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ABSTRACT

We present a search engine dedicated to 3D object databases.
The originality of the method is to represent models by ad-
jacency graphs of surfacic regions. After segmentation of
the 3D surface of a model, regions are described by various
shape descriptors. The similarity between graphs is com-
puted by kernels on graphs computed from kernels on walks.
These kernel functions take into account both the similarity
between regions and their spatial relationship. The search
engine performs interactive research in a database from a
query object, by using semi-supervised classification. The
system is applied to a database of 3D high resolution art-
work models. We show that a graph representation outper-
forms a global description of the objects, when using the
same descriptors.

Categories and Subject Descriptors

H.3 [Information Systems]: Information Storage and Re-
trieval; H.3.1 [Information Storage and Retrieval]: Con-
tent Analysis and Indexing

General Terms

Algorithms

Keywords

3D shape indexing; kernel on graphs; 3D region graphs; art-
work database;

1. INTRODUCTION
3D shape modeling and digitizing have received more and

more attention for a decade, leading to an increasing amount
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of 3D model warehouses, either in domain-specific or wide-
usage contexts. These 3D model databases require new tools
for indexing, classifying, and retrieving the objects, in order
to provide the final user an easy access to the models.
Content-based document retrieval has been a very ac-

tive research field for a few years, and concerns textual
documents, images, videos, and more recently 3D models.
Content-based document retrieval systems are usually com-
posed of two steps: (i) an off-line step which performs the
document indexing by computing descriptors and features
gathered in a signature; (ii) an on-line step, in which the
user performs a search in the database with a search engine
working on the signatures. By means of signature compari-
son, the system ranks the database documents according to
their similarity to a query given as input. A feedback loop
based on user interaction refines the results.
In this paper, we focus on 3D model indexing and retrieval

and present our interactive search engine RETIN-3D. The
first interactive 3D model search engines appear on the web
around 2001–2002. The Princeton 3D Model Search Engine,
associated to the widely used Princeton Shape Benchmark
(PSB), allows the user to perform text queries, 2D sketch
queries, and to compare 3D models through some 3D shape
descriptors [7]. The 3D Search Tool from the University of
Thessaloniki is based on the 3D generalized Radon trans-
form and make comparisons within a 2,000 model database
[5]; the results are only based on geometric comparisons,
without learning, leading to some mis-classifications of the
database. Another promising scheme has been proposed
recently in [12], it is based on Fourier series computed on
closed curves representing the 3D model and seems robust
to noise. The European Network of Excellence Aim@Shape
presents a geometric search engine which provides content-
based retrieval with different matching methods (global or
local, etc.). The SHREC 3D Shape Retrieval Contests al-
lowed the comparison of 3D shape descriptors and 3D re-
trieval methods thanks to databases associated with ground-
truthes [22]. Ohbuchi et al. [15] proposed a retrieval system
based on multiresolution global features, which retrieves ob-
ject categories from a single example. Interested readers will
find detailed surveys of 3D indexing and retrieval methods
in [2, 21].



We present here a 3D indexing and retrieval search engine
dedicated to 3D artwork model databases. Our aim is to
provide user friendly tools for classification content-based
indexing, retrieval and visualization. These tools are firstly
dedicated to historians and archeologists, who will be able
to find, display and compare artworks in a few clicks, but
also to museum visitors, who could have the opportunity to
ask a database in front of a statue and thus obtain a lot of
additional information.

We propose to use local shape descriptors computed on
regions of the surface. We first segment the surface into its
main (and if possible semantic) parts, using the local curva-
ture and watershed cuts. Shape descriptors are then com-
puted for each region of the surface partition. The problem
of object classification is now reduced to a problem of inex-
act graph matching. We propose to use kernels on graphs
computed from kernels on walks to compute the similarity
between these graphs.

We extended our search engine RETIN [17], already used
for image and video retrieval, to a new search engine dedi-
cated to 3D objects, called RETIN-3D. Our query consists
in a 3D model, and the search engine retrieves from the
database a category of models similar in a certain way to
the query. The user leads the search toward the category,
by annotating some objects as relevant or irrelevant for his
search.

