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Abstract

This paper presents an architecture for the navigation of an autonomous mo-
bile robot evolving in environments with obstacles. Instead of addressing motion
planning and control in different contexts, these issues are described in connected
modules with performance requirement considerations. The planning problem is
formulated as a constrained receding horizon planning problem and is solved in
real time with an efficient computational method that combines nonlinear control
theory, B-spline basis function and nonlinear programming. An integral sliding
mode controller is used for trajectory tracking. Closed-loop stability of the track-
ing errors is guaranteed in spite of unknown disturbances. It is also shown that
this strategy is particularly useful if integral sliding mode control is combined with
other methods to further robustify against perturbations. The effectiveness, perfect
performance of obstacle avoidance, real time and high robustness properties are
demonstrated by experimental results.

Keywords: Nonholonomic mobile robots, Reactive navigation, Receding horizon plan-
ning, Sliding mode control.

1 Introduction

Wheeled mobile robots (WMRs) have been widely studied in the last two decades due
to their practical importance and theoretically interesting properties. Indeed, there are
considerable research efforts toward solving mobile robot navigation in different appli-
cations in indoor and outdoor environments (see [1, 2] and the survey paper [3]). For
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of Regional Development) under InterregACOS, the ARCIR Robocoopand theAUTORIS-TAT T31
project.
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some navigation tasks like planetary exploration, robots are required to travel long dis-
tances within constrained resources (energy, time. . . ). In such cases, efficient motion
planning and control algorithms are needed in order to achieve the goal while meeting
certain performance issue, such as geometric-based or time-based criteria.

Although motion planning and control are closely related in the robot navigation
problem, they are usually addressed as two separate problems in much of the exist-
ing literature. Motion planning consists in generating a collision-free trajectory from
the initial to the final desired positions and control is the determination of the physi-
cal inputs to the robot motion components. These two problems are typically solved
using methods from different areas such as those in artificial intelligence and control
theory. Such a separation makes it difficult to address robot performance in a complete
application, since the planned trajectory may not be efficiently tracked. This fact can
imply that the meaning of optimization in each step is lost. For instance, in a typical
time optimal trajectory planning, the open-loop control schemes result in bang-bang
or bang-singular-bang controls [4]. However, the discontinuities of the planned open-
loop control may not produce a satisfactory path tracking result in practice and will
not be applicable to high speed traveling. In this research, we bridge the gap between
trajectory planning and motion control.

Many theoretically challenging properties stem from the so-called nonholonomic
constraints imposed by the rolling wheels. A survey of nonholonomic control prob-
lems can be found in [5]. Obstacles to the tracking of nonholonomic systems are the
uncontrollability of their linear approximation and the fact that the Brockett’s necessary
condition to the existence of a smooth time-invariant state feedback is not satisfied [6].
To overcome these difficulties, various methods have been investigated: homogeneous
and time-varying feedbacks [7, 8], sinusoidal and polynomial controls [9], piecewise
continuous controls [10], backstepping approaches [11] or discontinuous controls [12].
However, most of these methods do not provide both fast convergence and good ro-
bustness properties. Most of the control laws ensuring exponential or finite time con-
vergence [13] are known to be non-robust under disturbances or modeling errors. On
the other hand, control design methodologies like smooth time varying feedback [8],
are quite insensitive to perturbations but imply a slow convergence.

In this paper, we propose a practical scheme for real time motion planning and con-
trol of nonholonomic mobile robot moving in an uncertain environment. As illustrated
in Fig. 1, the scheme consists of two main parts: (i) a real time collision-free motion
planner; (ii) a trajectory tracking controller. For each module, we explicitly address
the performance considerations. In implementation, the motion planner dynamically
generates the optimal trajectory while the robot runs. High precision motion tracking
is achieved by the combination of integral sliding mode control and time varying state
feedback. The main results are general and can be applied whenever integral sliding
mode control is combined with other techniques to further robustify against distur-
bances. Experimentations support the validity of the theoretical analysis and show that
the performance of a time varying state feedback controller can be increased by this
particular strategy.

The outline of this paper is as follows. In Section 2, the navigation problem is de-
fined and the robot’s nonholonomic model is described. Motion planning is discussed
in Section 3. Trajectory tracking strategy is presented in Section 4. Finally, in Section
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Figure 1: Block diagram for navigation of a nonholonomic mobile robot with a motion
planner and a sliding mode controller.

5, we present the integration of the different modules and the experimental results on a
mobile robot.

