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Abstract. Neurobiological studies showed the important role of Cen-
teral Pattern Generators for spinal cord in the control and sensory feed-
back of animals’ locomotion. In this paper, this role is taken into account
in modeling bipedal locomotion of a robot. Indeed, as a rhythm gener-
ator, a non-classical model of a neuron that can generate oscillatory as
well as diverse motor patterns is presented. This allows different motion
patterns on the joints to be generated easily. Complex tasks, like walk-
ing, running, and obstacle avoidance require more than just oscillatory
movements. Our model provides the ability to switch between intrinsic
behaviors, to enable the robot to react against environmental changes
quickly. To achieve complex tasks while handling external perturbations,
a new space for joints’ patterns is introduced. Patterns are generated by
our learning mechanism based on success and failure with the concept
of vigilance. This allows the robot to be prudent at the beginning and
adventurous at the end of the learning process, inducing a more efficient
exploration for new patterns. Motion patterns of the joint are classified
into classes according to a metric, which reflects the kinetic energy of
the limb. Due to the classification metric, high-level control for action
learning is introduced. For instance, an adaptive behavior of the rhythm
generator neurons in the hip and the knee joints against external per-
turbation are shown to demonstrate the effectiveness of the proposed
learning approach.

1 Introduction

Biological studies of animals suggest that animals’ locomotion is mainly gener-
ated at the spinal cord, by a combination of a central pattern generator (CPG)
and reflexes receiving adjustment signals from a cerebrum, cerebellum and the
brain [1], [2], [3]. These studies were taken into account in robot’s locomotion
gait in order to implement such mechanism, especially on legged robots [4], [5],
[6], [7], [8]. Biologically inspired walking mechanism for legged robot does not
require a perfect knowledge of the robot’s dynamics. Different models of neural
oscillators are widely used to generate rhythmic motion [9], [10], [11], [12], [13].
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Such oscillations generated by two mutually inhibiting neurons are described
in a set of differential equations (e.g. Matsuoka [9]). Rowat and Selverston [14]
proposed a new model of rhythmic neuron that can generate different types of
patterns such as oscillatory ones. The different behaviors in the activity of these
neurons can be used in robot’s locomotion to achieve different tasks as well as
walking. Complex task, like walking, hopping, running, and obstacle avoidance,
require correct synchronization and switching between patterns [15]. In action
learning approach, where learning always occurs in the space of parameters, there
is a limitation to learn complex tasks, due to the dimension of this space which
can drastically increases. This issue can solved by looking for a new representa-
tion of patterns. Instead of learning in the space of parameters, learning can be
occur inside a new space called patterns’ space. ( e.g. in case of one dimensional
patterns space, patterns will be represented only on one axis). Our work aims to
produce a biological inspired neural controller for biped walking, based on CPG
with a rhythmic neuron proposed by Rowat and Selverston [14]. According to
the environment changes, the adaptation of the neurons behavior will be shown.
Therefore, a new space for patterns allowing intrinsic behaviors of a joint motion
will be proposed.

This paper is organized as following. Section 2 presents the principles of
the neural controller based on the model of rhythmic neurons, which is able to
generate CPG-like patterns. The three layers of the CPG used in bipedal control
will be presented. A coupling circuitry for walking will be proposed. Next, the
walk learning phase based on previous experience with a threshold of vigilance to
allow extensive patterns search within a large space of parameters will be detailed
in section 3. In the fourth section, a new representation of successful and failure
walking patterns is proposed. This approach allows a high level control in space of
patterns instead of space of parameters. The effectiveness of our learning scheme,
which allows switching between bipedal patterns to achieve different locomotive
tasks will be demonstrated. Moreover, an example on the adaptation behavior
of the rhythm generator neurons in the hip and the knee joints against external
perturbation will be shown. The last section gives a conclusion and details of
further developments.

2 Neural Control of Locomotion

Physiological studies suggest that rhythmic movements in animal’s locomotion
system are produced by a neural network called CPG [16]. It can generate a
locomotive rhythmic behaviors with neither sensory nor central inputs [17]. Sen-
sory inputs shape the output of this locomotion system, and allow the animal
to adapt its locomotion patterns to external or internal changes. Genetic studies
on newborn rat and mice suggest that rhythmic limb movements during loco-
motion are generated by neuronal networks located within the spinal cord [18].
Matsuoka and McMillen neural oscillators are widely used as mathematical mod-
els for non-linear oscillators [9], [10]. These half-centre oscillators consist of two
neurons that individually have no rhythmic behavior, but which produce rhyth-
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mic outputs when they are reciprocally coupled. This paper present another
model of non-linear rhythm generator. This model is based on the fact that one
neuron can generate oscillatory as well as different motor patterns [14].