In this paper 3D models are represented by adjacency
graphs of surfacic regions. The major contribution is the
use of graph kernels to perform object classification and
retrieval. We show that graph representation outperforms
global description of the objects. The method is applied
to a database of archeological objects which were digitized
with a high resolution (between 30,000 and 300,000 vertices
per model); the database is called EROS-3D and provided
by the French Museum Center for Research and Restoration
(C2RMF, Le Louvre, Paris). This databas contains about
750 models of greek vases, terracota gallo-roman figurines,
moulds, fragments, etc. We focus on a particular application
for historians concerning two model categories, representing
Mother-Divinity and Venus.

In section 2, the models are represented by a valued graph
of regions obtained by segmentation of the surface. In sec-
tion 3, we address the database classification by mean of
valued graph matching. In section 4, experiments compare
global description and local descriptions associated with spa-
tial relationships through adjacency graph of regions.

2. OBJECT REPRESENTATION AS ADJA-

CENCY GRAPH OF SURFACIC REGIONS
The 3D surface segmentation algorithm was published in

[1]. We only remind here the main steps. A detailed ver-
sion will also appear in [18]. The algorithm is based on the
local curvature estimation, followed by a watershed process
providing a partition of the 3D surface.

2.1 3D surface segmentation
If κ1 and κ2 are the principal (minimum and maximum)

curvatures at each point of a surface, the mean curvature is
defined by H = (κ1 + κ2)/2 and the inverse curvature by
Hinv = arctan(−H + π/2). Hinv takes only positive values,
high values in concave zones and low values in convex zones.

In fig. 1 the values of these scalar functions are displayed

in gray scale for an object of our database (the whiter the
grey level, the higher the curvature value).

(a) (b) (c)

Figure 1: Curvature scalar functions: (a) 3D object;
(b) max curvature; (c) inverse curvature Hinv.

Watersheds were recently investigated [4], in the frame-
work of graphs whose edges are weighted by a cost function.
Consider a 3D surface mesh M (composed of triangles, sides
of triangles and points) so that for any side e in M there is
exactly one pair of triangles (g, h) which share edge e. We
build a graph with one vertex for each triangle of M and an
edge connecting two vertices if the corresponding triangles
share a side.
Let (x, y) be the pair of points such that e = {x, y}, we

assign the mean of principal curvatures (κ1 and κ2) of x
and y to e. Considering then the scalar curvature functions
explained above (H or Hinv), we obtain a map from the
set of edges of the graph into R that we denote by F , and
that will represent the curvature between each two adjacent
triangles of the mesh. With such a map, we can compute
a watershed cut that leads to a mesh segmentation. The
cuts are thus performed on edges of the mesh, leading to a
more accurate segmentation: the borders of the regions are
constituted by sides of the meshes.
Unlike CADmodels or artificial models that are often used

in 3D model warehouses, our artwork models do not exhibit
regular surfaces, due to their high resolution digitization. In
order to classify artwork models, we are interested in parti-
tioning a mesh into its most significant regions. Due to the
high number of curvature minima, the watershed cut pro-
duces a strong over segmentation. To solve this problem we
used the component tree [13] to remove the less significant
minima from F , according to criteria based on height, area
or volume of the regions.
We show on figure 2 some results of the 3D surface seg-

mentation: (a) is computed on a CAD-design object and
is the result of a watershed cut on a max curvature map
(max(κ2

1, κ
2
2)); (b-d) are the results on three different fig-

urines of the database. The chess piece segmentation seems
to be accurate, the frontiers clearly separate the different
elementary shapes composing the model. The segmentation
algorithm applied to real 3D models allows to identify some
specific parts of the models (baby heads, legs, arms, coif-
fures) which are characteristic of the statues.

2.2 Local feature computation
In a previous work [18], we demonstrated the use of some

different 3D descriptors computed on whole 3D models: Ex-
tended Gaussian Images (EGI) and Complex Extended Gaus-
sian Images (CEGI), as well as 1D and 2D cord histograms.



(a) (b) (c) (d)

Figure 2: Segmentation of (a) an artificial ob-
ject (chess piece) and (b-d) several figurines of the
database.

