.Then there is a 
onstant C su
h that:
E

[{
ǫ

2 + ǫ

∥∥∥ρ− ρ̂(n)
∥∥∥

2

−
(

inf
m∈M

(
1 +

2

ǫ

)
d2(ρ,m) + 2 penn(m)

)}
∨ 0

]
≤ CΣ

n
+ C

1

n
22j1 . (21)Proof. First it's easily 
he
ked that xI = 2 ln(‖γI‖∞)+yI . Se
ond∑I exp(−j) = C

∑
j 2j exp(−j) <∞ impliesthat yI = j does indeed the work, as there are at most C2j wavelets at s
ale j whose support meet D.



TITLE WILL BE SET BY THE PUBLISHER 17The last term is the varian
e of âj1,k,0, 
orresponding to the ve
tors that are in every model.:
1

n
V




∑

2j1k∈D
γj1,k,0



 ≤ 1

n
E




∑

2j1k∈D
γ2

j1,k,0





≤ 1

n

∑

2j1k∈D

∫

R×[0,π]

γ2
j1,k,0(x, φ)dx

dφ

π
pρ(x, φ)

=
1

n

∑

2j1k∈D

∫

R

γ2
j1,k,0(x, 0)

∫ π

0

pρ(x − kx cosφ− ky sinφ, φ)dx
dφ

π

= C
1

n
22j1where we have used that for all x and k, ∫ π

0
pρ(x− kx cosφ− ky sinφ, φ)dφ

π is less than a 
onstant about 1.086.Indeed, the translation of a Wigner fun
tion is still the Wigner fun
tion of a state, so that we may take k = 0.Then
∫ π

0

pρ(x− kx cosφ− ky sinφ, φ)
dφ

π
≤ sup

i,x
|ψi(x)|2and the upper bound on this supremum is due to Cramér (10.18.19 in [11℄). �Remarks: As the varian
e of γI goes like 2j the threshold might be seen as C2j/2

√
j
n . This yields the waveletsestimator studied in [6℄, for a general Radon transform on usual (non-negative) probability densities (i.e. noton Wigner fun
tions).The role of the approximation speed is apparent in (21). Arti
les like [6℄ show that this strategy is asymptoti
ally(quasi)-optimal for approximating a fun
tion in a Besov ball. However, this is no proof of the e�
ien
y in our
ase, as the set of Wigner fun
tions is not a Besov ball. There is still some work in approximation theory neededthere. In parti
ular, we do not know if a statement similar to (20) 
an be proven.Finally, noti
e that we may 
ombine proje
tion estimators: as the 
ontrast fun
tion is the same for any basiswe are working with, keeping the same penalizations, we 
ould �nd an estimator that is almost the best amongthose built with the photon basis and those with the wavelet basis simultaneously (just add a ln(2) to Σ). Inother words, we do not have to 
hoose beforehand whi
h basis we use. Moreover an estimator allowing for thetwo bases would satisfy (20).3.6. Noisy observationsThe situation we have studied was very idealized: we did not take any noise into a

ount. In pra
ti
e, a numberof photons fail to be dete
ted. These losses may be quanti�ed by one single 
oe�
ient η between 0 (no dete
tion)and 1 (ideal 
ase). We suppose it to be known.There are several methods to re
over the state from noisy observations. One 
onsists in 
al
ulating the densitymatrix as if there was no noise, and then apply the Bernoulli transformation with fa
tor η−1. We 
an alsouse modi�ed pattern fun
tions [7℄. Or we 
an approximate the Wigner fun
tion with a kernel estimator thatperforms both the inverse Radon transform and the de
onvolution [5℄. The former two methods fail if theobservations are too noisy (η ≤ 1

2 ), but the latter is asymptoti
ally optimal for all η over wide 
lasses of Wignerfun
tions.
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an be seen as a 
onvolution of the result (X,Φ) with a Gaussian of varian
e depending on η:
pη

ρ(y, φ) =
1√

π(1 − η)

∫ ∞

−∞
pρ(x, φ) exp

(
− η

1 − η

(
x− η−1/2y

)2
)
dxor equivalently in terms of generating fun
tions

∫
pη

ρ(x, φ)eirxdx = e−
1−η
4η

r2

∫
pρ(x, φ)eirxdx.We 
an use the methods des
ribed above and then use the Bernoulli transform. For free, we may also use themodi�ed pattern fun
tions fη

j,k knowing fj,k. Expli
itly we see that the dual basis of the matrix entry ρj,kbe
omes:
fη

j,k(x, φ) =
1

2π

∫
dre

1−η
4η

r2

∫
dyfj,k(y, φ)eiry.The reason why one needs η > 1

2 is for this Fourier transform to be well de�ned.And we 
an again apply Theorems 3.2 and 3.4 with the dual basis f̃η
j,k.Obtaining results with high noise η ≤ 1

2 is harder. We would need to introdu
e a 
ut-o� h within the inverseFourier transform (and therefore a bias). Using the same h as in [5℄ would ensure this bias b(ρ, h) is asymp-toti
ally reasonable. We 
ould then reuse Theorems 3.2 and 3.4 to have an �almost best� approximation of
ρ+ b(ρ, h) within a set of models, for �nite samples. Careful examination would then be required to 
he
k thevarian
e (or the penalties) go to 0 as n and h(n) go to in�nity. Moreover, we would need to translate 
onditionson the Wigner fun
tion into 
onditions on the density operator to see whether we 
an reprodu
e the asymptoti
optimality results of Butu
ea et al. with model sele
tion in the Fo
k basis (or any other basis 
hosen and studieda priori). 4. Maximum likelihood estimatorProje
tion estimators are not devoid of defe
ts. Notably, the varian
e of empiri
al 
oe�
ients might be high,the 
onvergen
e therefore rather slow, and the estimator is not a true density matrix. Espe
ially, the tra
e isprobably not one, though this 
ould be �xed easily enough. We 
an diagonalize the estimated density matrix,repla
e the negative eigenvalues with 0, and divide by the tra
e.Anyhow, there are other types of estimator that automati
ally yield density matri
es. One su
h estimator isthe maximum likelihood estimator, whi
h sele
ts the nearest point of the empiri
al probability measure in agiven model for the Kullba
k-Leibler distan
e (whi
h is not a true distan
e as it is not symmetri
). Re
all thatthe Kullba
k-Leibler distan
e between two probability measures is:

K(p, q) =

∫
ln

(
p(x)

q(x)

)
p(x)dx.In other words, the maximum likelihood estimator is

argmin
τ∈Q

n∑

l=1

− ln pτ (Xl,Φl)where Q is any set of density operators (su
h that the minimum exists). This way, it is automati
ally a truedensity operator. A pra
ti
al drawba
k is that 
al
ulating it is very power-
onsuming.
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∫

ln(p·)dpρ
, we have de�ned a minimum 
ontrast estimator in the sense of se
tion 3.1. Mu
h likefor proje
tion estimators, the Kullba
k distan
e thus estimated might be overly optimisti
, and all the morewhen Q is big. Indeed, if Q is the set of all density operators, then there is no minimizer of the distan
e withthe empiri
al distribution; however when we take only �nite-dimensional models, su
h as
Q(N) =

{
τ ∈ S(L2(R)) : τj,k = 0 for all j > N or k > N

}
, (22)then the minimum is attained by 
ompa
tness. Here the matrix entries τj,k are taken in the Fo
k basis (1).We then have to de�ne a penalty for 
hoosing (almost) the best model. To do so, we make use of a (slightlysimpli�ed but su�
ient for our needs) version of a theorem from [19℄, but we need a few de�nitions beforestating it.First we need a distan
e with whi
h to express our results, and it is not the Kullba
k-Leibler, but the Hellingerdistan
e. The Hellinger distan
e between two probability densities is de�ned in relation with the L2-distan
eof the square roots of these densities:

h2(p, q) =
1

2

∫
(
√
p−√

q)
2
. (23)This distan
e does not depend on the underlying measure. The following relations are well-known:

1

8
‖p− q‖2

1 ≤ h2(p, q) ≤ 1

2
‖p− q‖1

h2(p, q) ≤ 1

2
K(p, q). (24)The penalty to be de�ned shall depend on the size of the model, that we have to estimate. The right tool is themetri
 entropy, and more pre
isely the metri
 entropy with bra
keting of the model.De�nition 4.1. Let G a fun
tion 
lass. Let NB,2(δ,G) be the smallest p su
h that there are 
ouples of fun
tions

[fL
i , f

U
i ] for i from 1 to p that ful�ll ∥∥fL

i − fU
i

∥∥
2
≤ δ for every j, and for any f ∈ G, there is an i ∈ [1, p] su
hthat:

fL
i ≤ f ≤ fU

i .Then HB,2(δ,G) = lnNB,2(δ,G) is 
alled the δ-bra
keting entropy of GRemarks:
• Noti
e that the fU

i and fL
i need not be in G.

