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ON THE REDUCTION OF A RANDOM BASIS

ALI AKHAVI, JEAN-FRANÇOIS MARCKERT, AND ALAIN ROUAULT

Abstract. For p ≤ n, let b
(n)
1 , . . . , b

(n)
p be independent random vectors

in Rn with the same distribution invariant by rotation and without mass
at the origin. Almost surely these vectors form a basis for the Euclidean
lattice they generate. The topic of this paper is the property of reduc-
tion of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If

b̂
(n)
1 , . . . , b̂

(n)
p is the basis obtained from b

(n)
1 , . . . , b

(n)
p by Gram-Schmidt or-

thogonalization, the quality of the reduction depends upon the sequence of

ratios of squared lengths of consecutive vectors r
(n)
j = ‖b̂(n)

n−j+1‖
2/‖b̂(n)

n−j‖
2,

j = 1, . . . , p. We show that as n→∞ the process (r
(n)
j − 1)j tends in dis-

tribution in some sense to an explicit process (Rj − 1)j ; some properties
of the latter are provided.

1. Introduction.

Let b(n)
p := (b(n)

1 , b
(n)
2 , . . . , b

(n)
p ) be a linearly independent system of p ≤ n

vectors of Rn. The set of all their integer linear combinations is a lattice,
i.e. an additive discrete subgroup of Rn. The system b(n)

p is then a basis
of the lattice. The lattice basis reduction problem deals with finding a basis
of a given lattice, whose vectors are “short” and ”almost orthogonal”. The
problem is old and there are numerous notions of reduction (for a general
survey, see for example [15, 26, 14]). Solving even approximately the lattice
basis reduction problem has numerous theoretical and practical applications
in integer optimization [19], computational number theory [18] and cryptog-
raphy [23]. In 1982, Lenstra, Lenstra and Lovász [18] introduced for the first
time an efficient (polynomial with respect to the length of the input) approx-
imation reduction algorithm. It depends on a real approximation parameter
s ∈]0,

√
3/2[ and is called LLL(s). The output basis of the LLL algorithm is

called an LLL(s) reduced or s-reduced basis. The next definition (character-
izing a s-reduced basis) and the LLL-algorithm itself make a broad use of the
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2 ALI AKHAVI, JEAN-FRANÇOIS MARCKERT, AND ALAIN ROUAULT

classical Gram-Schmidt orthogonalization. With the linearly independent sys-
tem b(n)

p , it associates the orthogonal system b̂(n)
p := (̂b(n)

1 , · · · , b̂(n)
p ) defined

by the recursion

b̂
(n)
1 = b

(n)
1 , b̂

(n)
j = b

(n)
j −

j−1∑
i=1

〈b(n)
j , b̂

(n)
i 〉

‖b̂(n)
i ‖2

b̂
(n)
i for j = 2, · · · , p. (1.1)

Let us stress that the vectors need not to be unit.

Definition 1.1. Let s ∈
(

0,
√

3
2

)
. A system b(n)

p of p linearly independent

vectors of Rn is a LLL(s)-reduced basis of the generated lattice if for all 1 ≤
i ≤ p− 1,

‖b̂(n)
i+1‖2

‖b̂(n)
i ‖2

> s2. (1.2)

It is a local property of two–dimensional basis. For fixed i, this inequality
concerns the basis composed of the projections of b(n)

i and b(n)
i+1 on the orthog-

onal complement of the linear subspace Span{b(n)
1 , b

(n)
2 , . . . , b

(n)
i−1}. In [18] it

is shown that when all these two–dimensional bases are s-reduced then the
Euclidean properties of the whole basis are nice enough. For instance, the
length of the first vector of an LLL-reduced basis is not larger than (1/s)p−1

times the length of a shortest vector in the lattice generated by b(n)
p . Two

important quantities are involved in the reduction of a basis.

Definition 1.2. Let b(n)
p be a linearly independent system of vectors of Rn.

The reduction level of b(n)
p is the quantity

Mg
n := min

i∈{1,...,n−(g+1)}

‖b̂(n)
i+1‖2

‖b̂(n)
i ‖2

, (1.3)

where g = n−p is the codimension. The index of worst local reduction of b(n)
p

is the quantity

Ign := min

{
j ∈ {g, · · · , n− 2} :

‖b̂(n)
n−j‖2

‖b̂(n)
n−j−1‖2

=Mg
n

}
.

The variableMg
n is the supremum of the set of those s2 for which the basis

is s-reduced. The second variable Ign is the place where the satisfied local
condition is the weakest. This indicates where the limitation of the reduction
comes from locally.

When b(n)
p is chosen at random, the reduction level Mg

n and the index of
worst local reduction Ign are two random variables, well defined whenever b(n)

p
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is a linearly independent system. This paper is essentially devoted to the study
of these random variables when the dimension n of the ambient space grows,
for general codimensions of the random basis. It can be noticed that although
we work with the whole system b(n)

n , the system b̂(n)
p depends only on the p

first vectors of b(n)
n ; the same conclusion holds for Mg

n and Ign.
In various previous works ([8], [3]), the vectors b(n)

1 , · · · , b(n)
n are picked ran-

domly from IRn, independently, and uniformly in the Euclidean ball of radius
M . A current motivation is the following. The main reduction algorithms (in
particular the LLL algorithm) act in the same way on a basis and on its trans-
formed by a similarity. Furthermore, roughly speaking, when M is large, the
random choice of an integer vector in the ball of radius M is not so far from
the random choice of a real vector in the unit ball Bn := {x ∈ IRn : ‖x‖ ≤ 1}.
We extend slightly this model.

Let b(n)
1 , · · · , b(n)

n be n vectors picked randomly from IRn, independently,
and with distribution νn. The following class of distributions is particularly
simple and leads to interesting asymptotic results.

Definition 1.3. A spherical model is a sequence (νn)n where for each n ≥ 1,
νn is a distribution on Rn rotationally invariant and satisfying νn({0}) = 0.

It is well known (see for instance [21] Th.1.5.6 p.38 and [20] Prop.3.2), that
under such a νn,
• the radial part ‖x‖ and the angular part θ(x) := x/‖x‖ are independent
• θ(x) is uniformly distributed on Sn−1 := {x ∈ IRn : ‖x‖ = 1}.
As a result, the system b(n)

n is almost surely linearly independent. We call
it a (p-dimensional) random basis. The most natural examples of νn (quoted
in the book of Knuth ([16, Section 3.4.1])) are:

a) the uniform distribution on the sphere Sn−1; the corresponding distribu-
tion ν⊗nn of the system is denoted US

n ,
b) the uniform distribution in the unit ball Bn; the corresponding distribu-

tion ν⊗nn is denoted UB
n – called the ”random ball model”,

c) the n-variate standard normal (the coordinates are i.i.d. N (0, 1)); the
corresponding distribution ν⊗nn is denoted Gn.

We will also assume that roughly speaking, under (νn) the lengths of the
vectors are concentrated around their mean (see Assumption 2.1). Under this
assumption, we prove in particular that for s fixed, a full random basis is
s-reduced with a positive probability when n is large, or in other words that
M0

n converges in distribution to a random variable with interesting properties.
Moreover the index Ign converges also in distribution, for any finite g. On the
contrary, in the regime g → ∞, the probability of reduction tends to 1, i.e.
Mg

n converges in distribution to 1. The starting point of our study is the
known fact (which will be recalled) that under a spherical model, the random
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variables ‖b̂(n)
k ‖

2 , k = 1, . . . , n are independent and beta distributed with
varying parameters. This paper may be considered as an extension of some
results obtained in [3] and [2] by one of us with a rather involved use of the
Laplace method. The novelty of our approach here consists in a representation
of these beta variables by means of independent gamma variables. This allows
to work in a large probability space, (independent of n) and to consider strong
convergences.