EGI [8] and CEGI [9] are projections of the model onto
the Gaussian sphere, where each point of the sphere is val-
ued with the total area of the object faces having the same
orientation. CEGI take in account the face orientation, in
order to discriminate convex and concave surfaces. Cord his-
tograms are defined as distributions of lengths of the cord
(the line between the center of the model and a point on the
model surface) and angles of the cord with respect to the
first and second axis of the model [16].

We also computed some other descriptors, such as AD/AAD
[14] and SPRH [24]: AD is a 2D histogram of the angles
and distances computed on randomly chosen pairs of sur-
face points. The AAD feature moreover takes into account
unoriented or inconsistently oriented surfaces and thus is
more robust. SPRH computes a 4-dimensional geometric
feature from pairs of 3D surface points, aiming to capture
local and global shape aspects. All these features can be
used to characterize the global shape of the model through
their statistical distribution, stored in histograms.

To catch the local shape of the models, we reduce the fea-
ture computation to each region of the surface instead of
a computation on the whole model. AD/AAD and SPRH
features, due to their conception, do not fit to a local com-
putation. Finally, the set of descriptors available for each
region is as follows: (i) EGI, (ii) CEGI, (iii) Cord1D and
Cord2D histograms.

3. GRAPH MATCHING
Once objects are represented by valued relational graphs,

the problem of comparing objects can be considered as a
problem of inexact graph matching [6, 20]. The problem
is twofold: firstly find a similarity measure between graphs
of different sizes and secondly find the best match between
graphs in an “acceptable“ time in order to perform on-line
classification. Kernel functions can be seen as similarity
functions, which can be used with many classifiers and es-
pecially SVM [19].

To capture the stucture of a graph, kernels on graph can
be defined form kernels of walks [10, 23].

3.1 Kernel on graphs based on kernels on walks
A walk h in a graph G = (V,E) is a sequence of vertices

of V linked by edges of E : h = (v0, v1, ...., vn) , vi ∈ V .
We will note H(.) a function which maps a graph G to a
given set of walks (for example all walks without cycles).

Kashima et al. [10] compared two graphs G and G′ by a
kernel comparing all possible walks of same length on both
graphs:

KK(G,G′) =
∑

h∈H(G)

∑

KC(h, h
′)p(h|G)p(h′|G′) (1)

with p(h|G) the probability of finding walk h in graph G
and |h| the length of h i.e. its number of edges.

This class of kernel is used in the framework of graphs of
molecules, where the similarity between vertices is binary, a
vertex (an atom) is or is not the same as the vertex of the
other graph. But when the similarity between two vertices
takes real values, this function tends to bury the similarities
between walks in the sum. In [23], the kernel is computed by
counting the number of common walks (only the edges are
labeled). The problem of these kernels is that they use all
random walks of the graphs and their number may be infinite
(especially if cycles are allowed). This leads to a high com-
putational complexity, and if this is acceptable with graphs
with symbolic values, it is unaffordable with our attributed
graphs. To deal with this problem, which is important in
semi-supervised learning, kernel Kmax takes the maximum
of all similarities of all walks of same length.

Kmax(G,G′) = max
h∈H(G)

maxKC(h, h
′) (2)

A similar kernel was used in [17] without the restriction of
walks of similar lengths to perform image retrieval.
In between both formulas, a kernel on graphs was pro-

posed in [11] for image retrieval tasks. It is faster to compute
than Kashima kernel, since it limits the number of walks. In
order to be sure to consider each vertex at least once, each
vertex vi is the beginning of one walk hvi . And in order to
reduce the search in graph G′, the most similar walk of same
length in G′ is searched from the most similar vertex s(v′i)
of V ′:

KL(G,G′) =
1

|V |

|V |
∑

i=1

maxKC(hvi , h
′
s(vi))

+
1

|V ′|

|V ′|
∑

i=1

maxKC(hs(v′

i
), h

′
v′

i

) (3)

with:






hvi is a walk of G whose first vertex is vi
h′
s(vi)

is a walk of G′

whose first vertex is the most similar to vi

KK adds the similarities of all walks of all lengths, it takes
into account all vertices and all edges but with a lot of re-
dundancy. Kmax equals the similarity of the two walks the
most similar; as these walks do not necessary go through
all vertices, some of them do not intervene in the similarity.
KL takes into account all vertices, since it takes the average
of the best similarities for walks starting from each vertex.