• The 2 in HB,2 stands for L2 distan
e.Looking 
losely at de�nition 4.1, we see that the 
on
ept of entropy depends only on those of positivity andnorms. We may then de�ne a similar bra
keting entropy for any spa
e with a norm and a partial order,su
h as the L1 δ-bra
keting entropy of Q(N): we must �nd 
ouples of Hermitian operators [τL
i , τ

U
i ] su
h that∥∥τU

i − τL
i

∥∥
1
≤ δ and su
h that for any τ ∈ Q(N), there is an i su
h that τL

i ≤ τ ≤ τU
i .We are 
hie�y interested in the L2 entropy of square roots of density (denoted by HB,2(δ,P

1

2 )):
P1/2(N) =

{√
pρ : pρ ∈ P(N)

}
.Now the Theorem from [19℄:



20 TITLE WILL BE SET BY THE PUBLISHERTheorem 4.2. Let X1, . . . , Xn be independent, identi
ally distributed variables with unknown density s withrespe
t to some measure µ. Let (Sm)m∈M be an at most 
ountable 
olle
tion of models, where for ea
h m ∈ M,the elements of Sm are assumed to be densities with respe
t to µ. We 
onsider the 
orresponding 
olle
tion ofmaximum likelihood estimators ŝm. Let pen : M −→ R and 
onsider the random variable m̂ su
h that:
Pn [− ln(ŝm̂)] + pen(m̂) = inf

m∈M
Pn [− ln(ŝm)] + pen(m).Let (xm)m∈M a 
olle
tion of numbers su
h that

∑

m∈M
e−xm = Σ ≤ ∞.For ea
h m, we 
onsider a fun
tion φm of R

+∗, nonde
reasing, and su
h that x 7→ φm(x)
x is nonin
reasing, and:

φm(σ) ≥
∫ σ

0

√
HB,2(ǫ, S

1

2

m)dǫ.We then de�ne ea
h σm as the one positive solution of
φm(σ) =

√
nσ2.Then there are absolute 
onstants κ and C su
h that if for all m ∈ M,

pen(m) ≥ κ
(
σ2

m +
xm

n

)
,then

E
[
h2(s, ŝm̂)

]
≤ C

(
K(s, Sm) + pen(m) +

Σ

n

)where, for every m ∈ M, K(s, Sm) = inft∈Sm
K(s, t).We noti
e that what is bounded in �ne is the Hellinger distan
e and not the Kullba
k. Indeed our evaluation ofthe estimation error, whi
h depends upon the size of the model (its bra
keting entropy), dominates the Hellingerdistan
e but maybe not the Kullba
k-Leibler distan
e.In our 
ase, we have parametrized the models m by N , through de�nition (22).To apply Theorem 4.2, we need to �nd suitable φm, and this 
alls for dominating the entropy integral. Wereprodu
e here [1℄.By (24), it is su�
ient to 
ontrol HB,1(δ,P(N)). Moreover, the linear extension of the morphism T sends apositive matrix to a positive fun
tion, and is 
ontra
tive. So any 
overing of Q(N) by δ-bra
kets is sent upona 
overing of P(N) by L1 δ-bra
kets, that is [pL
j , p

U
j ] = [pτL

j
, pτU

j
]. Thus

HB,1(δ,P(N)) ≤ HB1
(δ,Q(N)),so that

HB,2(δ,P
1

2 (N)) ≤ CHB,1(δ
2,Q(N)).Moreover:



TITLE WILL BE SET BY THE PUBLISHER 21Lemma 4.3.
HB,1(δ,Q(N)) ≤ CN2 ln

N

δwhere C is a 
onstant not depending on δ or N, and 
an be put to 1 + ln(5).Proof. Let {ρj : j = 1, . . . , c(δ,N)} a maximal set of density matri
es in Q(N) su
h that for all j 6= k, ‖ρj −
ρk‖1 ≥ δ

2N . De�ne the bra
kets [ρL
j , ρ

U
j ] as

ρL
j = ρj −

δ

2N
1 ρU

j = ρj +
δ

2N
1.Then ‖ρL

j − ρU
j ‖1 = δ. Moreover for any ρ in the ball B1(ρj ,

δ
2N ), as ‖ρ− ρj‖1 ≤ δ

2N 1, we have
ρL

j ≤ ρ ≤ ρU
jand as {ρj} was a maximal set, this set of bra
kets 
over Q(N).So HB,1(δ,Q(N)) ≤ c(δ,N).Noti
e that B1(ρj ,

δ
4N ) are disjoint and in
luded in the shell B1(0, 1 + δ

4N ) −B1(0, 1 − δ
4N ), so that

c(δ,N) ≤
(

4N

δ

)N2
((

1 +
δ

4N

)N2

−
(

1 − δ

4N

)N2
)

≤
(

1 +
4N

δ

)N2

≤
(

5N

δ

)N2

, (25)
on
luding the demonstration.
�From this, we 
an obtain:Corollary 4.4. There is a 
onstant C su
h that:

HB,2(δ,P
1

2 (N)) ≤ CN2 ln
N

δ2
.Writing

φN (σ) =

∫ σ

0

√
HB,2(ǫ,P

1

2 (N))dǫand σN (n) the only σ su
h that
φN (σ) =

√
nσ2we get

σN (n) ≤
√
C

n
N

(
1 +

√
0 ∨ ln

n

N

)
. (26)
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φN (σ) ≤ CN

∫ σ

0

√

ln

(
N

ǫ2

)
dǫ

= CN
3

2

∫ ∞
q

ln N

σ2

xe−
x2

2 dx

= CN
3

2

(∫ ∞
q

ln N

σ2

e−
x2

2 dx −
[
xe−

x2

2

]∞
q

ln N

σ2

)

≤ CNσ

(
1 +

√
ln
N

σ2

)where we have made use of, in ea
h line in turn,
• Corollary 4.4
• the 
hange of variables x =

√
ln(Nǫ−2)2, with dǫ

dx = −
√
Nxe−

x2

2

• integration by parts, with x seen as a primitive and xe− x2

2 as a derivative
• the upper bound Ce− x2

2 of ∫∞
x e−x2/2dx for x positive when evaluating the �rst term.We are looking for an upper bound on σN , solution of the equation
√
nσ2

N = CNσ

(
1 +

√

ln
N

σ2
N

)
.We lower bound the se
ond term by 0, and get

σN ≥ C
N√
n
≡ σm.Hen
e the upper bound

σN = CNn− 1

2

(
1 +

√

ln
N

σ2
N

)

≤ CNn− 1

2

(
1 +

√

ln
N

σ2
m

)

= C
N√
n

(
1 +

√
ln

n

C2N

)
.We may absorb the C2 in the �rst multipli
ative 
onstant to �nd (26). Of 
ourse we take only the positive partof the logarithm. This will always be the 
ase hereafter.Applying Theorem 4.2 we get:
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olle
tion of maximum likelihood estimators (ρ̂N )N∈N, that is for any integer N,
Pn

[
− ln(pρ̂N )

]
= inf

ρ∈Q(N)
Pn

[
− ln(pρ̂)