2.1 Cell Model

The cell model introduced by Rowat and Selverston to modulate the gastric
mill CPG in the lobster is interesting due to its ability to generate different
patterns by controlling only two parameters [14]. Furthermore, such patterns
can be generated with only one neuron without need for another coupled neuron
as used in classical models [9], [10]. In the adopted model, the membrane currents
of the neuron are separated into two classes, fast and slow, according to their
time responses. The sum of all fast currents is modeled by a single fast one,
and a single slow current is used to model the sum of all slow ones. This model
cell has two differential equations, one for membrane potential V , derived from
current’s conservation, and one for lumped slow current q, derived from current’s
activation, see eq.(1).

τm.
dV

dt
= −(fast(V, σf ) + q − iinj) τs.

dq

dt
= −q + q∞(V ) (1)

While the fast current is supposed to activate immediately, the membrane time
constant τm is assumed to be smaller than the slow current’s time constant
for activation τs. We have taken the ratio of τs to τm to be about 20 as in
[14], τm = 0.05, and τs = 1 for all rhythmic neurons. The injected current is
iinj . An idealized current-voltage curve for the lumped fast current is given by:
fast(V, σf ) = V −Af .tanh((σf/Af )V ). The fast current can represent the sum
of a leak current and an inward Ca++. The dimensionless shape parameter for
current-voltage curve is given by: σf = gCa

gL
. Where gL is a leak conductance and

gCa is the calcium conductance. q∞(V ) is the steady state value of the lumped
slow current, which is given by: q∞(V ) = σs(V − Es). q∞(V ) is linear in V
with a reversal potential Es. σs is the potassium conductance gK normalized
to gL. σs is given by: σs = gK

gL
. q and iinj have the dimension of an electrical

potential. A true current is obtained by multiplying the model current by a
leak conductance gL. V , Es, iinj , and q are given in millivolts while τs and
τf are expressed in milliseconds. With different values of the cell parameters,
different intrinsic behaviors can be achieved : quiescence (Q), almost an oscillator
(A), endogenous oscillator (O), depolarization (D), hyperpolarization (H), and
plateau (P), as shown in Fig.1. In bio-inspired locomotion, a pair of neurons

Fig. 1. The six intrinsic behaviors of the cell’s model, Rowat and Selverston [14].
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with mutual inhibition can be used to generate rhythmic motion in extension
and flexion. A bio-inspired model for locomotion is proposed in the next section.

2.2 Locomotion Model

Studies of rhythmic movement in the animal show that local circuits in the spinal
cord are able to control the timing and coordination of complex motion patterns
[19]. The locomotion and rhythmic movements in mammals are organized by
oscillatory spinal cord circuits called CPGs. Experimental studies show that the
rhythmic patterns in cat limbs can be generated in the absence of descend-
ing control from higher centers and sensory feedback [3]. Each joint appears to
have its own CPG, which can be coupled to the CPG of another joint in order
to achieve complex movements such as walking, running, swimming, flying, etc.
These CPGs controlling such behaviors in animals locomotion can be responsible
of rhythmic movements in human locomotion [20]. Several schemes for the spinal
CPG have been proposed to generate rhythmic movements: ”half-center CPG”
proposed by Brown [21], ”half-center CPG” with more complex patterns of mo-
torneuron activity introduced by Perret et al. [22] and ”half-center CPG” with
sensory input proposed by Orlovsky et al. [1]. One drawbacks of these models
is the direct excitatory connection between the rhythm generator interneurons
and motorneurons. Any change in the interneurons layer will affect simultane-
ously the motorneurons layer. A more complicated architecture is required to
face the adaptation with the environment changes. Two and three levels CPGs
with rhythm generation and pattern formation circuitry have been proposed by
[2] and [23]. This model separates cycle timing and motoneurons activation. In
order to achieve a rhythmic movement such as walking, the CPG model was im-
plemented on a simulated biped robot using MATLAB software. Fig.2(a) shows
the wiring diagram for one biped robot’s joint. It can be separated into three
layers: Rhythm Generation neurons (RG), Pattern Formation neurons (PF) and
MotorNeurons (MN). Sensory feedback shapes the activity of these neurons.
This paper focuses on the effect of descending control on the rhythm generators
neurons in order to control the behavior of these neurons when external pertur-
bation occurs during walking. In the analytical study, after observing the phase
diagram of a joint and changing σs and σf in the rhythm generators neurons,
different motion behaviors were observed on the joint. Fig.2(b) shows the distri-
bution of motion patterns in space of σs and σf . Varying σs and σf in RG of
a joint will change its motion pattern. The four detected basic motion patterns
can lead the robot to achieve some complex tasks like walking, running, and
jumping depending on synaptic circuits between joint CPGs.