2 Problem statement

2.1 Modeling of mobile robot

The mobile robot, shown in Fig. 2, is of unicycle-type. The robot body is of symmetric
shape and the centre of mass is at the geometric centreC of the body. It has two driving
wheels fixed to the axis which passes throughC and one passive centrered orientable
wheel. The two fixed wheels of radiusr, separated by2R, are independently controlled
by two actuators (DC motors) and the passive wheel prevents the robot from tipping
over as it moves on a plane. In this paper, we assume that the motion of the passive
wheel can be ignored in dynamics of the mobile robot. The centre of massC, whose
coordinates are(x,y), is located at the intersection of a straight line passing through the
middle of the vehicle and the axis of the two driving wheels. The configuration of the
robot can be described by:

q = [x,y,θ ]T

whereθ is its orientation in the global frame.
In this paper, kinematics of wheeled-mobile robot are shown under the nonholo-

nomic constraints (see [14] for details). The pure rolling and nonslipping nonholo-
nomic conditions are described by:

AT(q)q̇ = 0 with AT(q) =
[ −sinθ cosθ 0

]
.
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The kinematic equations can be written as follows:

q̇ = f (q)U (1)

where f (q) =




cosθ 0
sinθ 0

0 1


, U = [v,w]T is the control inputs,v andw are the linear and

angular velocities, respectively. The relationship between[v,w]T and the left and right
velocities

[
wle f t,wright

]T
is described by:

{
v = r

2

(
wright +wle f t

)
,

w = r
2R

(
wright −wle f t

)
.

(2)
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Figure 2: Unicycle-type mobile robot

At last, the robot has the following dynamic limitations on velocities:

|v| ≤ vmax and |w| ≤ wmax. (3)

2.2 Problem setup

The following assumptions are made in this study: (i) the robot has on-board sensors
which can detect surrounding objects within a range with a small margin of error; (ii)
the odometry data from the robot has small errors over short distances; (iii) an on-board
camera can update at a slower speed relative to local sensors.

It is assumed that the robot knows its initial configurationqinitial at the initial time
instanttinitial and its goal configurationqf inal . The navigation problem is to decide

wheel velocity inputs
[
wle f t,wright

]T
within constraint (3) such that the robot starts at

initial configuration, moves collision-free according to a certain performance criteria
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and arrives in a neighbourhood of the final configuration. To solve this problem, one
can make the following choices without loss of any generality1:

• The robot’s geometric shape is represented by a 2-D circle of centreC = (x,y)
and of radiusR. Its motion is controlled but nonholonomic and is represented
by the velocity vectorU(t). The range of its sensors is also described by a circle
centrered atC and of radiusRs.

• The itextth object,i = 1, . . . ,No, will be represented by a circle centrered at point
Oi = (Xi ,Yi) and of radiusr i , denoted byBi(Oi , r i).

3 Motion planning

Depending on the distance that the robot has to travel, the computation of a complete
trajectory from start until finish may be computationally too expensive. Moreover, the
environment is partially known and further explored in real time. Therefore, the tra-
jectory has to be computed gradually over time while the mission unfolds. It can be
accomplished using an on-line receding horizon planner [15], in which partial trajec-
tories from an initial state toward the goal are computed by solving an optimal control
problem over a limited horizon.

3.1 Receding horizon planner

Contrary to most of the existing trajectory generation modules, the proposed motion
planner explicitly takes into account the real time constraint. Indeed, the mobile robot
has a limited time to compute its reference optimal trajectoryqre f (t). The timeδ t al-
located to make its decision depends on its perception sensors, its computation delays,
etc. The proposed algorithm relaxes the constraint that the final point is reached in
the planning horizon. In each receding horizon planning problem, the same planning
horizonTp ∈ R+ and update periodTc ∈ R+ (δ t ≤ Tc < Tp) are used. At each update,
denotedτk (k∈ N),

τk = tinitial +kTc, (4)

the robot computes an optimal collision-free trajectory satisfying constraints (1) and
(3) using only local information.

To distinguish the different trajectories, we introduce the following notations:

q̂(t,τk) : the predicted trajectory over any interval[τk,τk +Tp] ,
qre f (t,τk) : the optimal planned trajectory over any interval[τk,τk+1τk +Tc[ ,
q(t) : the actual trajectory.

The associated control inputs areÛ(t,τk), Ure f (t,τk) andU(t).

1It is trivial to allow the envelope of either the robot or an obstacle to be represented by union/intersection
of several circles. The envelopes could also be polygonal. Mathematically, circular envelopes can be repre-
sented by second order inequalities while polygonal envelopes can be described by first order linear inequal-
ities.
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Remark 1 From the open-loop trajectory and control inputs associated to the plan-
ning horizon (i.eq̂(t,τk) andÛ(t,τk)), only the part which corresponds to the update
horizon is kept (see Fig. 3).
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Figure 3: Planning and update horizons

The motion planning problem is solved in two steps:

• an initialisation step before the robot moves,

• a step of iterative computations.