]Let pen : N 7→ R+ and 
onsider a random variable N̂ su
h that
Pn

[
− ln(pρ̂

N̂
)
]
+ pen(N̂) = inf

N∈N

(Pn [− ln(pρ̂N
)] + pen(N))Let (xN )N∈N a family of positive numbers su
h that

∑

N∈N

e−xN = Σ < ∞Then there are absolute 
onstants κ and C su
h that if
pen(N) ≥ κ(

N2

n
(1 + (0 ∨ ln

n

N
)) +

xN

n
)then

E[h2(pρ, pρ̂
N̂

)] ≤ C

(
inf

N∈N

(E[K(ρ,Q(N))] + pen(N)) +
Σ

n

)with K(ρ,Q(N)) = infτ∈Q(N)K(pρ, pτ ).Remarks:
• When designing the penalty, what stands out in this theorem is the general form of the penalty. Nowthe 
onstant κ that 
an be expli
itly 
omputed would be very pessimisti
. The best thing to do istherefore to keep the general formula for the penalty and 
alibrate κ using 
ross-validation, the slopeheuristi
 [19℄ or any other appropriate method.
• If we wanted an expli
it 
onvergen
e rate for a given state, as for the photon basis in se
tion 3.5.1, wewould �rst need to know how the Kullba
k-Leibler distan
eK(ρ,Q(N)) is de
reasing with N . One thingthat is obvious, however, is that if we add noise we 
onvolve with the same fun
tion pρ and pσ for all
σ in Q(N), so the Kullba
k-Leibler distan
e is de
reasing with the noise, so 
onvergen
e is faster whenthere is noise... The reason for this is that we are looking at 
onvergen
e in Hellinger distan
e, that isa distan
e between the law of the result of the measurement pρ and pσ. This does not tell us dire
tlyanything about what we are really interested in, that is the distan
e between ρ and σ (as operators).Indeed we may bound the L2 or L1 norm between elements of Q(N) by the Hellinger distan
e, timessomething depending on the sum of the L2 or L∞ norms of the fη

j,k. And these norms are going (veryfast) to in�nity when there is noise, so that low Hellinger distan
e gives no indi
ation on the operatornorms. 5. Quantum 
alibration of a photo
ounterThis se
tion features a s
heme to 
alibrate an apparatus M measuring the number of photons in a beam withthe help of a photo
ounter.The physi
al motivation is given in Appendix A.3.The �rst subse
tion states the mathemati
al problem. In the two others, proje
tion estimators and maximumlikelihood estimators are respe
tively studied.
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al problemThe pra
ti
al problem of 
alibration of a photo
ounter turns out to be mathemati
ally speaking an entirely
lassi
al missing data problem. However, to the best of our knowledge, it has never been studied. We nowdes
ribe this missing data problem.We are given samples (I,X) in N × R from a probability density of the form
p(i, x) =

∞∑

k=0

b2kP
k
i ψk(x)2. (27)In this expression, the real numbers b2k satisfy∑m b2k = 1. The ψk are the Fo
k basis fun
tions given in Equation(1). For any k, the P k

i are a probability measure, that is they are non-negative and ∑∞
i=0 P

k
i = 1.We know the b2k, and we want to retrieve the P k

i , whi
h we do not know. We write P = (P k
i )i,k.To make 
learer that this is a missing data problem, we give the following way to obtain this experiment. Firstwe 
hoose K ∈ N with probability given by b2k. We forget K, whi
h is the missing data. Our data 
onsists in

(I,X), with i having law given by P k
i and x with law ψk(x).Noti
e that the experimentalist has some 
ontrol on the b2k, but usual te
hniques will yield b2k proportional to

ξk. This means that the low k are probed faster.We propose below two types of estimators P̂ for P . To get results on their e�
ien
y, we must �rst �ndmeaningful distan
e d(P, P̂ ). Sin
e∑i P
k
i = 1 for all k ∈ N, distan
es like d2

2(P,Q) =
∑

i,k(P k
i −Qk

i )2 are boundto yield in�nite errors on our estimators. We then must weight them, using (ak)k∈N of our 
hoi
e. We shall use,depending on the estimator, either d2
2(P,Q) =

∑
i,k a

2
k(P k

i −Qk
i )2 with∑ a2

k = 1, or d1(P,Q) =
∑

i,k ak|P k
i −Qk

i |,with ∑k ak = 1. Then these distan
es are bounded by 2 on the set of all P su
h that {P k
i }i∈N is a probabilitymeasure for every k.Varying the 
hoi
e of ak 
orresponds to putting the emphasis on di�erent k, that is de
iding whi
h P k

i wedemand to know with the more pre
ision. If we take the ak de
reasing, it means physi
ally that we are moreinterested in the behaviour of our photo
ounter for a low number of photons. This is usually the 
ase for aphysi
ist. A possible 
hoi
e is to take ak or a2
k equal to b2k.In the next subse
tion, we use proje
tion estimators, and in the following, maximum likelihood estimators.5.2. Using proje
tion estimatorsAs in the tomography problem, the parameter spa
e is 
ontained in an in�nite-dimensional ve
tor spa
e, anda natural type of estimators are proje
tions of the empiri
al law on �nite-dimensional subspa
es. The problemwe are left with is then again �nding the best subspa
e.Con
retely, we 
onsider the distan
e d2

2(P,Q) =
∑

i,k a
2
k(P k

i − Qk
i )2 and write Ek

i = akP
k
i . Similarly we shallwrite Êk

i = akP̂
k
i for our estimator. Then

d2
2(P, P̂ ) =

∑

i,k

(Ek
i − Êk

i )2,and the law of our samples 
an be rewritten as
p(i, x) =

∑

k

Ek
i

b2k
ak
ψk(x)2. (28)
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onsider {(b2k/ak)ψk1i=l}k,i as a basis of our fun
tions on N × R. We want to use the general
onstru
tions of se
tion 3. We �rst need a dual basis {gi,k}. Now, the dual basis of {ψ2
k} as fun
tions on R iswell-known. Those are the �pattern fun
tions� fk,k introdu
ed in [8℄ (see (37)). From this, we dedu
e:

gi,k(l, x) =
ak

b2k
fk,k(x)1i=l.With these dual fun
tions, we 
an de�ne the minimum 
ontrast fun
tion:

γn(Q) = d2
2(Q, 0) − 2

(
n∑

α=1

gi,k(Lα, Xα)

ak

)


∑

i,k

a2
kQ

k
i



 ,where the (Lα, Xα) are our data, that is n independent samples with law p.Our models m ∈ M 
onsist in the subsets of N2. If (i, k) 6∈ m, then P̂ k
i = 0. In a model m, the estimator P̂ (m)given by minimizing the 
ontrast fun
tion is then

P̂ k
i =

1

n

n∑

α=1

gi,k(Lα, Xα)

ak
for (i, k) ∈ m.The penalized estimator is as always the proje
tion estimator of the model m̂ su
h that:

m̂ = arg min
m∈M

γn(P̂ (m)) + penn(m).We also use the usual notation for the distan
e to a model:
d2(P,m) = inf

Q∈m
d2(P,Q).We then obtain from the general theorems of se
tion 3:Theorem 5.1. Let P be a photo
ounter and (ak) and (bk) with ∑k a

2
k =

∑
k b

2
k = 1. Let (xi,k)(i,k)∈N2 su
hthat ∑i,k e

−xi,k = Σ <∞. We de�ne a penalty as
penn(m) =

∑

(i,k)∈m

(1 + ǫ)
(
ln(Mi,k) +

xi,k

2

)M2
i,k

nwith
Mi,k =

ak

b2k
(sup

x
fk,k(x) − inf

x
fk,k(x)).Then the penalized estimator ful�lls

E

[
ǫ

2 + ǫ
d2
2(P, P̂ )

]
≤ inf

m∈M

(
1 +

2

ǫ

)
d2
2(P,m) + 2 penn(m) +

(1 + ǫ)Σ

n
.Theorem 5.2. Let P be a photo
ounter and (ak) and (bk) with ∑k a

2
k =

∑
k b

2
k = 1. Let (yi,k)(i,k)∈N2 su
hthat ∑i,m e−yi,m = Σ <∞. Let then

xi,k = 2 ln

(
ak

b2k
‖fk,k‖∞

)
+ yi,k.
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penn(m) =

∑

(i,k)∈m

pen(i,k)
n

pen(i,k)
n = 2

1 + ǫ

n

(√
2

1 − δ
xi,k

(
Pn[g2

i,k] +
1

n

a2
k

b4k
‖fk,k‖2

∞

(
1

3
+

1

δ

)
xi,k

)
+
ak ‖fk,k‖∞

3b2k
√
n

xi,k

)2

,there is a 
onstant C su
h that:
E

[(
ǫ

2 + ǫ
d2
2(P, P̂ ) −

((
1 +

2

ǫ

)
inf

m∈Mn

d2
2(P,m) + 2 penn(m)

))
∨ 0

]
≤ CΣ

nwhere Mn is the set of models m for whi
h (i, k) ∈ m implies xi,k < n.Remarks:
• As with the estimation of states with tomography in se
tion 3, we 
hoose with high e�
ien
y the bestsubspa
e. It should be noti
ed that 
onvergen
e is fast if the photo
ounter is good, and 
ould be slowerif it is bad. In the latter 
ase, we know it is bad, though. Indeed, the dependen
e of the 
onvergen
erate on the photo
ounter P lies in the approximation properties of the models � subspa
es � m, that ison how fast d2

2(P,m) de
rease when m gets bigger. Now for an ideal photo
ounter, we need only the
(i, i) to be in m. The penalty would be as low as possible when negle
ting what happens to beams withmore than a given number k of photons. For a worse photo
ounter, to have a good approximation ofhow a k-photons beam is read, we might need many i, and the penalty would in
lude all the peni,k.