Besides, another interesting statistic of a basis is the so-called orthogonality
defect, which plays a role in its reduction.

Definition 1.4 (Schnorr ([25])). The orthogonality defect of a basis b(n)
p is

the quantity

ρp,n :=
p∏

k=1

‖b(n)
k ‖
‖b̂(n)
k ‖

(p ≤ n) .

It is strongly related to the determinant of the lattice. If B = [b(n)
1 , . . . , b

(n)
p ]

is the n × p matrix with r column vectors b(n)
1 , . . . , b

(n)
p of Rn and B′ de-

notes its transpose, then the determinant of the lattice generated by b(n)
p is(

detB′B
)1/2. Since

detB′B =
p∏
i=1

‖b̂(n)
i ‖

2

we have
1
ρ2
p,n

=
detB′B

‖b(n)
1 ‖2 · · · ‖b

(n)
p ‖2

(1.4)

and this quantity is usually called the Hadamard ratio, referring to the well
known Hadamard inequality (1893):

detB′B ≤ ‖b(n)
1 ‖

2 · · · ‖b(n)
p ‖2 (1.5)

with equality if and only if b(n)
1 , . . . , b

(n)
p are orthogonal ([13]). It means that

the volume (or p-content) of the parallelotope built from b1, . . . , bp is maximal
when the vectors are orthogonal. Abbott and Mulders [1], Dixon [9] are con-
cerned with the tightness of the bound ρ2

n,n ≥ 1 when b(n)
n is sampled from

US
n . In a recent paper, one of us ([24]) proved asymptotic results for some

random determinants. We present here direct consequences for the orthogo-
nality defect, considered as a random process indexed by t when p = bntc and
t ∈ [0, 1].

The paper is organized as follows. Section 2 is devoted to the statement
of the main results on reduction of random basis. In Section 3 we first recall
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known results on the connection between random bases and beta distributions
and put them in the framework of spherical models. Then, we define two
random processes on (0,∞)N. The first one, (for fixed n), is the sequence
r

(n)
j = ‖b(n)

n−j+1‖2/‖b
(n)
n−j‖2, j ≤ n− 1 , extended by an infinite array of 1. The

second one, (Rj) (the foreseen limiting process) is the sequence of ratios of
consecutive elements of an infinite array of independent gamma variables with
varying parameters.

In Section 4, we give the probabilistic background for the properties of
random variables involved in the limiting process. In particular, we prove
that (Rj − 1)j lives almost surely in `q, for q > 2. We give also a description
of the distribution of infj Rj , which has its own interest.

Section 5 is devoted to the convergence in distribution of the sequence
(r(n)
j − 1)j of `q valued random processes to (Rj − 1)j . The key tool is a

representation of the main random variables involved in the reduction of the
random basis by versions living in a fixed probability space. In Section 6 are
quoted connections between the different forms of reduction. In Section 7 we
study possible extensions and in Section 8 we give the asymptotic behavior
of the orthogonality defect. A large part of the results of this paper were
announced in [4].

2. Main results

The following assumption on the sequence (νn)n means roughly that the
lengths of the vectors are concentrated around their mean.

Assumption 2.1. There exists a deterministic sequence (an)n and constants
d1 > 0, d2 > 0, α > 0, ρ0 ∈ (0, 1) such that, for every n ≥ 1 and ρ ∈ (0, ρ0)

νn

(∣∣∣∣‖x‖2an
− 1
∣∣∣∣ ≥ ρ) ≤ d1e

−nd2ρα . (2.1)

Theorem 2.2. Let b(n)
1 , b

(n)
2 , . . . , b

(n)
n−g be a random basis under a spherical

model (νn) satisfying Assumption 2.1.
(1) If g is constant and s ∈ (0, 1) is fixed, the probability that the basis

is s–reduced converges to a constant in (0, 1) (depending on s and
g). More precisely, there exists a random variable Mg with values in
[0, 1], having a positive density, such that (Mg

n) converges to Mg in
distribution as n tends to infinity. Moreover, the index of worst local
reduction (Ign) converges in distribution as n tends to infinity.

(2) For s ∈ (0, 1) fixed, if g = g(n) tends to infinity, the probability that
the basis is s–reduced tends to 1 as n tends to infinity, or in other
words (Mg

n) converges in distribution to 1.
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Although ”convergence in distribution” and ”convergence in probability”
are equivalent when the limit is a constant and all the variables are defined
on the same probability space, we stress that the latter convergence in (2) is
in distribution since our variables Mg

n live on a probability space depending
on n.

This theorem will be proved in Section 5.

Proposition 2.3. The three examples of (νn) given in the introduction satisfy
Assumption 2.1.

This proposition will be proved in Section 3.2.
Notice that in [3] Lemma 3 p.376, under UB

n , it was proved that P(Mcn−1
n ≤

s) → 0 , as soon as s < 1
2(1 − c)

1−c
c (1 + c)

1
c , (and that this convergence

is exponentially fast). The author conjectured that it could be extended to
s < 1. Theorem 2.2(2) answers positively to this conjecture.

In [10], Donaldson considered a different random model where the basis
b
(n)
1 , · · · , b(n)

n−g is picked uniformly from the set {‖b(n)
1 ‖2 + · · · + ‖b(n)

n−g‖2 = 1}
(Euclidean sphere in Rn×(n−g)), so that the vectors are not independent. He
proved that as n, g →∞ with n− g fixed, the basis is asymptotically reduced
in the sense of Minkowski, i.e. each b(n)

i is a shortest vector among all vectors
of the lattice that complete b(n)

1 , · · · , b(n)
i−1 to form a bigger subset of a lattice

basis. It is a stronger form of a reduction, but a particular case of codimension.
The following result, which is a Corollary of Theorem 2.2, states the behavior
of random basis under the Donaldson model as regards the s-reduction in a
large range of codimensions.

Corollary 2.4. Assertions (1) and (2) of Theorem 2.2 hold true in the Don-
aldson model.

This corollary will be proved in Section 3.2.

3. Spherical models and beta distributions

3.1. Preliminaries. We summarize some properties of the Gamma and Beta
distribution used throughout the paper. They can be found in [7] pp. 93-94.
For a > 0, the gamma distribution γa (with parameter a) is

γa(dx) =
e−xxa−1

Γ(a)
1I[0,∞)(x) dx ,

and its mean is a.
For a > 0 and b > 0 the beta distribution βa,b (with parameters (a, b)) is

βa,b(dx) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1 1I(0,1)(x) dx.
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In the following, γ(a) denotes a variable with distribution γa, and β(a, b)
denotes a variable with distribution βa,b. The first relation1 is(

γ(a), γ(b)
) (d)

=
(
β(a, b)γ(a+ b), (1− β(a, b))γ(a+ b)

)
, (3.1)

where on the left hand side the random variables γ(a) and γ(b) are independent
and on the right hand side the random variables β(a, b) and γ(a + b) are
independent. It entails

γ(a) + γ(b)
(d)
= γ(a+ b) , (3.2)

γ(a)
γ(a) + γ(b)

(d)
= β(a, b) , (3.3)

and
γ(a)
γ(b)

(d)
=

β(a, b)
1− β(a, b)

, (3.4)

which gives

P
(
γ(a)/γ(b) ∈ dx

)
=

Γ(a+ b)
Γ(a)Γ(b)

xa−1

(1 + x)a+b
1I[0,∞[(x) dx . (3.5)

This distribution is sometimes called the beta-prime distribution of parameter
(a, b). Notice that if 2a and 2b are integers, then bγ(a)/aγ(b) has the Fisher
F2a,2b distribution. The second relation is

β(a, b)β(c, a− c) (d)
= β(c, a+ b− c) , (3.6)

where on the left hand side the random variables are independent. As an
immediate consequence of the additivity (3.2) and the law of large numbers,
we have

γ(a)
a

(d)−−−→
a→∞

1 , (3.7)

with an almost sure convergence if all the variables γ(a) are defined on the
same space. This can be proved using the following classical lemma.