2.3 Control architecture for a biped robot

Previously, the basic motion patterns obtained for one joint was shown. To
achieve a complex movement like walking, synchronization between joints is
needed. The complex patterns like walking and running are always composed of
synchronized basic patterns. The synchronization between patterns is ensured
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Fig. 2. Model of one joint controller and its motion patterns. (a)The model’s scheme,
CPG with three levels: Rhythm Generator, Pattern Formation, and MotorNeuron level.
(b)The different behaviours observed on the joint for the same injected current. (x):
Plateau , (*): Quiescence; (+): Almost an oscillator, and (o): Oscillatory behavior.

by coupling the CPGs for the joints. Fig.3 shows the proposed coupling circuits
between the rhythm generator neurons for the hip, the knee, and the ankle joints
of a simulated biped robot. Each joint is driven by a simulated servo motor. With
such simple coupling, the robot can carry out walking task from basic oscilla-
tory patterns. With different coupling circuits, another task can be achieved. In
some complex circuits, the robot can walk with different gaits. A desired task
can be accomplished by defining basic patterns and special coupling circuit. The
principle of our proposed circuit for walking ( see fig.3) is described by the ac-
tivity between the CPGs which is regulated by excitatory synaptic connections.
For inter-limb circuitry, rhythm generator neuron extensor in the left hip (RG-
E-hipL) excites rhythm generator neuron flexor in the right hip (RG-F-hipR).
Rhythm generator neuron flexor in the left hip (RG-F-hipL) excites rhythm
generator neuron extensor in the right hip (RG-E-hipR). The same synaptic
excitation is proposed from the right hip to the left hip. For one leg, rhythm
generator extensor neuron in the hip (RG-E-hip) excites rhythm generator ex-
tensor neuron in the knee (RG-E-knee) and rhythm generator extensor neuron
in the ankle (RG-E-ankle) of the same leg. Rhythm generator flexor neuron in
the hip joint (RG-F-hip) excites rhythm generator flexor neuron in the knee
one (RG-F-knee) and rhythm generator flexor neuron in the ankle joint (RG-
F-ankle) of the same leg. As described before, the locomotion is the interaction
between CPG, sensory feedback, and descending control. Sensory information
is used to shape the motion and manage some perturbations and balance con-
trol [24]. Thanks to the interaction with sensory feedback, the robot can walk
without a perfect knowledge of its dynamics. A static model of sensory neuron
proposed by Ekberg [25] is described in eq.(2). ρi is the activity of sensory neu-
ron, α is a positive constant that denotes the dynamics of the neuron, θ is the
amplitude and φ is the input on the neuron. φ can be an angular position, or a
contact force [26].

ρi = (1 + eα(θ−φ))−1 (2)



6 J.Nassour et al.

EF

EF

EF

EF

EF

EF

Left Hip

Left Knee

Left Ankle

Right Hip

Right Knee

Right Ankle

F

F

F

E

E

E

Ground reaction

forces

Fig. 3. Planar Biped model and proposed coupling circuitry between rhythm generator
neurons for all joints. E and F are extension and flexion.

The extension and flexion sensory neurons in each joint inhibit the corresponding
motorneuron for this joint. This circuitry is referred as articular reflex. Equilib-
rium control is achieved by the difference between the center of pressure and
the projection of the center of mass. In our model, the parameter of equilibrium
used as input of two neurons: falling forward and falling backward neurons. The
activity of both neurons is injected in pattern formation layer at the ankle CPG.
If the robot may fall forward, the corresponding neuron becomes active to excite
the pattern formation neuron extensor for the ankle of stance leg. The flexor
pattern formation neuron will be excited if the falling backward neuron becomes
active. Once the control architecture was proposed and the model of rhythmic
neurons is determined, it is time to show how the simulated biped is learning
to walk on a flat terrain. As the desired task is the walking and the coupling
circuit is already defined, the biped will learn basic patterns, in space of σs and
σf , that lead to successful walking.

3 Success and Failure Learning

The objectives of the learning mechanism is to detect in the space of σs and
σf the basic patterns which lead to successful walk. Our previous work in
experience-based learning mechanism with the vigilance concept has been used
here to detect successful and failure walking patterns, see [27] for more details.
Walking trial occurs inside a time window of ten seconds. Successful walking
is defined when the simulated biped did not fall during the time window and
achieved two steps at least.