• The estimator depends only weakly on (ak) (unlike the distan
e), whi
h is good news as it is somewhatarbitrary. Indeed, the empiri
al P̂ k
i does not depend of this sequen
e at all, nor do the main terms in thethreshold on P̂ k

i of both theorems. For Theorem 5.1, this main term is a−1
k

√
(1 + ǫ) ln(Bi,k)Bi,k/

√
n.Now Bi,k depends linearly on ak, so the only ak left in this expression is in the logarithm whi
h 
anbe developed as ln(Bi,k/ak) + ln(ak). In this way, we see that we only get another term in the penalty.For Theorem 5.2, the threshold is essentially a−1

k

√
8(1 + ǫ)Pn

[
g2

i,k

]
ln(‖gi,k‖∞)/((1 − δ)n); and as gi,kis proportional to ak, the situation is the same.

• The pro
ess by whi
h we get our data in
ludes a tomographer and the laws p(i, x) were given in theideal 
ase when there is no noise. If there is noise, as brie�y sket
hed in se
tion 3.6, these laws aredi�erent. However we may 
hara
terize the noise with a single 0 < η < 1. We then have for free thesame theorems for η > 1
2 : we only need to repla
e fk,k with fη

k,k.5.3. Maximum likelihood pro
edureIn this 
ase, our results are easier expressed with the distan
e
d1(P, P̂ ) =

∑

i,k

ak

∣∣∣Pm
i − P̂ k

i

∣∣∣

=
∑

i,k

∣∣∣Ek
i − Êk

i

∣∣∣with Ek
i = akP

k
i and ∑k ak = 1. We denote wi =

∑
k E

k
i . Noti
e that ∑iwi = 1.Re
all that our data 
onsists in n independent samples (Lα, Xα) with law p given by Eq. (27).
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ulty with applying here Theorem 4.2 lies in that the Kullba
k distan
e to the models is usuallyin�nite (if we have Êk
i = 0 for all k for some i, then p̂(i,R) = 0 and this is generally not the 
ase for p(i,R)).The easiest way around is to keep independen
e and restri
t attention to some set of i.Expli
itly, we take an ordering on the possible results i of the photo
ounter (typi
ally, if we expe
t that oneresult 
orresponds roughly to a given number of photons, we 
an order them in in
reasing order. The idea isthat the results that interest us most should 
ome �rst). We then 
hoose, still beforehand, Imax ∈ N, and werestri
t our attention to the �rst i ∈ [0, Imax]. We just throw away the part of the data where the photo
ountergave a result more than Imax. We are left with data size nImax

, with law pImax
on [0, Imax] × R:

pImax
=

p|[0,Imax]×R∫
[0,Imax]×R

p
.This law is the probability measure asso
iated to the apparatus P̃ for whi
h P̃ k

i = 1
P

l≤Imax
wl
P k

i 1i≤Imax
.The models mI,K we work with are indexed by K ∈ N and I ≤ Imax. They are given by the 
onstraints:

Êk
i = 0 if i > Imax

Êk
i = 0 if i > Imax and k ≤ K

∑

i≤I

Êk
i = ak for k ≤ K

Êk
i =

ak

Imax + 1
for k > K and i ≤ Imax. (29)Any su
h element gives a probability measure on ([0, Imax]× R). Similarly to equation (28), the 
orrespondingprobability law reads p̂(l, x) =

∑
i,k b

2
ka

−1
k Êk

i ψk(x)21i=l. The fourth 
ondition (29) does not in
rease the
omplexity of the model and ensures that the Kullba
k distan
e remains �nite.We 
an now use an empiri
al maximum likelihood pro
edure to sele
t within ea
h model an estimator. Itminimizes on ea
h mI,K the 
ontrast fun
tion
γn(Q) =

n∑

α=1

− ln q(Lα, Xα).where Q is an element of the model mI,K and q the asso
iated probability law.We then use Theorem 4.2 to sele
t the model of whi
h we keep the estimator, through a penalization pro
edure.We obtain the following theorem.Theorem 5.3. Consider the 
olle
tion of maximum likelihood estimators (P̂I,K)I≤Imax,K∈N, de�ned as mini-mizers of
γn(P̂I,K) = inf

P∈mI,K

γn(P )Let pen : [0, Imax] × N → R be a penalty fun
tion and de�ne (Î , K̂) by
γn(P̂(Î,K̂)) + pen(Î , K̂) = inf

I≤Imax,K∈N

γn(P̂I,K) + pen(I,K).



28 TITLE WILL BE SET BY THE PUBLISHERLet (xI,K) be a family of numbers su
h that
∑

I≤Imax,K∈N

e−xI,K = Σ < ∞.Then there are absolute 
onstants κ and C su
h that if
pen(I,K) ≥ κ

(
(I + 1)(K + 1)

ln(nImax
)

nImax

+
xI,K

nImax

)
,then

E

[
d1(P, P̂(Î ,K̂))

]
≤

∑

i>Imax

wi +
∑

k∈N

(
2ak ∧

(
C
ak

b2k
‖fk,k‖∞

√

inf
I≤Imax,K∈N

K(pImax
,mI,K) + pen(I,K) +

Σ

nImax

))
,where K(pImax

,mI,K) = infQ∈mI,K
K(pImax

, q), intended as the Kullba
k distan
e on [0, Imax] × R.Remarks:
• As with proje
tion estimators, we 
an expe
t fairly qui
k approximation if the photo
ounter is good.Indeed, for K = Imax and the ideal photo
ounter, the distan
e K(pImax

,mImax,K) = 0.
• Like proje
tion estimators, the maximum likelihood strategy 
an also be used with noise. If η > 1

2 , weget the same theorem 
hanging fk,k in fη
k,k. Just noti
e that the in�nite norm ‖fk,k‖∞ is exploding.

• As in se
tion 4, an expli
it 
omputation of κ would be over-pessimisti
 and it is best to estimate it witha data-driven pro
edure.Proof. First we rewrite and bound the distan
e d1 in a way that suits our purpose. We separate the entries
orresponding to measurement results bigger than Imax, and we re
all at the third line that ∑i∈N
Ek

i = ak.Then
d1(P, P̂ ) =

∑

i,k

∣∣∣Ek
i − Êk

i

∣∣∣

=
∑

i>Imax

∑

k

Ek
i +

∑

k

∑

i≤Imax

∣∣∣Êk
i − Ek

i

∣∣∣

≤
∑

i>Imax

∑

k

Ek
i +

∑

k



2ak ∧




∑

i≤Imax

∣∣∣∣∣Ê
k
i − 1∑

i≤Imax
wi
Ek

i

∣∣∣∣∣+
(

1∑
i≤Imax

wi
− 1

)
Ek

i









=
∑

i>Imax

wi +
∑

i≤Imax

∑
i>Imax

wi∑
i≤Imax

wi

∑

k

Ek
i +

∑

k



2ak ∧
∑

i≤Imax

∣∣∣∣∣Ê
k
i − 1∑

i≤Imax
wi
Ek

i

∣∣∣∣∣





= 2
∑

i>Imax

wi +
∑

k



2ak ∧
∑

i≤Imax

∣∣∣∣∣Ê
k
i − 1∑

i≤Imax
wi
Ek

i

∣∣∣∣∣



 .