Lemma 3.1. The Laplace transform of γa is

Eeθγ(a) = (1− θ)−a (θ < 1) , (3.8)

and we have the Chernov bounds:

P
(
γ(a) ≥ ax

)
≤ e−aH(x) (x ≥ 1)

P
(
γ(a) ≤ ax

)
≤ e−aH(x) (x ≤ 1) , (3.9)

1In the whole paper,
(d)
= stands for equality in distribution, and

(d)−−−→
n

stands for conver-

gence in distribution
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where H is the Cramér transform

H(x) = sup
θ<1

{
θx− log E(eθγ(1))

}
= x− 1− log x, (x ≥ 0) . (3.10)

3.2. Identification of distributions. We first recall some facts concerning
the spherical models, facts that have been proved several times and that are
more or less part of the folklore.

For any j = 1, . . . , n, let

Y
(n)
j := ‖b̂(n)

j ‖
2/‖b(n)

j ‖
2.

Theorem 3.2 (Anderson [5], Theorem 9.3.3 ). Under US
n, the variables ‖b̂(n)

j ‖2,
j = 1, · · · , n are independent and for 1 ≤ j ≤ n

‖b̂(n)
j ‖

2 (d)
= β

(
n− j + 1

2
,
j − 1

2

)
. (3.11)

An easy extension to spherical distribution is the following.

Theorem 3.3. Under a spherical model, the variables ‖b̂(n)
j ‖2 , j = 1, · · · , n

are independent. For every j = 2, . . . , n,

Y
(n)
j

(d)
= β

(
n− j + 1

2
,
j − 1

2

)
. (3.12)

Moreover, all the random variables Y (n)
j , j ≥ 1, ‖b(n)

j ‖2, j ≥ 1 are independent.

Corollary 3.4 (Daudé-Vallée [8]). Under UB
n , the variables ‖b̂(n)

j ‖2, j =
1, · · · , n are independent and for 1 ≤ j ≤ n

‖b̂(n)
j ‖

2 (d)
= β

(
n− j + 1

2
,
j + 1

2

)
. (3.13)

Although Daudé and Vallée gave a direct analytic proof, their result may
be viewed as a consequence of Theorem 3.3 and identity (3.6), since under the

random ball model ‖b(n)
i ‖2

(d)
= β(n/2, 1). For the convenience of the reader, we

give below a probabilistic proof of Theorem 3.3.

Proof of Theorem 3.3: Let us skip the superscript (n) in this proof. We
have bi = θi‖bi‖ and from (1.1), we see that b̂i = ‖bi‖θ̂i, where the θ̂i’s are
obtained by the Gram-Schmidt algorithm applied to the θi’s. As recalled
in the introduction, (θ1, . . . θn) is (US

n)⊗n distributed. From Theorem 3.2,
the variables ‖θ̂i‖2, i = 2, . . . , n are independent with the convenient beta
distributions.

From the radial-angular independence, (‖b1‖2, · · · , ‖bn‖2) is independent of
(‖θ̂2‖2, . . . , ‖θ̂n‖2) = (Y2, . . . , Yn). The independence of the variables ‖b̂j‖2 is
then a consequence of all the other independences. �
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Let us check now that our natural distributions satisfy Assumption 2.1.

Proof of Proposition 2.3. • If νn is the uniform distribution on Sn−1, then
‖x‖2 = 1, and an = 1.
• If νn is the uniform distribution in the ball, the distribution of the radial
part is

νn({x : ‖x‖ ≤ r}) = rn, 0 ≤ r ≤ 1 , (3.14)

so that, taking an = 1,

νn(|‖x‖2/an − 1| ≥ ρ) = (1− ρ)n/2 ≤ e−nρ/2 ,

and Assumption 2.1 is satisfied with α = 1.
• νn is the n-variate standard normal (the coordinates are i.i.d. N (0, 1)).

Then ‖x‖2/2 is γn/2-distributed. For an = n,

νn

(∣∣∣∣‖x‖2n
− 1
∣∣∣∣ ≥ ρ) = P

(
γ(n/2) ≥ (1 + ρ)

n

2

)
+ P

(
γ(n/2) ≤ (1− ρ)

n

2

)
.

Using (3.9), we get

P(γ(n/2) ≥ (1 + ρ)
n

2
) ≤ e−

n
2
H(1+ρ) = e−

n
2

(ρ−log(1+ρ))

and similarly,

P(γ(n/2) ≤ (1− ρ)
n

2
) ≤ e

n
2

(ρ+log(1−ρ)) .

Hence Assumption 2.1 is satisfied with α = 2. �

Proof of Corollary 2.4. Let us come back to the notation n − g = p for sim-
plicity. A realization of the Donaldson model can be obtained by taking np
independent N (0, 1) random variables Gi,j , i = 1, . . . , n , j = 1, . . . , p and
setting

V 2
n =

∑
i≤n

∑
m≤p

G2
i,m , b

(n)
j =

(
G1,j

Vn
, . . . ,

Gn,j
Vn

)T
, j = 1, . . . p .

It is then clear that the vectors b̂(n)
j given by the Gram-Schmidt algorithm are

proportional to those obtained by the same algorithm when the inputs are the
vectors of the Gaussian model Gn. The factor of proportionality is just V −1

n .
The ratios of consecutive vectors are then unchanged, and since they are the
only ingredients inMg

n, the conclusions of Theorem 2.2 are preserved for this
model. �
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3.3. First consequences for random bases. Here are some information on
the asymptotic behavior of the random variables Y (n)

j and b̂
(n)
j :

Proposition 3.5. Under a spherical model,
(1) for each j ≥ 1,

n

2
Y

(n)
n−j

(d)−−−→
n

γ j+1
2
, (3.15)

Y
(n)
j

(d)−−−→
n

1 ; (3.16)

(2) if there exists a deterministic sequence an such that

‖b(n)
1 ‖

2/an
(d)−−−→
n

1 , (3.17)

then for each j ≥ 1,
n

2an
‖b̂(n)
n−j‖

2 (d)−−−→
n

γ j+1
2
, (3.18)

1
an
‖b̂(n)
j ‖

2 (d)−−−→
n

1 . (3.19)

Remark 3.6. Under the same assumptions, we have also:
If h(n)→∞ and h(n)/n→ 0, then

n

h(n)an
‖b̂(n)
n−h(n)‖

2 (d)−−−→
n

1 . (3.20)

If 0 < α < 1 and k(n)/n→ 0, then

1
an
‖b̂(n)
αn+k(n)‖

2 (d)−−−→
n

1− α . (3.21)

The above limits ((3.18), (3.19), (3.20), (3.21)), stated under UB
n , can be

found in [3, Theorem 8] in a slightly different form and proved in an involved
analytic way. We give now a new direct proof, valid for spherical models. This
announces the main arguments used to prove the convergences in Section 5.2.