Concerning the kernels on walks, several KC were pro-
posed (sum, product, etc.) [11]. We tested all these kernels
and the best results were obtained with the following one,
where ej denotes edge (vj−1, vj):

KC(hvi , h
′) = Kv(vi, v

′
0)×

|h|
∑

j=1

Ke(ej , e
′
j)×Kv(vj , v

′
j)



For minor kernels Kv and Ke, we used Gaussian kernel with
χ1 distance for Kv which is the most adapted for histogram
features and only binary values for Ke (1 if there is an edge,
0 if not).

3.2 Graph matching algorithm
The computational complexity depends on the number of

walks of H(G), on the similarity function and on the ker-
nel on walks. KK kernel requires an exhaustive (Eq. (1))
comparison of all walks, since it performs the sum of all
similarities between walks. If an incomplete solution is suf-
ficient, the only way to reduce the computation with this
kernel is to bound the length of the walks. On the contrary,
to compute Kmax kernel (Eq. (2)), only a part of the walks
needs to be compared, the search of the maximum can be
easily obtained by the branch and bound algorithm, and
an incomplete solution is also reachable through a pruning
of the search tree. KL (Eq. (3)) can be computed without
computing all walk comparisons.

A search tree is used to represent all the walk comparisons.
This representation allows to perform the computation with
the branch and bound algorithm, whose recursion well suits
the recursion of walks.

For two graphs G = (V,E) and G′ = (V ′, E′) and a gen-
erative function of set walks H, our search tree is composed
of:

• a root

• nodes: each node represents a match of two vertices
n = (v, v′) ∈ V × V ′.

• a link between two nodes n1 = (v1, v
′
1) and n2 =

(v2, v
′
2) means that there is an edge e1,2 between v1

and v2 in H(G), and an edge e′1,2 between v′1 and v′2
in H(G′).

A path in the search tree starts from the root and is a
succession of matched vertices. It corresponds to the match
of two walks. The main interest of the search tree is that it
does not need to be built completely, it can be pruned during
its building. For instance, for a search of a maximum, only
the useful branches are built.

The branch and bound algorithm aims at finding optimal
solutions to problems whose goal is to search the maximal
value of a function. It is especially adapted to solve the
search of the maximum for functions whose bounds can be
predicted on a given subset (in our case, a subset of walks).

In our case, the function is the kernel function KC which
can be recursively written:

KC(hi+1, h
′
i+1) = KC(hi, h

′
i)×Ke(e, e

′)Kv(v, v
′)

with: hi+1 = hi prolonged by e and v.

4. EXPERIMENTS: OBJECT RETRIEVAL
RETIN-3D is a search engine dedicated to 3D objects. It

can be used to browse a database or to retrieve a category
of objects. RETIN-3D includes a user-friendly interface (cf.
fig. 3). On the right part of the screen, one object can be
displayed. It can be zoomed, turned, etc. It can be displayed
as a plain meshed model or with attributed meshes. For
example in fig. 3, each mesh is colored according to its
distance to the center of the object.

Figure 3: RETIN-3D user interface. Left: the 3D
models are ranked from top to bottom by their clas-
sification rate, top left is the model query; relevant
(resp. irrelevant) objects are annotated with a green
(resp. red) mark. Right: a Venus statue colored ac-
cording to distances to the object center. Bottom:
the active learning panel.

The system proposes an interactive mining of the database,
using the following protocol, widely used in image retrieval:
the search starts with a single example of the category, this
example belongs or not to the database. The system returns
the objects the most similar to this example, according to
a similarity measure. Then the system enters into a feed-
back loop where it displays some models to the user, the
user annotates these models as relevant or irrelevant for his
search and the system progressively builds two classes: the
searched category, which includes all objects annotated as
relevant and another class with all irrelevant objects. Of
course in this scheme, only a small part of the database is
annotated, the classification is thus “semi-supervised” and
interactive.
To achieve such a classification task in two classes with

very few examples, we used Support Vector Machines (SVM)
[3], since this is a robust classification tool, well adapted
to the context of noisy, complex and massive data. The
SVM classifier is a linear two-class classifier, whose aim is to
maximize the margin between both classes. It is generally
used with kernel functions in order to deal with complex
classes. As the learning is performed with very few exam-
ples, RETIN-3D works with an active learning scheme [3].
The “active learning panel” on the bottom of the screen (cf.
fig. 3) displays the models that are the closest to the bor-
der between both classes: annotating these models helps to
fast build the border, leading to better classification per-
formances. The classification is thus performed online and
according to the user expectations, hence it gives a great
flexibility to the system.