TITLE WILL BE SET BY THE PUBLISHER 29Let us now work a little on the last term:
1∑

i≤Imax
wi
Ek

i =

∫
ak

b2k
fk,k(x)1i=ldpImax

(l, x),

Êk
i =

∫
ak

b2k
fk,k(x)1i=ldp̂(l, x).So that

∣∣∣∣∣
1∑

i≤Imax
wi
Ek

i − Êk
i

∣∣∣∣∣ =

∣∣∣∣
∫
fk,k(x)1i=ld(pImax

− p̂)(l, x)

∣∣∣∣

≤ ak

b2k
‖fk,k‖∞

∫
1i=ld|pImax

− p̂|(l, x).Summing over i, we get:
∑

i≤Imax

∣∣∣∣∣
1∑

i∈Imax
wi
Ek

i − Êk
i

∣∣∣∣∣ ≤ ak

b2k
‖fk,k‖∞

∫
d|pImax

− p̂|(l, x).We may then bound the distan
e between the POVM we 
alibrate and our estimator by
d1(P, P̂ ) = 2

∑

i>Imax

wi +
∑

k∈N

(
2ak ∧

(
ak

b2k
‖fk,k‖∞

∫
d|pImax

− p̂|(l, x)
))

.Finishing the proof of our theorem amounts to 
ontrolling ∫ d|pImax
− p̂|(l, x). We �rst apply Theorem 4.2(assuming that our penalty is big enough, whi
h we 
he
k below). We get:

E

[
h2(pImax

, p̂(Î,K̂))
]

≤ C

(
inf

I≤Imax,K∈N

K(pImax
,mI,K) + pen(I,K) +

Σ

nImax

)
.We then use the bound (24) of the square of the L1-distan
e in the Hellinger distan
e, and �nish with Jensen,using the 
on
avity of both the fun
tion x 7→ (C ∧ x) and the square root.

E

[
d1(P, P̂(Î ,K̂))

]
≤ E

[
∑

i>Imax

wi +
∑

k∈N

(
2ak ∧

(
C
ak

b2k
‖fk,k‖∞

∫
d|pImax

− p̂(Î,K̂)|(l, x)
))]

≤
∑

i>Imax

wi +
∑

k∈N

E

[(
2ak ∧

(
C
ak

b2k
‖fk,k‖∞

√
h2
(
pImax

− p̂Î,K̂

)))]

≤
∑

i>Imax

wi +
∑

k∈N

(
2ak ∧

(
C
ak

b2k
‖fk,k‖∞

√
E

[
h2
(
pImax

− p̂Î,K̂

)]))

≤
∑

i>Imax

wi +
∑

k∈N

(
2ak ∧

(
C
ak

b2k
‖fk,k‖∞

√

inf
I≤Imax,K∈N

K(pImax
,mI,K) + pen(I,K) +

Σ

nImax

))
.



30 TITLE WILL BE SET BY THE PUBLISHERThe only thing we still have to 
he
k is our penalty. We must dominate HB,2(δ,P1/2(I,M)) where
P1/2(I,K) = {√q,Q ∈ mI,K} .With the same reasoning as in se
tion 4, it is su�
ient to dominate HB,1(δ

2,mI,K). We then mimi
 lemma 4.3.All the elements of mI,K are on the L1-sphere of radius∑k≤K ak of a ve
tor spa
e of dimension (K+1)(I+1).We 
an then asso
iate a maximal 
olle
tion of bra
kets to a maximal 
olle
tion (Pj) of P ∈ mI,K separated by
δ2/(2(K + 1)(I + 1)). The balls B1(Pj ,

δ2

(K+1)(I+1) ) are disjoint and in the shell B1(0,
∑

k≤K ak + δ2

(K+1)(I+1))−
B1(0,

∑
k≤K ak − δ2

(K+1)(I+1) ). And as with equation (25), we obtain
HB,1(δ

2,mI,K) ≤ C(K + 1)(I + 1) ln

(
(K + 1)(I + 1)

δ2

)Imitating the 
al
ulation in the proof of 
orollary 4.4, we �nd that the solution σI,K of the equation
√
nImax

σ2
I,K =

∫ σI,K

0

√
HB,2(δ,P1/2(I,K))admits this upper bound:

σI,K ≤ C

√
(K + 1)(I + 1)

nImax

(1 +
√

lnnImax
)We may absorb the latter 1 in the 
onstant, as long as nImax

≥ 2...This ends the proof.
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kground in quantum me
hani
sSubse
tion A.1 gives parallel developments of 
lassi
al statisti
s and quantum statisti
s, so that any quantumnotion is linked with a 
lassi
al equivalent.Subse
tion A.2 des
ribes both the experimental setup of quantum homodyne tomography and some basi
mathemati
s playing a role in it. More pre
isely, it highlights several di�erent representations of the state tobe re
overed (our unknown) and the links between them.Subse
tion A.3 is ba
kground for se
tion 5. Notably, it explains where the formulas su
h as (28) 
ome from.
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s: 
lassi
al and quantumWe have here three di�erent parts. The aim is to highlight the equivalen
es in 
lassi
al and quantum formalism.The �rst part lies then upon the 
lassi
al world, the se
ond part re
ast this 
onstru
tion as a spe
ial 
ase ofwhat will be our quantum formalism, and the third part des
ribes these quantum statisti
s. Bold numbersrefer to the same number in the other se
tions. They might be repeated inside a se
tion if the same obje
t isintrodu
ed under di�erent forms.In this short introdu
tion to the subje
t, we shall restri
t ourselves more or less to des
ribing what physi
almeasurements 
an be done and how they 
an be en
oded mathemati
ally. In other words, we 
hara
terize whatinformation 
an be retrieved from a system.A.1.1. Classi
alIn the 
lassi
al setting of statisti
s, we are working with probability measures p { 1 } on a probability spa
e
(X ,A) { 2 }. For 
omparison, we re
all that probability measures are normalized { 3 } real { 4 } non-negative{ 5 } measures. Similarly measures are elements of M(X ,A) { 6 }, the dual of L∞(X ,A) { 7 }.Noti
e that the probability measures form a 
onvex set, the extremal points of whi
h are the Dira
 measures{ 8 } on x for x ∈ (X ,A). They may then be des
ribed by x { 9 }. If we want to draw on the analogy withphysi
s (X ,A) may be viewed as a phase spa
e, and the x would be the pure states. A general probabilitymeasure would des
ribe a mixed state. These are systems that have a probability to be in this or that purestate. Any mixed state (probability measure) 
an be de
omposed in a unique way over pure states (Dira
).A statisti
al model { 10 } 
onsists in a set of probability measures pθ on a probability spa
e (X ,A) indexed bya parameter θ, for θ ∈ Θ { 11 } the parameter spa
e. A statisti
al problem 
onsists in determining as pre
iselyas possible, with a meaning depending on the instan
e, a fun
tion of θ.Now we must gain a

ess at information on these θ in some way. What we have a

ess at are random variables.The aforementioned spa
e L∞(X ,A) is the spa
e of real bounded random variables f { 12 }. By analogy withthe quantum 
ase, we 
all these f observables. They 
orrespond to the set of physi
al measurements that 
anbe 
arried out on the system, to what 
an be �observed�.�Measuring� an observable f yields a result f(x) { 13 }, with law:

Pp [f ∈ B] =

∫

X
1f(x)∈Bdp(x) for B ∈ B { 14 } (30)where B is the Borelian σ-algebra of R. Noti
e that this result is not random for a pure state.Noti
e also that the way we 
ould see the probability measures p as elements of the dual of L∞(X ,A) was bywriting p(f) =

∫
X f(x)dp(x) { 15 }.The most general type of statisti
 or estimator we 
an extra
t from data, in
luding random strategies, isobtained by asso
iating to ea
h x a probability measure on an auxiliary spa
e (Xa,A, a) { 16 } and draw a �nalresult a

ording to this probability measure. This is equivalent (at the pri
e of 
hanging the auxiliary spa
e) tomeasuring a fun
tion f { 17 } on a spa
e (X ⊗Xa,A⊗Aa) { 18 } a

ording to a probability measure pθ ⊗ s{ 19 } with s independent of θ.If we write (30) in this 
ase, we get

Pθ [f ∈ B] =

∫

X

∫

Xa

1f(x,xa)∈Bdpθ(x)ds(xa) for B ∈ B.