Proof of Proposition 3.5. From Theorem 3.3 we have the decomposition,

‖b̂(n)
n−j‖

2 (d)
= Y

(n)
n−j ‖b

(n)
1 ‖

2 , (3.22)

with Y
(n)
n−j

(d)
= β

(
j+1

2 , n−j−1
2

)
. From (3.3)

Y
(n)
n−j

(d)
=

γ
( j+1

2

)
γ
( j+1

2

)
+ γ
(n−j−1

2

)
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and from (3.7), for fixed j,

1
n
γ
(n− j − 1

2
) (d)−−−→

n

1
2
,

which yields (3.15). With the help of Assumption (3.17), we get also (3.18).
To prove (3.16), notice that by symmetry

β(a, b)
(d)
= 1− β(b, a)

so that 1− Y (n)
j

(d)
= Y

(n)
n−j+2 , and that Y (n)

n−j+2

(d)−−−→
n

0 by (3.15).

To end, (3.19) is a consequence of (3.16) and (3.17). �

3.4. The processes of ratios (r(n)
j , j ≥ 1) and (Rj , j ≥ 1). Recall the

definition of Mg
n given in (1.3). From the independence of the ‖b̂(n)

j ‖2 and
(3.15), we have, for j fixed :

‖b̂(n)
n−j+1‖2

‖b̂(n)
n−j‖2

(d)−−−→
n

γ
( j+1

2

)
γ
( j

2

) , (3.23)

where γ
( j+1

2

)
and γ

( j
2

)
are independent. Now, if we let j →∞, (3.7) tells us

that γ
( j+1

2

)
/γ
( j

2

) (d)−−−→
n

1. This makes plausible that the minimum in (1.3) is
reached in the end of the sequence of ratios. This motivate a time inversion

Mg
n = min

g+1≤j≤n−1
r

(n)
j , where r

(n)
j :=

‖b̂(n)
n−j+1‖2

‖b̂(n)
n−j‖2

. (3.24)

The variableMg
n is a function of the (n−g−1)-tuple (r(n)

g+1, . . . , r
(n)
n−1), and then

the convergence of each coordinate is not sufficient to yield a convergence of
Mg

n. We have to take into account that the variables (r(n)
j )j≤n−1 are dependent

and that their number is growing. Since r(n)
n−i

(d)−−−→
n

1 for any fixed i by (3.19),

it is convenient to embed the (n− 1)-tuple (r(n)
1 , · · · r(n)

n−1) into RN
+, the set of

infinite sequences of positive real numbers, setting

r
(n)
j := 1 , j ≥ n . (3.25)

In view of the convergence (3.23), we are lead to define a discrete time process
(Rj , j ≥ 1) in the following way. Let (ηi)i≥1 be a sequence of independent

random variables such that ηi
(d)
= γi/2 and set

Rj := ηj/ηj+1 , j ≥ 1 . (3.26)
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For g ∈ N, set
Mg := inf

{
Rj , j ≥ g + 1

}
.

Some properties ofMg are stated in Section 4, and the convergence of (r(n)
j )j

to Rj)j is stated in Section 5.

4. Results on (Rj , j ≥ 1) based on the Beta-Gamma algebra

We give some important properties of (Rj , j ≥ 1) and of Mg. The proofs
are at the end of the section. For q ≥ 1, let `q be the set of sequences of

real numbers x = (xi)i≥1 such that ‖x‖q :=
(∑

i≥1 |xi|q
)1/q

is finite, equipped
with the norm ‖.‖q. The following proposition will allow later to consider
convergence of random elements with values in `q.

Proposition 4.1. For any q > 2, almost surely the process (Rk − 1)k is in
`q, i.e. satisfies

∑
k |Rk − 1|q <∞.

The variables Mk have remarkable properties.

Proposition 4.2. (1) For each k ≥ 0, the distribution of Mk has a den-
sity, which is positive on (0, 1) and zero outside.

(2) For each k ≥ 0,

lim
x↓0

x−
k+1
2 P(Mk ≤ x) =

Γ
(

2k+3
2

)
Γ
(
k+3

2

)
Γ
(
k+2

2

) . (4.1)

(3) There exists τ > 0 such that for each k ≥ 0,

lim sup
x↓0

e
τ
x2 P(Mk ≥ 1− x) ≤ 1 . (4.2)

(4) For each k ≥ 0, there is a.s. a unique random index Ik such that
RIk =Mk.

The proofs of Propositions 4.1 and 4.2 raise on the following proposition
devoted to the fluctuations and large deviations of Rk around 1. Coming back
to the preliminaries, we see that Rk has the distribution given by (3.5) with
a = k/2 and b = (k + 1)/2. Its mean is k/(k − 1). Noticing that Rk and R′k
are Fisher-distributed, Assertions (3) and (4) below are related to Section 4
of [6], but our bounds are not asymptotic: they hold for every ρ and k.

Proposition 4.3. (1) The following convergence in distribution holds
√
k (Rk − 1)

(d)−−−→
k
N (0, 4) . (4.3)
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(2) Let fRk be the density of Rk and

Φk(x) = (4x)
k
2
−1(1 + x)−k−

1
2 .

For A < 2π−1/2 < B we can find an integer K such that

A
√
k Φk(x) ≤ fRk(x) ≤ B

√
k Φk(x) (4.4)

for every x ∈ (0,∞) and every k ≥ K.
(3) There exists a constant C such that for every k ≥ 1 and ρ ∈ [0, 1]

P(Rk < 1− ρ) ≤ C

(
1− ρ2

(2− ρ)2

)k/2
(4.5)

P(Rk > 1 + ρ) ≤ C

(
1− ρ2

(2 + ρ)2

)k/2
. (4.6)

(4) Assertion (3) holds true when Rk is replaced by R′k :=
η′k
ηk

where η′k is

independent of ηk and γk/2 distributed.

The proof is postponed at the end of this section.

Proof of Proposition 4.1. Thanks to the Borel-Cantelli lemma, it suffices to
find a sequence (vk)k≥1 ∈ `q, such that∑

k

P(|Rk − 1| ≥ vk) <∞ . (4.7)

Taking ρ = vk = k−1/µ in the bounds (4.6) and (4.5), we see that (4.7) is
satisfied as soon as µ > 2. To ensure (vk)k≥1 ∈ `q, it remains to choose
µ ∈ (2, q). �

Proof of Proposition 4.2 (1). We give a proof only for k = 0, since the argu-
ment is the same for any k > 0. We know that almost surely Rj > 0 for every
j and limkRk = 1 (Proposition 4.1). The support of M0 is then a subset of
[0, 1]. For the same reason, the sequence (Rk) does not accumulate at 0, so
that the distribution of M0 has no atom at 0.

Using (4.3), we have

P(R2j < 1) = P
(√

2j (R2j − 1) < 0
)
−−−→
j→∞

1/2 ,

so that
∑

j P(R2j < 1) = ∞. From the definition (3.26) of the variables Rk,
the events {R2j < 1} are independent, so we may apply the reverse Borel
Cantelli lemma and claim that, a.s. there exists an infinite sequence of j such
that R2j < 1, which yields that M0 has no atom at 1.