Figure 4: Example of a retrieval session with a
Venus statue as query. Models are ranked according
to their similarity with the query (top left model).
Similarity with graph kernel.

We compared object retrieval using a global representa-
tion and a representation by graphs of regions, using the
same descriptor. We first used Cord1D descriptor with 256
bins, on one hand computed on the whole model and on the
other hand computed on each region of the surface after seg-
mentation. When using the global descriptor, we need 5 pos-
itive examples and 5 negative examples, to retrieve 14 Venus
statues amongst the 20 first retrieved objects (cf. fig. 3).
With the graph representation and the kernel of Eq. 3, we
only need one positive example to retrieve 17 Venus stat-
ues amongst the 20 first retrieved objects (cf. fig. 4). It is
remarkable that among the artwork pieces returned by the
system, we find some broken pieces, and also Venus moulds.
The database includes many broken pieces, moulds and frag-
ments. Therefore it is difficult to build a ground truth, thus
we do not present any MAP or ROC curves.

In a second experiment, we used CEGI descriptor with
256 bins, computed both on the entire models and on their
regions after segmentation. We compared both representa-
tions on Mother-divinity figurines. After two feedback steps
with 2 models annotated as relevant and 7 as irrelevant, we
obtained results of fig. 5 for search on global models, and 6
for search on regions.

With the same protocol and various descriptors, we ob-
tained the following number of mother-divinity models among
the 30 first retrieved objects (cf. table 1), showing the re-
trieval improvement that the kernel on graphs brings.

We did the same experiments with only 3 relevant and 3
irrelevant models (table 2), leading to similar conclusions.

5. CONCLUSION
We have shown that a representation of artwork objects by

a graph of surfacic regions is a better solution than a global
representation. This representation by graph of regions can
be obtained by a segmentation of the mean curvature map
and simple region features. To compare graphs of regions,
we used kernel functions which take into account both the
similarity between regions and their adjacency. Our search

Figure 5: Mother-divinity figurines, global descrip-
tion with the CEGI descriptor (256 bins). 2 models
were annotated as relevant and 7 as irrelevant. 4
models are relevant in the 30 first retrieved.

Table 1: Number of relevant models (mother-
divinities) in the 30 first retrieved. 2 models of the
database were annotated as relevant and 7 as irrel-
evant.

Descriptor Global Graphs

CEGI 4 23
Cord1D 14 22
Cord2D 9 12
EGI 17 22

engine, associated with a user-friendly interface allows the
retrieval or the classification of an artwork database into
various categories.
Other kernel functions, coding more precisely the relative

positions (such as above or left to) could be added to the
kernel on edges. Another application of the representation
by graph is the matching of a fragment with a complete
model.
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D. V. Vranić. Feature-based similarity search in 3D
object databases. ACM Comput. Surv., 37(4):345–387,
2005.

[3] M. Cord, P.-H. Gosselin, and S. Philipp-Foliguet.
Stochastic exploration and active learning for image
retrieval. Image and Vision Computing, 25:14–23,
2007.

[4] J. Cousty, G. Bertrand, L. Najman, and M. Couprie.
Watershed cuts. In 8-th International Symposium on
Mathematical Morphology, pages 301–312, 2007.

[5] P. Daras, D. Zarpalas, D. Tzovaras, and M. Strintzis.
Efficient 3-D Model Search and Retrieval Using



Figure 6: Mother-divinity figurines, CEGI descrip-
tor (256 bins) computed on surfacic region graphs.
2 models were annotated as relevant and 7 as irrele-
vant. 23 models are relevant in the 30 first retrieved.

Table 2: Number of relevant models (mother-
divinities) in the 30 first retrieved. 3 models of the
database were annotated as relevant and 3 as irrel-
evant.