This mechanism is composed of two phases: evaluation and decision, see
Fig.4. In the evaluation phase, two independent neural networks based on well-
known Self Organizing Maps, proposed by Kohonen [28], are used to represent
the knowledge in success and in failure. Success map learns in case of success
trials, and failure map learns in case of failure ones. During learning, the two
maps will be self-organized in the space of parameters that will be therefore
divided into three zones: a zone of success represented by success map, a zone of
failure represented by failure map, and a zone of conflict that corresponds to the
interference between the two maps. The evaluation of any vector −→v from space
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E belonging to success or failure is defined by the distance between −→v and each
map. The distance of a vector with a map is the distance between this vector
and the closest neuron in the state space (the winner neuron). For each −→v , two
distances therefore exist: one to success map called ds, and another to failure
map called df . In the decision phase, the comparison between the distance with
success map ds and the one with failure map df leads to an expected result in
the case where the vector −→v is applied on the controller (trial). According to
expected result, if it may lead to failure, then an Early Warning Signal (EWS)
becomes active to avoid the trial, and the decision will be “nogo”. When EWS
is inactive, the decision called “go”is taken. The decision mechanism is affected
by the threshold of vigilance svig, which represents the tolerance to risk. The
vigilance is related to human learning approaches and decision making [29].

In order to increase the reflectivity of the vigilance threshold model proposed
in our previous work [27], a modulation of the above mentioned threshold svig is
introduced. This lead to get different values of it for each trial. Hence, this model
increases the learning mechanism efficiency by extending the learning process to
sectors of space of parameters. As an important issue, the risk behavior will
change from prudence at the beginning of learning to adventure at the end. An
example of vigilance threshold modulation is given as following (see Fig.5(c)):

y1 ≤ svig ≤ y2

{
y1 = a1 − b1 ∗ log((x + c1)2)
y2 = a2 − b2 ∗ log((x + c2)2)

(3)

The coefficients values are (a1 = 0.9, a2 = 1.47, b1 = b2 = 0.15, c1 = c2 = 20)
and were chosen after several attempts. y1 and y2 chosen curves ensure smooth
change between the prudence and adventure above mentioned behaviors. Walk-
ing patterns are presented by success map and falling patterns are presented by
failure one. With such learning mechanism, learning failure map is as impor-
tant as learning success map, since falling patterns stored in failure map can be
used in an adaptation approach where walking patterns are limited (ex: in case
of external perturbation). Fig.5 shows success and failure maps after learning
200 trials based on the new model of the vigilance threshold. The state space is
normalized between 0 and 1 and each map has 25 neurons. Weights of neuron
(w1,w2) denote the parameters of the rhythmic neuron (w1 = σs, w2 = σf ).
Therefore, there are 25 different configurations in each map that match 25 suc-
cessful walking gaits stored in success map, and 25 unsuccessful walking patterns
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stored in failure map. Because of the topological properties of the Self Organiz-
ing Maps, three neurons in failure map are situated in the success zone and
show oscillatory behaviors ((0.39, 0.57),(0.46, 0.33),(0.17, 0.23)), see Fig.5(a). As
these neurons did not represent any failure pattern, they are eliminated from
the failure map.
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Fig. 5. Success and failure maps after learning walk on flat terrain. (a)Failure map
after learning unsuccessful walking patterns. Three neurons was eliminated from the
map, because they did not represent any input vector. (b)Success map after learning
walking patterns. (c)New vigilance Model related to learning iterations, y1 ≤ svig ≤ y2.
The risk behavior will change from prudence at the beginning of learning to adventure
at the end.

4 Adaptive behavior for perturbation

As shown in the previous section, the walking task was achieved in the success
map zone for the proposed coupling circuits. Because of the synaptic connection
between rhythmic generator neurons for all joints, patterns cannot be indepen-
dent. Then, the same pattern in all joints exist whenever the coupling circuitry is
active. To have different patterns on different joints at a time, the synaptic con-
nection between the CPGs must be inhibited. By having independent patterns
in the hip, the knee and the ankle joints, the biped can achieve some complex
behaviors. In this section, how the robot reacts to an external perturbation force
is detailed.

As switching between success map neurons during walking will change the
walking pattern and thus walking gait, it can also be interesting to switch be-
tween these neurons against external perturbation. The limitation of this algo-
rithm will appear for a large perturbation force. This can be solved by switching
toward failure patterns stored in failure map neurons. Inhibit the synaptic con-
nection between CPGs is necessary to get different patterns in different joints.