It remains to check that the support ofM0 is exactly [0, 1] (see (A) below)
and that M0 has a density (see (B) below).
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(A) Let us prove that P(infj Rj ∈ [a, b]) > 0, for every [a, b] ⊂ [0, 1]. It is
enough to find a sequence of (independent) events Bj := {ηj ∈ (αj , βj)}, j ≥ 0
such that

∞⋂
j=1

Bj ⊂
{

inf
j
Rj ∈ [a, b]

}
and

∞∏
j=1

P(Bj) > 0. (4.8)

Let ja = inf{j : j > 2(1 + a)/(1− a)}, A := ja(1 + a)/4 and c1 < c2 in (a, b).
Choose

α1 = Ac1 , β1 = Ac2 , α2 = A , β2 =
Ac1

a
, αj = A , βj =

A

a
, (3 ≤ j ≤ ja)

and

αj =
j(1 + a)

4
, βj =

(j − 1)(1 + a)
4a

, (j ≥ ja + 1) .

We check easily that B1∩B2 ⊂ {R1 ∈ (a, c2)}, and Bj∩Bj+1 ⊂ {Rj ∈ (a,∞)}
for j ≥ 2. This proves the first claim of (4.8).

It remains to prove that the infinite product is convergent, i.e. that∑
k>ja

P(Bc
k) <∞ . (4.9)

For j > ja, the interval (αj , βj) straddles the mean j/2 of ηj :

αj =
j(1 + a)

4
<
j

2
<
j(1 + 3a)

8a
≤ βj ,

so that the large deviations inequalities (3.9) hold:

P(ηj < αj) ≤ exp− j
2
H

(
1 + a

2

)
, P(ηj > βj) ≤ exp− j

2
H

(
1 + 3a

4a

)
.

This yields a positive constant M such that for j > ja

P(Bc
j ) = P(ηj < αj) + P(ηj > βj) ≤ 2e−jM

and the series is convergent, which proves (4.9) and P(infj Rj ∈ [a, b]) > 0.

(B) According to Radon-Nikodym’s theorem, it suffices to find a positive
integrable function f on (0, 1), such that for any [a, b] ⊂ (0, 1),

P(M0 ∈ [a, b]) ≤
∫

[a,b]
f(x)dx

By the union bound, we have for every b′ ∈ (b, 1) :

P(M0 ∈ [a, b]) = P(inf
k≥1
Rk ∈ [a, b]) ≤ P

(⋃
k

{Rk ∈ [a, b′]}
)
≤
∞∑
k=1

P
(
Rk ∈ [a, b′]

)
.
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For B > 2/
√
π, thanks to formula (4.4), there exists K ≥ 1 such that

∞∑
k=K

P
(
Rk ∈ [a, b]

)
≤ B

∫ b′

a

( ∞∑
k=K

√
k Φk(x)

)
dx

≤ B

2

∫ b′

a

[ ∞∑
k=1

k

(
2
√
x

1 + x

)k−1
]

dx√
x(1 + x)3

=
B

2

∫ b′

a

√
1 + x√

x(1−
√
x)4

dx .

Since every Rk has a density, one may bound the K− 1 first terms of the sum
by
∫ b′
a f1(x)dx for some integrable f1. Then, since the bound holds true for

any b′ > b, we can let b′ ↓ b and we get the result.

Proof of Proposition 4.2 (2). We have

P(Rk+1 ≤ x) ≤ P(Mk ≤ x) ≤ P(Rk+1 ≤ x) +
∞∑

j=k+2

P(Rj ≤ x) .

On the one hand, from (3.5), we have, for x→ 0,

P(Rk+1 ≤ x) =
Γ
(

2k+3
2

)
Γ
(
k+2

2

)
Γ
(
k+3

2

) x(k+1)/2(1 + o(1)) .

On the other hand, a simple computation shows that
∞∑

j=k+2

P(Rj ≤ x) = O(x(k+3)/2).

Proof of Proposition 4.2 (3). We have, for j ≥ k{
Mk > 1− j−1/2

}
⊂

2j⋂
i=J

{
R2i > 1− i−1/2

}
,

hence, by independence

P
(
Mk > 1− j−1/2

)
≤

2j∏
i=j

P
(
R2i > 1− i−1/2

)
.

From (4.3), we know that limk P
(
R2k > 1− k−1/2

)
= P(N > −

√
2) where

N
(d)
= N (0, 4). Taking τ > 0 with e−τ > P(N > −

√
2) we see that for j large

enough

P
(
Mk > 1− j−1/2

)
≤ e−τj ,
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which proves (4.2).

Proof of Proposition 4.2 (4). The support of Mk is [0, 1] and limRj = 1 a.s.
so that the set {j ≥ k + 1,Rj =Mk} is not empty. Moreover since there are
no ties (P(Ri = Rj) = 0 a.s. for i 6= j) this set is a.s. a singleton. �

Proof of Proposition 4.3 (1). Setting

η̄k =
ηk − k/2√

k
and η̄′k =

ηk+1 − (k + 1)/2√
k

the CLT gives (η̄k, η̄′k)
(d)−−−→
k
N (0, 1/2)⊗N (0, 1/2) hence η̄k− η̄′k

(d)−−−→
k
N (0, 1).

Since
√
k (Rk − 1) =

k

ηk+1

(
η̄k − η̄′k −

1
2
√
k

)
,

and ηk+1/k → 1/2 a.s., we get the result.

Proof of Proposition 4.3 (2). We have fRk(x) = CkΦk(x) with

Ck = 41− k
2

Γ
(
k + 1

2

)
Γ
(
k
2

)
Γ
(
k+1

2

) =
2√
π

Γ
(
k + 1

2

)
Γ(k)

=
2
√
k√
π

(1 + o(1)) ,

where the second equality comes from the Gauss duplication formula, and the
o(1) in the last equality tends to zero as k tends to infinity.

Proof of Proposition 4.3 (3). The bounds may be obtained by integration,
but also by writing the beta variables as ratios of gamma variables and using
Chernov’s bounds. Since we need bounds holding for ρ depending on k, we
use the Markov inequality, independence and (3.8) :

P(Rk > 1 + ρ) = P (ηk − (1 + ρ)ηk+1 > 0)
≤ E exp (θηk − θ(1 + ρ)ηk+1)

= (1− θ)−k/2 (1 + θ(1 + ρ))−(k+1)/2

= (1 + θ(1 + ρ))−1/2
[
(1− θ)(1 + θ(1 + ρ))

]−k/2
,

where θ is any non negative number. The function θ 7→ (1− θ)(1 + θ(1 + ρ))
reaches its maximum for θ = ρ

2(1+ρ) < 1, so that :

P(Rk > 1 + ρ) ≤
(

1− ρ2

(2 + ρ)2

)k/2
. (4.10)
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Similarly

P(Rk < 1− ρ) ≤ E exp (θ(1− ρ)ηk+1 − θηk)
= ((1 + θ))(1− θ(1− ρ))−k/2 (1− θ(1− ρ))−1/2

≤
√

2
(

1− ρ2

(2 + ρ)2

)k/2
.

Proof of Proposition 4.3 (4). The proof needs similar evaluations for R′k and
is left to the reader. �

5. Convergences in `q and consequences for random bases

5.1. Main result. The following Proposition 5.1 states a limit behavior for
the process (r(n)

j ) when n → ∞. It is the keystone for the proof of our main
result (Theorem 2.2) whose statement is rephrased in Theorem 5.2 below.