32 TITLE WILL BE SET BY THE PUBLISHERIf we integrate out Xa, this yields
Pθ [f ∈ B] =

∫

X
fB(x)dpθ(x) for B ∈ B { 20 }where

• fR = 1 { 21 }
• 0 ≤ fB ≤ 1 { 22 }
• For 
ountable disjoint Bi, ∑i fBi

= fS

i
Bi

{ 23 }.As a remark, the result f(x) is essentially a label. We 
ould write the same formula for fun
tions with valuesin other measure spa
es (Y,B) than R. Just let B be the σ-algebra on this spa
e. In this way, we retrieve inparti
ular estimators in Rd.Another very important remark is that if we have a

ess to two statisti
s f and g, we have a

ess to both{ 24 }. Indeed suppose that f was taking its values in (Y,B) and g in (Z, C). Then take a new statisti
 withvalues in the produ
t spa
e (Y ⊗ Z,B ⊗ C), 
hara
terized by hB⊗C = fB ∗ gC as real fun
tions on (X ,A). Wesee that the three 
onditions are satis�ed, and that the marginals of h are f and g.A.1.2. From 
lassi
al to quantumThe above des
ription was already somewhat non-
onventional, with the parallel with quantum formalism inmind. In this subse
tion, we take one further step, by setting 
lassi
al probability as a spe
ial 
ase of what willbe our quantum probability theory.To have something easy to understand, we start from a �nite probability spa
e (X ,A) = {1, . . . , d} { 2 }. Weasso
iate to it the Hilbert spa
e of 
omplex valued fun
tions on this spa
e, that is H = Cd { 2 }. We are hereendowed with a distinguished orthonormal basis {|ei〉}1≤i≤d with |ei〉 the fun
tion whose value is one on i andzero elsewhere.Noti
e by the way the notation |ψ〉: this is a physi
ist's notation for ve
tors, elements of H. They 
all this a�ket�. The asso
iated linear form, that is, the adjoint of the ve
tor, is 
alled a �bra� and denoted 〈ψ|. Thus
〈φ|ψ〉 is the s
alar produ
t of |φ〉 and |ψ〉 (a �bra
ket�).Now to the probability measure p = (p1, . . . , pd) { 1 } on {1, . . . , d}, we asso
iate the matrix ρ { 1 } diagonalin our spe
ial orthonormal basis { 6 }, with diagonal entries (p1, . . . , pd). As this is a diagonal matrix in anorthonormal basis, with non-negative elements, this is a self-adjoint { 4 } non-negative { 5 } matrix. Moreover,as ∑i pi = 1 { 3 }, it has tra
e 1 { 3 }.We see that the extremal points of our set are of matri
es are the orthogonal proje
tors on the lines spanned byour spe
ial eigenve
tors, that is |ei〉〈ei| { 8 }. They 
orrespond to the Dira
 measures on i. We may representany of these pure states by the eigenve
tor |ei〉 { 9 }. We may also rewrite ρ =

∑
i pi|ei〉〈ei|.A statisti
al model { 10 } 
onsists in a set of non-negative matri
es ρθ with tra
e 1, on a Hilbert spa
e H,diagonal in the {|ei〉}i basis, indexed by a parameter θ, for θ ∈ Θ { 11 } the parameter spa
e. A statisti
alproblem 
onsists in determining as pre
isely as possible, with a meaning depending on the instan
e, a fun
tionof θ.As we have done for probability measures, we identify f ∈ L∞({1, . . . , d}) { 12,7 } with the diagonal matrix

O ∈ M(Cd) { 12,7 } whose diagonal elements are the Oi,i = f(i). This is still the dual of the set of matri
esdiagonal on our spe
ial basis. We view the a
tion of ρ by taking the tra
e of the produ
t with ρ. That is
p(f) = tr (ρO) { 15 }. One 
an see that we have only rewritten the 
lassi
al formula for the expe
tation.



TITLE WILL BE SET BY THE PUBLISHER 33Equivalently, measuring an observable O yields as a result an eigenvalue of O { 13 }. The law of the result isgiven by:
Pρ [O ∈ B] = tr (ρPO,B) for B ∈ B { 14 }where PO,B is the proje
tion upon the spa
e spanned by the eigenspa
es of O 
orresponding to those eigenvalues

λ of O su
h that λ ∈ B. In other words, in our 
ase, O =
∑

i f(i)|ei〉〈ei|. Then PO,B =
∑

i|f(i)∈B |ei〉〈ei|. This
PO,B is playing the role of 1f(x)∈B in the 
lassi
al setting. And we take note that tr (ρPO,B) =

∑
i|f(i)∈B pi, aswe should obtain from the 
lassi
al formula.We 
an en
ode in the same framework the general strategies for estimators, provided that Xa is also �nite { 16 }.The auxiliary spa
e is then identi�ed toHa = Cda . We have matri
es ρθ⊗σ { 19 }, with σ independent of θ. Weare allowed to use as observable O { 17 } any matrix diagonal in the same basis as these ρθ ⊗σ. The pro
edureequivalent to the partial integration on Xa is then taking partial tra
e on Ha in Pθ[O ∈ B] = tr ((ρθ ⊗ σ)PO,B).And this yields tr (ρθM(B)) { 20 } with

• M(R) = 1H { 21 }
• M(B) is non-negative and diagonal in the {|ei〉} basis { 22 }
• For 
ountable disjoint Bi, ∑iM(Bi) = M(

⋃
iBi) { 23 }.Here again, we see that if we have a

ess to O1 and O2 
hara
terized by the families M1(B) and M2(C), wehave a

ess to both { 24 }. Our new measurement would be 
hara
terized by N(B ⊗ C) = M1(B)M2(C) asmultipli
ation of matri
es. Noti
e that this set of matri
es still satis�es the three above 
onditions. Espe
ially,the fa
t that they are still non-negative stems from that they are diagonal in the same eigenbasis.Going from 
lassi
al to quantum now means throwing away our spe
ial eigenbasis {|ei〉}. The immediate
onsequen
e will be that we shall deal with obje
ts that do not 
ommute. And of 
ourse, we did not restrain to�nite probability spa
es in the 
lassi
al 
ase. Likewise, we do not restrain to �nite-dimensional Hilbert spa
es inthe quantum 
ase. We shall therefore deal with operators rather than matri
es. Keeping the �nite-dimensionalexample �rmly in mind should be a guide to the intuition of those less pro�
ient in operator theory.A.1.3. QuantumA quantum system is des
ribed by a density operator ρ { 1 } over a Hilbert spa
e H { 2 }, that is:De�nition A.1. : Density operatorA density operator, usually denoted by ρ, is a tra
e-
lass linear operator on a (
omplex, separable) Hilbert spa
e

H that satis�es:
• ρ is self-adjoint { 4 }.
• ρ is non-negative (noti
e that this implies self-adjointness) { 5 }.
• tr ρ = 1 { 3 }.If H is �nite-dimensional, those are just the (self-adjoint) non-negative matri
es with tra
e 1.We denote by S(H) the set of density operators on H.Density operators are a 
onvex set, too. The extremal points are 
alled �pure states�. They are the orthogonalproje
tors on 1-dimensional spa
es { 8 }. Thus we 
an represent them by a norm 1 element of H, denoted by

|ψ〉 { 9 }. The 
orresponding density matrix is then ρ = |ψ〉〈ψ|. Noti
e that it would be more pre
ise to speakof |ψ〉 as an element of the proje
tive spa
e PH, but we 
onform here to the usage of physi
ists. Noti
e also thatthere are in�nitely many pure states even in the �nite-dimensional 
ase, unlike in the 
lassi
al framework. Let
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omposition of a mixed state on pure states is not unique. It is essentially unique ifwe further impose that the pure states of the de
omposition are all orthogonal, though.A quantum statisti
al model { 10 } 
onsists in a set of density operators ρθ on a Hilbert spa
e H indexed by aparameter θ, for θ ∈ Θ { 11 } the parameter spa
e. A statisti
al problem 
onsists in determining as pre
iselyas possible, with a meaning depending on the instan
e, a fun
tion of θ.Now the role of random variables is played by observables. Those are the elements O { 12 } of Bsa(H) { 7 }, thebounded self-adjoint operators upon H. If we are dealing with �nite-dimensional H, those are the self-adjointmatri
es.As a remark, the dual of Bsa(H) is the set of self-adjoint tra
e-
lass operators, whi
h ρ is in. This duality isgiven by the formula of the expe
tation of measuring O on ρ, also 
alled Born's rule:
Eρ[O] = tr (ρO) { 15 } (31)When measuring O, the result is an element of the spe
trum of O { 13 }, that is in the �nite-dimensionalpi
ture, an eigenvalue of O. The law of the result when measuring O on ρ is:

Pρ [O ∈ B] = tr (ρPO,B) for B ∈ B { 14 } (32)where PO,B is 
oming from the spe
tral measure of O. This is an obje
t asso
iated to self-adjoint operatorsthrough the spe
tral theorem, whose main property is that the expe
tation of the law above is given by the Born'srule for any density operator ρ. We only give the derivation for �nite-dimensional H. Then, as O is self-adjoint,we 
an diagonalize it in an orthonormal basis, and write O =
∑

i λi|ψi〉〈ψi|. Then PO,B =
∑

i|λi∈B |ψi〉〈ψi|.We see that in this 
ase the law of the measurement is 
oherent with the expe
tation given by Born's rule (31).Generally {PO,B}B is a proje
tor valued measure, the de�nition of whi
h we give below. To ea
h proje
torvalued measure 
orresponds an observable, and to ea
h observable 
orresponds a proje
tor valued measure. Wemay then 
onsider that this 
on
ept is also a de�nition of an observable.De�nition A.2. : Proje
tor valued measure { 12 }A proje
tor operator valued measure {P (B)}B∈B is a set of operators on H su
h that:
• P (B) is an orthogonal proje
tor.
• P (R) = 1H.
• For disjoint 
ountable Bi, ∑i P (Bi) = P (

⋃
i Bi).Noti
e that these are the axioms of a probability measure, ex
ept that we do not deal with real numbers butwith proje
tion operators.Combining this de�nition with the de�nition of a density operator, we 
an 
he
k that formula (32) yields atrue probability measure. Indeed, as both ρ and PO,B are non-negative, the probability of any event is non-negative. With the 
ountable additivity property of proje
tor valued measure and linearity of produ
t andtra
e, we get the 
ountable additivity of a probability measure. Finally, the probability of the universe is

tr (ρPO,R) = tr (ρ1H) = 1.Remark: - even for a pure state, the result of the measurement is random, unless the pure state is an eigenve
torof O.Now what is the most general estimation strategy, or measurement? The right analogy is that of the auxiliaryspa
e. We measure observables O { 17 } on a Hilbert spa
e H⊗Ha { 18 } under the density operator ρθ ⊗ σ{ 19 }, with σ independent of θ. Now we may take partial tra
e in (32) along Ha, and we obtain equivalen
eof this s
heme with measuring a positive operator valued measure (POVM).



TITLE WILL BE SET BY THE PUBLISHER 35De�nition A.3. : Measurement (POVM) { 17 }A measurement M on a quantum system, taking values x in a measurable spa
e (X ,A) is spe
i�ed by a positiveoperator valued probability measure or POVM for short, that is a 
olle
tion of self-adjoint matri
esM(A) : A ∈ Asu
h that:
• M(X ) = 1, the identity matrix { 21 }
• Ea
h M(A) is non-negative { 22 }
• For disjoint 
ountable Ai, ∑i M(Ai) = M(

⋃
Ai) { 23 }.The M(A) are 
alled the POVM elements.The law of measuring M on ρ is given by

Pρ [O ∈ A] = tr (ρM(A)) for A ∈ A { 20 }. (33)With the same reasoning as for proje
tor valued measure (whi
h are a spe
ial 
ase of these POVMs), this is agenuine probability measure.A spe
ial 
ase of POVM is that of a POVM dominated by σ-�nite measure ν on (X ,A), that is
M(A) =

∫

A

m(x)dν(x) for all A ∈ A (34)where m(x) is positive for all x and ∫X m(x)dν(x) = 1H. The POVM asso
iated to homodyne tomography isdominated by the Lebesgue measure.The very important di�eren
e with the 
lassi
al world is that if we 
an have a

ess to M1 or M2, in general, we
annot have a

ess to both simultaneously { 24 }. We 
annot 
opy what we have done in the former paragraph,sin
e M1(A)M2(B) + M2(B)M1(A) might not be non-negative if M1(A) and M2(B) do not 
ommute. Moregenerally, there is usually no way to 
reate a new POVM N with values in (X ⊗ Y,A ⊗ B) su
h that themarginals areM1 andM2. Notably, two observables that do not 
ommute 
an never be measured simultaneously.As an example, 
onsider that M1 and M2 are two proje
tor valued measures on C2, ea
h with values in
{0, 1}, 
orresponding to observables diagonal in di�erent bases {e0, e1} and {f0, f1}. Then N(0, 0) shouldbe proportional both to |e0〉〈e0| and |f0〉〈f0|. So that it is null. Same remark for the other N(i, j). Thus
N({O, 1}⊗2) = 0 6= 1. So that it is null.The truly quantum feature of quantum statisti
s lies in that we should de
ide whi
h measurement is to be 
arriedout. On
e we have 
hosen our measurement, we are left through (33) with a 
lassi
al statisti
al experiment.This is the 
ase in this arti
le.As a last remark on the subje
t, we 
ould have developed a slightly more general formalism, based on C∗-algebras, that would have been parallel to Le Cam formulation of statisti
s. In pra
ti
al appli
ations, theformalism above is usually su�
ient.A.2. Quantum homodyne tomographyThe system we work with is the harmoni
 os
illator. Both in 
lassi
al or quantum me
hani
s, the harmoni
 os
il-lator is a basi
 and pervading system. It des
ribes, notably, a parti
le on a line, or a mode of the ele
tromagneti
�eld (that is mono
hromati
 light), as in our 
ase.The state of a quantum harmoni
 os
illator is des
ribed by an operator on L2(R) (this is the Hilbert spa
e{ 1 }). There are two important observables 
orresponding to the 
anoni
al 
oordinates of the parti
le. If we
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tation of measuring on a state ρ any operator in the algebra they generate, then we know ρ.Those observables are P,the magneti
 �eld, and Q, the ele
tri
 �eld. They satisfy the (
anoni
al) 
ommutationrelations:
[Q,P] = QP − PQ

= i1.They are realized as:
(Qψ1)(x) = xψ1(x)

(Pψ2)(x) = −idψ2(x)

dx
. (35)As they do not 
ommute, they 
annot be measured simultaneously. However, any linear 
ombination 
antheoreti
ally be measured. These Xφ = sin(φ)Q + cos(φ)P are 
alled quadratures.Using an experimental setup proposed in [21℄, ea
h of these quadratures 
ould be experimentally measured ona laser beam [20℄. The te
hnique is 
alled quantum homodyne tomography.The opti
al set-up sket
hed in �gure 2 
onsists of an additional laser of high intensity |z| ≫ 1 
alled the lo
alos
illator, a beam splitter through whi
h the 
avity pulse prepared in state ρ is mixed with the laser, and twophotodete
tors ea
h measuring one of the two beams and produ
ing 
urrents I1,2 proportional to the numberof photons. An ele
troni
 devi
e produ
es the result of the measurement by taking the di�eren
e of the two
urrents and res
aling it by the intensity |z|. A simple quantum opti
s 
omputation in [17℄ shows that if the

beam 
splitter

signal
detector

detector

lo
alos
illator
z = |z|eiφ

I2

I1

I1−I2
|z|

∼ pρ(x|φ)

Figure 2. Quantum Homodyne Tomography measurement set-up
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avity pulse is 
hosen to be φ then (I1 − I2)/|z| has density pρ(x|φ)
orresponding to measuring Xφ .Knowledge of Pρ(x|φ), the law of the result of the measurement Xφ on ρ, for all φ, is enough to re
onstru
t thestate ρ. As we have seen, the experimentalist may 
hoose φ when measuring. We assume that the measurement
arried out on ea
h of the n systems in state ρ is the following: �rst 
hoose φ uniformly at random, then measure
Xφ. We get a random variable Y = (X,Φ) with values in R× [0, π) whose density with respe
t to the Lebesguemeasure is pρ(x, φ) = 1