Descriptor Global Graphs

CEGI 9 26
Cord1D 9 21
Cord2D 11 9
EGI 20 24

Generalized 3-D Radon Transforms. IEEE Trans. on
Multimedia, 8(1):101–114, Feb. 2006.

[6] D. Emms, R. C. Wilson, and E. R. Hancock. Graph
matching using the interference of continuous-time
quantum walks. Pattern Recognition, 42(5):985–1002,
2009.

[7] T. Funkhouser, P. Min, M. Kazhdan, J. Chen,
A. Halderman, D. Dobkin, and D. Jacobs. A Search
Engine for 3D Models. ACM Transactions on
Graphics, 22(1):83–105, Jan. 2003.

[8] B. Horn. Extended Gaussian Images. Proceedings of
the IEEE, 72(12):1671–1686, dec. 1984.

[9] S. Kang and K. Ikeuchi. The complex EGI: a new
representation for 3D pose determination. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
16(3):249–258, March 1994.

[10] H. Kashima and Y. Tsuboi. Kernel-based
discriminative learning algorithms for labeling
sequences, trees and graphs. In International
Conference on Machine Learning (ICML), page 58,
Banff, Alberta, Canada, 2004.

[11] J. Lebrun, S. Philipp-Foliguet, and P.-H. Gosselin.
Image retrieval with graph kernel on regions. In 19th
ICPR International Conference on Pattern
Recognition. IEEE, USF, IEEE, dec 2008.

[12] E. A. Lmaati, A. E. Oirrak, D. Aboutajdine,
M. Daoudi, and M. N. Kaddioui. A 3-D Search engine
based on Fourier series. Computer Vision and Image
Understanding, 114(1):1–7, 2010.

[13] L. Najman and M. Couprie. Building the component
tree in quasi-linear time. IEEE Trans. on Image
Processing, 15(11):3531–3539, nov. 2006.

[14] R. Ohbuchi, T. Minamitani, and T. Takei.
Shape-Similarity Search of 3D Models by using
Enhanced Shape Functions. In Theory and Practice of
Computer Graphics 2003 (TPCG 2003), pages 97–104,
2003.

[15] R. Ohbuchi, A. Yamamoto, and J. Kobayashi.
Learning semantic categories for 3D Model Retrieval.
In Proc. of the ACM Int. Multimedia Conference,
Proc. of the int. workshop on Multimedia Information
Retrieval (MIR) 2007, pages 31–40, Augsburg,
Germany, 2007.

[16] E. Paquet, A. Murching, T. Naveen, A. Tabatabai,
and M. Rioux. Description of Shape Information for
2-D 3-D Objects. Image Communication Journal,
16:103–12, 2000.

[17] S. Philipp-Foliguet, J. Gony, and P.-H. Gosselin.
FReBIR: an image retrieval system based on fuzzy
region matching. Computer Vision and Image
Understanding, 113(6):693–707, June 2009.

[18] S. Philipp-Foliguet, M. Jordan, L. Najman, and
J. Cousty. Artwork 3D Model Database Indexing and
Classification. Pattern Recognition, 2010. To appear.

[19] B. Schölkopf and A. Smola. Learning with Kernels.
MIT Press, Cambridge, MA, 2002.

[20] A. Shokoufandeh, L. Bretzner, D. Macrini,
M. Fatih Demirci, C. Jönsson, and S. Dickinson. The
representation and matching of categorical shape.
Computer Vision and Image Understanding,
103(2):139, 2006.

[21] J. W. Tangelder and R. C. Veltkamp. A Survey of
Content Based 3D Shape Retrieval Methods.
Multimedia Tools Appl., 39(3):441–471, 2008.

[22] R. C. Veltkamp and F. B. ter Haar. SHREC2008: 3D
Shape Retrieval Contest. In Shape Modeling and
Applications, pages 215–263, 2008.

[23] S. V. N. Vishwanathan, N. N. Schraudolph, I. R.
Kondor, and K. M. Borgwardt. Graph kernels. Journal
of Machine Learning Research, 10, 2009.

[24] E. Wahl, U. Hillenbrand, and G. Hirzinger.
Surflet-Pair-Relation Histograms: A Statistical
3D-Shape Representation for Rapid Classification. Int.
Conf. on3D Digital Imaging and Modeling, 2003.