Proposition 5.1. For any q > 2, the following convergence in distribution
holds in `q :

(r(n)
j − 1)j≥1

(d)−−→
n

(Rj − 1)j≥1.

The convergence stated in this proposition is a convergence in distribution.
This is due to the fact that the ambient spaces Rn, n ≥ 1 are not nested, and
then, there is no evident canonical or geometrical consideration providing a
stronger convergence (as almost sure convergence or convergence in probabil-
ity). The proof of this proposition will use a representation of the processes
(r(n)
j ) using the gamma distributions.

Since the mapping x 7→ 1 + mini≥k xi is continuous from `q onto R, it follows
that Mg

n ∧ 1 converges in distribution to Mg. We will prove in the next
subsection the following rephrasing of Theorem 2.2:

Theorem 5.2. If (νn) is spherical and satisfies Assumption 2.1 then,

(1) For each k, Mk
n

(d)−−−→
n
Mk.

(2) For any k ≥ 1, Ikn
(d)−−−→
n
Ik.

(3) Let g : N → N such that g(n) ≤ n and g(n) → ∞. We have

Mg(n)
n

(d)−−−→
n

1 .

5.2. Proofs of convergence (Theorem 5.2/2.2, and Proposition 5.1).
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5.2.1. Construction of a probability space. In order to prove Proposition 5.1
and Theorem 5.2, we build a probability space on which are defined some
copies of the variables ‖b(n)

i ‖2, ‖b̂(n)
i ‖2, i ≥ 0, n ≥ 0 (and then also r(n)

j ) and
the process (Rk)k. Thanks to that framework, we will be able to use the strong
law of large numbers to get strong versions of the convergences in distribution
stated in Proposition 5.1 and Theorem 5.2. This argumentation follows the
coupling method.

From Theorem 3.3 and the representation (3.3) we see that

‖b̂(n)
n−k+1‖

2 = Y
(n)
n−k+1‖b

(n)
n−k+1‖

2

Y
(n)
n−k+1

(d)
=
∑k

m=1 ξm∑n
m=1 ξm

, ‖b(n)
n−k+1‖

2 (d)
= ‖b(n)

1 ‖
2 (5.1)

where the ξm’s are γ1/2 distributed, and ‖b(n)
n−k+1‖

2 is independent of the ξm’s.

Since the ‖b̂(n)
n−k+1‖

2 for 1 ≤ k ≤ n− 1 are independent, we may consider two
double arrays (ξki , i ≥ 1, k ≥ 1), (ζkj , j ≥ 1, k ≥ 1) of independent random
variables (and independent together), such that

ξkj
(d)
= γ(1/2) , (j ≥ 1, k ≥ 1) ,

ζkj
(d)
= ‖b(j)1 ‖

2 , (j ≥ 1, k ≥ 1) . (5.2)

The common probability space on which are defined all the variables ξkj and
ζkj is denoted by Ω. From now on we work exclusively on Ω.

Let us set

Skp =
p∑

m=1

ξkm, k ≥ 1, p ≥ 1 .

Now, the processes (Skj )j≥1 for k ≥ 1 are independent copies of (S1
j )j≥1, and

for each n ≥ 1, we have the following distributional representation :

{‖b̂(n)
n−k+1‖

2 , 1 ≤ k ≤ n− 1} (d)
=
{
Skk
Skn

ζkn, 1 ≤ k ≤ n− 1
}
. (5.3)

For n ≥ 2, set

R
(n)
k =


Skk
Sk+1
k+1

Sk+1
n

Skn

ζkn
ζk+1
n

if 1 ≤ k ≤ n− 1,

1 if k ≥ n.
(5.4)

We have now, (see (3.24) and (3.25))

r(n) (d)
= R(n) . (5.5)
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The processes r(n), n ≥ 2 are not defined on a unique probability space, since
the ambient spaces are not nested. On the contrary, the sequence R(n), n ≥ 2
is defined on the unique probability space Ω. Set also

Rk :=
Skk
Sk+1
k+1

. (5.6)

Notice that since R was defined in (3.26), we make in (5.6) a slight abuse of
notation but this is consistent in terms of distribution and allows to avoid a
new symbol. From now on (Rk) is then a random variable on Ω.

Setting, for any g ≥ 0,

Mg
n = min

g+1≤k≤n−1
R

(n)
k and Mg = min

k≥g+1
Rk , (5.7)

we get

Mg
n

(d)
= Mg

n , (5.8)

and want to prove a convergence (in probability) of Mg
n to Mg. Since the

convergence of R(n)
k to (Rk) for each k is not sufficient to this aim, we need a

uniform control.

5.2.2. Proof of Proposition 5.1. This is a direct consequence of (5.5) and the
following Lemma.

Lemma 5.3. For any q > 2, (R(n)
k −Rk)k converge a.s. (in Ω) to 0 in `q, i.e.

∞∑
k=1

|R(n)
k −Rk|

q a.s.−−−→
n

0. (5.9)

Proof of Lemma 5.3. We have∑
k

|R(n)
k −Rk|

q =
∑

1≤k≤n−1

|R(n)
k −Rk|

q +
∑
k≥n
|1−Rk|q .

On the one hand, the second term of the right hand side converges a.s. to zero
(see Proposition 4.1). On the other hand, from (5.4) we have

R
(n)
k −Rk = Rk

(
Sk+1
n

Skn

ζkn
ζk+1
n

− 1
)
,

and the sequence (Rk) is a.s. bounded. It is then enough to prove that a.s.

lim
n

n−1∑
k=1

∣∣∣∣Sk+1
n

Skn

ζkn
ζk+1
n

− 1
∣∣∣∣q = 0 . (5.10)



20 ALI AKHAVI, JEAN-FRANÇOIS MARCKERT, AND ALAIN ROUAULT

Let δ > 0. By the union bound and the identity of distributions, we have

P

(
n−1∑
k=1

∣∣∣∣Sk+1
n

Skn

ζkn
ζk+1
n

− 1
∣∣∣∣q > δ

)
≤

n−1∑
k=1

P
(∣∣∣∣Sk+1

n

Skn

ζkn
ζk+1
n

− 1
∣∣∣∣q > δ

n

)

= (n− 1)P

(∣∣∣∣∣S(2)
n

S
(1)
n

ζ1
n

ζ2
n

− 1

∣∣∣∣∣ > δ1/q

n1/q

)
.

Splitting this event, we get easily for ε = δ1/q

n1/q ≤ 1

P

(∣∣∣∣∣S(2)
n

S
(1)
n

ζkn
ζk+1
n

− 1

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣S(2)
n

S
(1)
n

− 1

∣∣∣∣∣ > ε/3

)
+ P

(∣∣∣∣ζ1
n

ζ2
n

− 1
∣∣∣∣ > ε/3

)
.

Recalling Proposition 4.3 (3) and (4), the first term is P(|R′n − 1| > ε/3) and
is O(εn/2). For the second term we need a lemma.