πpρ(x|φ).Now we make expli
it the links between ρ, pρ(x, φ) and the Wigner fun
tion Wρ. First we write ρ in a parti
ularbasis, physi
ally very meaningful, the Fo
k basis, already given in Se
. 2:
ψk(x) = Hk(x)e−x2/2,where Hk is the k-th Hermite polynomial, normalized so that the L2-norm of ψk is 1. The proje
tor on ψk isthe pure state with pre
isely k photons. We also denote this state by the ket |k〉.The matrix entries of pρ in this basis are ρj,k = 〈ψj , ρψk〉. We 
an then derive from (31) and (35) the formulawe gave in Se
. 2:

T : S(L2(R)) −→ L1(R × [0, π])

ρ 7→



pρ : (x, φ) 7→
∞∑

j,k=0

ρj,kψj(x)ψk(x)e−i(j−k)φ



 . (36)The mapping T asso
iating Pρ to ρ is invertible, so we may hope to �nd ρ from the independent identi
allydistributed results Y1, Y2, . . . , Yn of the measurements of the n systems in state ρ. This implies notably that pρis another representation of the state.More expli
itly, there are pattern fun
tions fj,k [8℄ against whi
h to integrate pρ to �nd any matrix entry of ρin the Fo
k basis, that is:
ρj,k =

∫ ∞

−∞
dx

∫ π

0

dφ

π
pρ(x, φ)fj,k(x)ei(j−k)φ .These fj,k are bounded real fun
tions. That inverting the Radon transform is an ill-posed problem 
an be seenin the behaviour of fj,k when j and k go to in�nity. Several formulas were found for these fun
tions [18℄, amongwhi
h:

fj,k(x) =
d

dx
(χj(x)φk(x)) (37)for k ≥ j, where χj and φk are respe
tively the square-integrable and the unbounded solutions of the S
hrödingerequation: [

−1

2

d2

dx2
+

1

2
x2

]
ψ = ωψ, ω ∈ R.Another one, maybe more pra
ti
al when it 
omes to theoreti
al 
al
ulations, or when we add noise (see se
tion3.6) is:

fj,k(x, φ) =

√
j!

k!

∫ ∞

−∞
|r|e− r2

2
+2irxrk−jLk−j

j (r2)drwhere the Ld
j are the Laguerre polynomials, that is the orthogonal polynomials with respe
t to the measure

e−xxd on R+.



38 TITLE WILL BE SET BY THE PUBLISHERLet's now have a look at the Wigner fun
tion. This is a real fun
tion of two variables, with integral 1, but thatmay be negative in pla
es. It 
an be interpreted as a generalized joint probability density of the ele
tri
 andmagneti
 �elds q and p. As both 
annot be measured simultaneously, the negative pat
hes are not nonsense.On the other hand, any proje
tion on a line of the Wigner fun
tion must be a true probability density, as itis the law of Xφ, whi
h is an observable. In fa
t, the Wigner fun
tion may be seen as the probability densityon R2 resulting from (33) when measuring on ρ a �POVM� whose elements are not non-negative, but whosemarginals on ea
h line R are the Xφ.As we have already said in the introdu
tion, pρ is the Radon transform of the Wigner fun
tion. The Wignerfun
tion 
an be de�ned by its Fourier transform. This de�nition tells how to �nd the Wigner fun
tion W of thestate from its density matrix ρ:
F2W (u, v) = tr (ρe−iuQ−ivP). (38)On the other hand, the generating fun
tion of pρ(·|φ) is

E
[
eitXφ

]
= tr (ρeitXφ).In other words, F2W (t cosφ, t sinφ) = F [pρ(·, φ)](t). These relations are known to imply that pρ = R(W ) [10℄where R is the Radon transform. Expli
itly:

pρ(x, φ) =

∫ ∞

−∞
W (x cosφ+ y sinφ, x sinφ− y cosφ)dy.The Radon transform is illustrated by Fig. 1, given in Se
. 2.Finding the Wigner fun
tion from the data means then inverting the Radon transform, hen
e the name oftomography: that is the same mathemati
al problem as with the brain imagery te
hnique 
alled PositronEmission Tomography.A.3. Physi
al origin of the photo
ounter 
alibration problemAn experiment usually ends with a measurement. We need, however, an apparatus to measure. And we �rsthave to know what is the meaning of the result the apparatus is giving us: it is not at all obvious a priori thatif our new thermometer says �31◦ C�, the temperature 
annot be �32◦ C�. That is why we must 
alibrate ourmeasurement apparatus. In quantum me
hani
s, this means asso
iating with ea
h result i of our measurementthe positive operator P (i), su
h that P is the POVM (see de�nition A.3) 
orresponding to our measurement.In [9℄, a general 
alibration pro
edure was introdu
ed. The pro
edure relies on 
omparing with an already
alibrated apparatus, using entangled states. Let us des
ribe this more pre
isely in the spe
ial 
ase of thephoto
ounter.A photo
ounter is an apparatus that aims at 
ounting the photons in a beam. The ideal dete
torD has thereforePOVM elements given by D(i) = |i〉〈i| in the Fo
k basis. Re
all we use the physi
ists' notation, where |·〉 is ave
tor and 〈·| is the asso
iated linear form. Moreover |i〉 is the ve
tor 
orresponding to the pure state with iphotons, that is the fun
tion ψi on L2(R), that we had de�ned in (1).Models of the noise (non-unit e�
ien
y and dark 
urrent) leave the POVM diagonal in this basis. Thus, weare only interested in the diagonal elements of Pi in the Fo
k basis. To obtain those we send a twin beamstate, one of the beams in the photo
ounter, the other in a homodyne tomographer. We get a result I from thephoto-
ounter, and X from the tomographer (�gure 3; as we are only interested in the diagonal elements, weshall see that we do not need the phase φ, as long as the experimentalist 
hooses it randomly). We then haveto pro
ess these out
omes (I,X) to �nd P .
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T

x

i
P

|s〉 {P̂i}

Figure 3. Experimental set-up to determine the POVM asso
iated to an unknown photo-
ounter P. We use it to measure a known bipartite state |s〉, jointly with a tomographer T.The photo
ounter gives a result i and the tomographer a result x. From these samples, we
onstru
t an estimator {P̂i} of the self-adjoint operators asso
iated to the results {i} by thephoto
ounter P.Mathemati
ally, the twin beam is a system in a state |s〉 =
∑∞

k=0 bk|k〉 ⊗ |k〉. This notation (where we may
hoose the bk non-negative) means that the underlying Hilbert spa
e is L2(R) ⊗ L2(R), and that ρ is the purestate that proje
ts on the line spanned by this ve
tor. Here again, |k〉 is the ve
tor 
orresponding to the purestate with k photons. Finally ∑k b
2
k = 1, so that the ve
tor state |s〉 is normalized and the density operator is

ρ = |s〉〈s|.Now, what is the law p(i, x) of the samples we get? By (36) we see that the POVM asso
iated to the tomographeris dominated by the Lebesgue measure on R× [0, π), as in (34). That is 〈j|tx,φ|k〉 = ψj(x)ψk(x)e−i(j−k)φ , wherewe have denoted tx,φ the self-adjoint operator asso
iated to the result (x, φ) for the POVM of the tomographer.If we forget about φ after having 
hosen it randomly, we then get 〈j|tx|k〉 = ψk(x)21j=k. We have now all theingredients for 
al
ulating our law, given the notation 〈k|Mi|k〉 = Mk
i .

p(i, x) = tr (ρ(Pi ⊗ tx))

= 〈s|(Pi ⊗ tx)|s〉
=
∑

k1,k2

bk1
bk2

(〈k1| ⊗ 〈k1|)(Pi ⊗ tx)(|k2〉 ⊗ |k2〉)

=
∑

k1,k2

bk1
bk2

〈k1|Pi|k2〉〈k1|tx|k2〉

=

∞∑

k=0

b2kP
k
i ψk(x)2.(As a remark, the fourth line shows that the use of the phase would be to retrieve the non-diagonal elements,in whi
h we are not interested.)We have thus re
overed (27), and explained how we got the data with whi
h we want to estimate the Mm

i .
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