The space of parameters in such case will be augmented, with a pair (σf , σs)
for each joint. It increases from 2 dimensions in case of existing of coupling
circuitry to 12 dimensions in case of independent patterns. To reduce dimen-
sionality, we propose to represent all the patterns of a joint in one axis only.
This will reduce the dimension by two and facilitates classification and visual-
ization of high-dimensional data. To do so, a metric E which reflects the kinetic
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energy of one limb is introduced (eq. 4). Based on this metric, an energy based
classification of the patterns can be carried out.

E =
∫ tf

t0

θ̇2 dt (4)

Fig.6(a) shows the logarithmic scale of the energy based metric for all the motion
patterns of Fig.2. Fig.6(b) shows the logarithmic scale of the energy based metric
of all neurons of failure and success maps given in Fig.5. First 25 neurons belong
to failure map, and last 25 neurons belong to success map. The different behav-
iors are separated according to the energy based metric of motion patterns. Two
neurons with Plateau have the lower values for the energy based metric, then
16 neurons with Quiescent behaviors, then four neurons with Almost an oscilla-
tor, then all the neurons of success map according to the Oscillation frequency.
Patterns can be classified on a new axis according to the logarithmic scale of the
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Fig. 6. The energy based metric patterns for the space of σs and σf (a), and for
success and failure neurons represented on the horizontal axis (b). Neurons of success
map represent oscillatory patterns with different frequency. Each neuron represent a
pattern, but neurons are separated into four classes of patterns according to the energy
based metric.

energy based metric. As shown in Fig.6(b) patterns can be positioned on this
axis in the following order: Plateau, Quiescent, Almost an oscillator, and Oscil-
latory patterns from low to high oscillation frequency. All neurons in success and
failure maps can be placed on the new axis according to their rhythm. Therefore,
two dimensional space (σs, σf ) can be represented in only one dimension axis.
One axis is obviously needed for each joint. In the first step of the study, only
synapses between CPGs of the hip and the knee joints are inhibited. While the
connection between CPGs of the ankle and the hip joints are kept. Fig.7 shows
two dimensional space of patterns for the hip and the knee joints. Walking zone
in Fig.7(b) corresponds to oscillatory patterns in the hip and the knee joints. In
case of external perturbation force, pattern manipulation is necessary to avoid
falling. The figure shows the group of patterns in the hip and the knee joints by
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Fig. 7. The space of patterns is for hip and knee joints, with an example of switch-
ing against perturbation. (a)Patterns switch from walking by oscillatory patterns to
quiescent pattern for knee and plateau for hip. (b)Neurons switch from walking zone
to other neurons that represent quiescent pattern for knee and plateau for hip. Each
neuron represents one pattern.

which the robot can react against the perturbation. An example for walking and
reaction phases is shown in Fig.8. First, it presents the normal walking on a flat
terrain without any perturbation. Next, it illustrates the fall because of external
perturbation force of 45N applied on the back of the robot (the simulated robot
mass is about 22 kg and the walking speed is almost 0.2m/s). Fig.8(c) shows
how the biped robot react correctly against the external force by adapting the
behavior of the rhythm generators neurons.

(a) (b) (c)

Fig. 8. Effects of adaptation mechanism on the biped to avoid falling. (a)Walking
without perturbation.(b)Falling due to the perturbation. (c)Successful walking with
adapation to the perturbation.

5 Conclusion

In this paper a neurobiological inspired controller for biped walking is presented.
We showed how the behavior in rhythm generator neurons brings adaptation to
face external perturbations. The switching between patterns was simplified by
using a simple method to classify success and failure. Moreover, a technique for
dimensionality reduction depending on the energy based metric patterns leads
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greater benefits, since the classification can be carried out over one axis only in
relation to the motion patterns. Hence, establishing a space of patterns for the
hip, and the knee joints. This space allows high-level control for goal directed
action, thus, learning to achieve more complicated reactions. It also permits other
rhythmic movement, where learning patterns replaces learning parameters. This
was done by our experience based learning mechanism with this new model for
vigilance threshold; we are able to explore in more efficient manner the space
of parameters for new motion patterns. This mechanism was implemented on a
simulated planar biped and allowed the robot to learn to walk and to react to
perturbation without supervision. Our future work shall address goal directed
action learning and adaptation to further changes in the environment, as well
as changes in the physical parameters of the biped. This important issue will be
addressed in order to apply the proposed adaptation mechanism to a humanoid
prototype under development.
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