Lemma 5.4. Let U1 and U2 be independent and distributed as ‖x‖2 under νn.
If Assumption 2.1 holds, then there exist d′1, d

′
2, α > 0 and ρ0 ∈ (0, 1) such

that for any k ≥ 1, n ≥ 1 and ρ ∈ (0, ρ0)

P
(∣∣∣∣U1

U2
− 1
∣∣∣∣ ≥ ρ) ≤ d′1 exp(−nd′2ρα ). (5.11)

From (5.2) and Lemma 5.4, the second term is O
(

exp(−cnεα)
)
, where c is

some positive constant. Gathering all these bounds we get that for every n

P

(
n∑
k=1

∣∣∣∣Sk+1
n

Skn

ζkn
ζk+1
n

− 1
∣∣∣∣q > δ

)
≤ c1n exp

(
−c2n

1−α
q

)
.

where c1 and c2 are positive constants. For q > α, we get a convergent series,
so (5.10) holds true, which ends the proof of Lemma 5.3. �

Proof of Lemma 5.4. We have

P
(
U1

U2
≥ 1 + ρ

)
≤ P(U2 ≤ (1− ρ/2)) + P(U1 ≥ (1 + ρ)(1− ρ/2))

≤ P(U2 ≤ (1− ρ/2)) + P(U1 ≥ (1 + ρ/4))

as soon as ρ ≤ 1/2. Similarly

P
(
U1

U2
≤ 1− ρ

)
≤ P(U2 ≥ (1 + ρ/2)) + P(U1 ≤ (1− ρ)(1 + ρ/2))

≤ P(U2 ≥ (1 + ρ/2)) + P(U1 ≤ (1− ρ/2))

Using Assumption 2.1, this yields

P
(∣∣∣∣U1

U2
− 1
∣∣∣∣ ≥ ρ) ≤ d′1 exp(−nd′2ρα ). �
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5.2.3. Proof of Proposition 5.2. (1) From (5.9) and Proposition 4.1, the se-
quence

(
R

(n)
k − 1

)
k≥1

converges a.s. in `q to (Rk − 1)k≥1. Let K be a fixed
integer and

M̃K
n := inf

k≥K+1
R

(n)
k ,

so that M̃K
n = MK

n ∧1. This yields 0 ≤MK
n −M̃K

n = (MK
n −1)+ ≤ (R(n)

n−1−1)+.

Since R(n)
n−1

P→ 1 (by 3.19), we get

MK
n − M̃K

n
P→ 0, (5.12)

and so, MK
n and M̃K

n have the same limit behavior.
Since the mapping (ck)k≥1 ∈ `q 7−→ infk≥K ck is continuous, one has

M̃K
n

a.s.−−−→
n

MK . (5.13)

Thanks to (5.12), we obtain MK
n

P→MK and then by (5.8) MK
n

(d)−−−→
n
MK .

(2) We take k = 0 for the sake of simplicity. Recall that

I0
n = min{i ∈ {0, . . . , n− 2} : r(n)

i = min{r(n)
j , j ∈ {0, . . . , n− 2}}.

For a ∈ [0,∞)IN, let

min argmin a := min{i ≥ 1 : ai = inf
j≥1

aj}

where as usual set min ∅ = ∞. If we set I0
n = min argmin {R(n)

j , j ≥ 1}, we
have

I0
n ∧ n

(d)
= I0

n . (5.14)

We know that a.s. M0 < 1 so that for n large enough, we have M0
n < 1,

hence I0
n ∧ n = I0

n. Now, from Lemma 5.3, a.s limR(n) = R in `q, and
from Proposition 4.2(4), #argmin (R) = 1. It is straightforward that the
convergence of yn to y in `q implies the convergence of min argmin (yn) to
argmin (y) if #argmin (y) = 1. Hence, a.s. lim I0

n∧n = I0. Thanks to (5.14),

we conclude I0
n

(d)−−−→
n
I0.

(3) Since a.s. (Rk−1)k ∈ `q, it is clear thatMK tends to 1 a.s. as K tends
to infinity. For every ε > 0 it is then possible to find K such that

P(MK ≤ 1− ε) ≤ ε .

For n large enough, one then has, by (5.13) and (5.12),

P(MK
n ≤ 1− 2ε) ≤ 2ε .
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Since the function k 7→Mk
n is non-decreasing, one has, for n large enough such

that g(n) ≥ K,

P(Mg(n)
n ≤ 1− ε) ≤ 2ε ,

i.e. Mg(n)
n

P→ 1. With the help of (5.8), we conclude Mg(n)
n

(d)−−−→
n

1. �

6. LLL reductions and QR decompositions

6.1. LLL reduction of a random lattice. If B = [b(n)
1 , · · · , b(n)

p ] is the
n × p matrix with column vectors b(n)

1 , · · · , b(n)
p in the canonical basis, it can

be decomposed in a unique way as B = QR where
• R = [Ri,j ] ∈ Rp×p is upper-triangular, Ri,j = 0 for j < i and Ri,i > 0,
• Q ∈ Rn×p is isometric i.e. Q′Q = Ip.
The relation with the Gram-Schmidt orthogonalization is

Q =

[
b̂
(n)
1

‖b̂1‖
, . . . ,

b̂
(n)
p

‖b̂p‖

]

Rjj = ‖b̂j‖, Rk,j =
〈b(n)
j , b̂

(n)
k 〉

‖b̂(n)
k ‖

, 1 ≤ k < j ≤ p . (6.1)

Let us consider the differences between the definition of LLL reduction we
consider here and the original definition introduced by Lenstra-Lenstra-Lovász
in [18].
Firstly in the original definition the basis has also to be proper2 or size-reduced,
i.e.

|Rk,j | ≤
1
2
Rk,k , 1 ≤ k < j ≤ p . (6.2)

But from any basis satisfying (1.2) one efficiently obtains a proper basis still
satisfying (1.2) by a straightforward sequence of integer translations provided
in subsection 6.3.
Secondly the approximation parameter of the original LLL in [18] is slightly
different from ours and the reduction we consider here is indeed Siegel reduc-
tion as called in [3, 2]. Our main Theorem 2.2 is still true with the original
definition of a LLL reduced basis as detailed in subsection 6.2.

2Considering the notion of flag ([14]) rather than basis for lattices, makes it possible to
skip the notion of properness.
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6.2. LLL(δ)-reduced basis versus Siegel(s)-reduced basis.

Definition 6.1. Let δ ∈ (1/4, 1]. The basis b(n)
p is called truly–LLL(δ) reduced

if it is proper (see (6.2)) and if

δR2
k,k ≤ R2

k,k+1 +R2
k+1,k+1 for k = 1, . . . , p− 1 , (6.3)

or equivalently

δ‖b̂(n)
k ‖

2 ≤ R2
k,k+1 + ‖b̂(n)

k+1‖
2 for k = 1, . . . , p− 1 . (6.4)

From the above definition and the definition of a LLL(s)-reduced basis (1.1),
and since 4R2

k,k+1 ≤ ‖b̂
(n)
k ‖

2 (thanks to properness) one deduces immediately:

Proposition 6.2. (i) If a basis is LLL(s) reduced with s ∈ (0, 1) and
proper, then it is truly–LLL(δ) reduced with δ = s.

(ii) If a basis is truly–LLL(δ) reduced then it is LLL(s) reduced with s =√
δ − 1/4.

6.3. How to make a basis proper while preserving its LLL reduceness.
The Make–proper algorithm:
Input: A basis b = (b1, . . . , bp) of a lattice L.
Output: A proper basis b of the lattice L.
Initialization: Compute the orthogonalized system b̂ and the matrix R.
For i from 2 to n do

For j from (i-1) downto 1 do
bi := bi − bRj,iRj,j

ebj (bxe is the integer nearest to x).

Clearly the Gram-Schmidt basis associated with the input basis is preserved
under the integer translations of the above algorithm. So the Gram Schmidt
basis associated with the output basis is the same as the one associated with
the input basis and the Make–proper algorithm preserves LLL(s)-reduceness
and truly–LLL(s)-reduceness.

6.4. A brief description of the LLL algorithm. In this subsection, we
provide a simple formulation of the LLL(δ) algorithm. Clearly, from Proposi-
tion 6.2 if the input basis is LLL(s)-reduced the following algorithm will stop
after one iteration of the while loop (which makes the basis proper).

The LLL(δ)-reduction algorithm:
Input: A basis b = (b1, . . . , bp) of a lattice L.
Output: A LLL(δ)-reduced basis b (or a truly LLL(s)-reduced basis) of the
lattice L.
Initialization: Compute the orthogonalized system b̂ and the matrix R.
i := 1;



24 ALI AKHAVI, JEAN-FRANÇOIS MARCKERT, AND ALAIN ROUAULT

While i < n do
bi+1 := bi+1 − bRi,i+1

Ri,i
ebi (bxe is the integer nearest to x).

Test: ‖b̂i+1‖ > s‖b̂i‖ ? (or ‖b̂i+1‖2 +R2
i,i+1 > δ‖b̂i‖2 ?)

If true, make (b1, . . . , bi+1) proper by Make-proper; set i := i + 1;
If false, swap bi and bi+1; update b̂ and R; if i 6= 1 then set i := i− 1;.

7. Extensions

We quote here two possibilities of extension of the above considerations on
random bases. We do not give proofs since they are straightforward and do
not bring any new concept or technical difficulty.

7.1. Segment reduction. In [17], Koy and Schnorr proposed the concept of
segment LLL-reduction in which a basis b(n)

1 , . . . , b
(n)
n of dimension n = dm

is partitioned into m segments B` = [b(n)
d`+1, . . . b

(n)
(d+1)`], ` = 1, . . . ,m of d

consecutive basis vectors. They adapt the LLL algorithm, improving the time
bound. They perform local reduction of consecutive segments Br−1, Br. They
defined the local Gramian determinant of Br as

D(r) = ‖b̂(n)
d(r−1)+1‖

2 · · · ‖b̂(n)
dr ‖

2

and are interested in the quotients D(r)/D(r+1) , r ≥ 1. It is straightforward
to extend our results, thanks to the strong independence of vector lengths. Let

Mg
d,n = inf

r:(r+1)d≤n−g

D(r + 1)
D(r)

(7.1)

As in Theorem 2.2, under a spherical model, if g = g(n) tends to ∞ and the
block size d is fixed, then for any s ∈ [0, 1]

P
(
Mg

d,n ≥ s
2
)
→ 1 ;

if g is constant, then this probability tends to a constant in [0, 1] (depending
on s, g and d), or in other words, the random variable Mg

d,n converges in
distribution.

Proposition 5.1 and Theorem 5.2 have their analogous for the reduction by
segments. Set

r
(n)
d,j :=

D(m− j)
D(m− j − 1)

(recall n = dm)

for j such that g + 1 ≤ dj ≤ dm − 1 and r
(n)
d,j := 1 for j such that dj ≥ dm.

Then when m → ∞ (hence n → ∞), we have convergence of (r(n)
d,j , j ≥ 1) to
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a process (Rd,j , j ≥ 1) with

Rd,j =
ηd,j
ηd,j+1

, ηd,j
(d)
= γ(j/2)γ((j + 1)/2) · · · γ((j + d− 1)/2) ,

where the ηd,j , j ≥ 1 are independent, and the gamma variables too. Then by
setting

Mg
d,n = min

j:g+1≤dj≤n−1
r

(n)
d,j , M̃

g
d := inf

{
Rd,j , dj ≥ g + 1

}
.

one obtains also an analogous to Theorem 5.2.

7.2. Complex or quaternionic bases. In the complex LLL (see [12]) vec-
tors are chosen in Cn. If we consider random basis, we have similar results
but the square length of a vector is now γn distributed and in all our results,
the γ1/2 distribution has to be replaced by a γ1 (i.e. exponential) distribution.
It is also possible to study quaternionic vectors and the LLL algorithm in the
same framework (see [22]). The distribution involved would be γ2 distributed.

8. Orthogonality Defect and Random Matrix Theory

If b(n)
p is picked with distribution Gn, the matrix B′B has a Wishart distri-

bution. If it is picked with distribution US
n , the matrix B′B has the so-called

Uniform Gram distribution. These distributions are well known in statistics
([5], [21]) and the study of these random matrices have recently been the topic
of many papers3. It is straightforward from Definition 1.4 that the orthogo-
nality index has the same distribution under all spherical models. It is then
sufficient to consider US

n , and in this case ρ−2
p,n = detB′B. The random matrix

B′B has a distribution called Uniform Gram Ensemble and its determinant
was studied in [24]. The decomposition (1.4) in a product of independent ran-
dom variables with beta distribution (Theorem 3.2), known as a Bartlett-type
decomposition, makes possible, taking logarithms, to apply limit theorems on
triangular arrays. The regime used (as frequently in recent works in Random
Matrix Theory) is p, n→∞ such that p/n→ t ∈ [0, 1].

We now translate some of the results obtained there to get the asymptotic
behavior of ρp,n as n→∞. The first result corresponds to g(n) = n−bntc →
∞ and the second one corresponds to g = 0. It is clear that for g 6= 0 fixed,
we would obtain results similar to (2). Notice that the result of simulation in
Tab. 8.1 p.147 of [2] is in accordance with (8.4).

Theorem 8.1 (Rouault [24] Theorem 3.1). The following convergences hold

3For the algorithmic point of view see an excellent survey in [11]
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(1) For t ∈ [0, 1) , as n→∞,

E(log ρ[nt],n) =
n

2
A(t) +O(1) (8.1)

where A(t) := t+ (1− t) log(1− t). Moreover

lim
n

sup
t∈[0,1]

∣∣∣∣ log ρbntc
n

− A(t)
2

∣∣∣∣ = 0 , (8.2)

in distribution.
(2) For the full basis, we have

E(log ρn,n)− n

2
− 1

4
log n −−→

n
C where C is some constant. (8.3)

(ρn,n)1/n (d)−−−→
n

e1/2 . (8.4)

Theorem 8.2 (Rouault [24] Theorem 3.2). Let

ξn(t) := log ρ[nt],n − E log ρ[nt],n , t ∈ [0, 1) .

1) The sequence of processes (ξn)n converges in distribution in D([0, 1)),
the space of càdlàg functions on [0, 1) equipped with the Skorohod topol-
ogy to (G(t), t ∈ [0, 1)) which is a Gaussian process with continuous
paths, independent increments, and variance v(t) = 1

2 log 1
1−t −

t
2 . If

W denotes the standard Brownian motion, we have

(G(t), t ∈ [0, 1))
(d)
=

(
Wv(t) , t ∈ [0, 1)

)
(d)
=

( ∫ t

0

√
s

2(1− s)
dWs , t ∈ [0, 1)

)
.

2) Let

ξn :=
log ρn,n − n

2 −
1
4 log n

√
log n

Then, as n→∞, ξn converges in distribution to a random variable N
independent of the process G and N (0, 1/2) distributed.

There is also a principle of large deviations but we omit it here, not to
lengthen this paper.
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