Let the following optimal control problemPτ0, associated with the initialisation
step, which consists in determining the optimal predicted control inputsure f (t,τ0) and
the optimal predicted trajectoryqre f (t,τ0):

min
∫ τ0+Tp

τ0

L(q̂(t,τ0), û(t,τ0))dt+G(q̂(τ0 +Tp,τ0),qf inal),

subject to:∀t ∈ [τ0,τ0 +Tp] ,





˙̂q(t,τ0) = f (q̂(t,τ0))Û(t,τ0),
q̂(τ0,τ0) = q(τ0),
Û(τ0,τ0) = U(τ0),
|v̂(t,τ0)| ≤ vmax− εv,
|ŵ(t,τ0)| ≤ wmax− εw,√

(x̂(t,τ0)−Xi)2 +(ŷ(t,τ0)−Yi)2 > R+ r i , ∀Bi(Oi , r i) in the range of sensors,

whereL(.) indicates a certain performance criteria (time-based criteria, physics-based
criteria, geometric-based criteria, etc.) andG(.) represents a terminal penalty function.
The latter should be an estimate of the cost to go from the last predicted stateq̂(τ0 +
Tp,τ0) in the planning horizon to the desired final pointqf inal .
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Remark 2 The inclusion of constantsεv ∈ R+ andεw ∈ R+ in the constraints of the
motion planning problem guarantees that there is sufficient control authority to track
the optimal planned trajectory (see Section 4).

This process is then repeated during the robot’s movement, over the interval[τ0,τ1],
and so on until its reaches a neighbourhood of the goalqf inal . As such, new detected
obstacles can be taken into account in the next iteration. Over any interval[τk,τk+1]
(k∈N), the following optimal control problemPτk+1, associated with the(k+1)th step,
which consists in determining the optimal predicted control inputsure f (t,τk+1) and the
optimal predicted trajectoryqre f (t,τk+1) is solved:

min
∫ τk+1+Tp

τk+1

L(q̂(t,τk+1), û(t,τk+1))dt+G(q̂(τk+1 +Tp,τk+1),qf inal), (5)

subject to:∀t ∈ [τk+1,τk+1 +Tp] ,

˙̂q(t,τk+1) = f (q̂(t,τk+1))Û(t,τk+1), (6)

q̂(τk+1,τk+1) = q̂(τk+1,τk), (7)

Û(τk+1,τk+1) = Û(τk+1,τk), (8)

|v̂(t,τk+1)| ≤ vmax− εv, (9)

|ŵ(t,τk+1)| ≤ wmax− εw, (10)√
(x̂(t,τk+1)−Xi)2 +(ŷ(t,τk+1)−Yi)2 > R+ r i ,

∀Bi(Oi , r i) in the range of sensors. (11)

OncePτk+1 is solved, the optimal reference trajectory and control inputs over the in-
terval [τk+1,τk+2] , are stored for use at the next module (i.e. trajectory tracking con-
troller).

Remark 3 One can note that constraints (7) and (8) on the initial conditions need
the optimal predicted control inputŝU(τk+1,τk) and trajectoryq̂(τk+1,τk) computed in
the previous step. Therefore, in the proposed strategy, the receding horizon planner is
not used in order to reject external disturbances or inherent discrepancies between the
model and the real process, as it is usually done [16]. However, it takes into account
the computation timeδ t. Fig. 4 gives an overview of the receding horizon planner.

Remark 4 A compromise must be done between reactivity and optimality. Indeed, the
planning horizonTp must be sufficiently small in order to have good enough results in
term of optimality for trajectory planning. However, it must be higher than the update
horizonTc in order to guarantee the reactivity and obstacle avoidance for next receding
horizon planning problems.

3.2 Technique for solving receding horizon planning problems

There are three components to the real time resolution of the optimal control problems
Pτk (k∈N): determination of the flat outputs, B-spline parametrization and constrained
feasible sequential quadratic programming.

7
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Figure 4: Implementation of the receding horizon planner

The key approach is to determine outputs such that equation (1) is mapped to a
lower dimensional output space. It will imply that the problem becomes computionally
more efficient to solve. Using the flatness property of system (1) (see [17] for further
details about flatness), all system variables can be differentially parameterized byx, y
and a finite number of their time derivatives. Indeed,θ , v andw can be expressed byx,
y and their first and second time derivatives, i.e.

θ = arctan
ẏ
ẋ
, v =

√
ẋ2 + ẏ2 and w =

ÿẋ− ẍẏ
ẋ2 + ẏ2 . (12)

Once the performance criteria (5) and constraints (6)-(11) are mapped into the flat
output space, the optimal predicted trajectory is planned in this space (see Fig. 5).

Then, in order to transform the optimal trajectory generation problem into a pa-
rameter optimization one, a piecewise polynomial function, B-spline, is adopted to
approximate the trajectory. The B-spline functions are chosen as basis functions due
to their flexibility and ease of enforcing continuity across breakpoints. B-Spline is the
function defined by a series of knots called control knots. In our study, the three-order
B-spline basis functions are used to parameterize the trajectory. For problemPτk, the
time interval[τk,τk +Tp] is divided intonknot equal segments withnknot+4 knots to be
control knots:

nod0 = . . . = nod3 = τk < nod4 < .. . < nodnknot+3 = τk +Tp (13)

The trajectories of the flat outputs are written in terms of finite dimensional B-spline
curves as: [

x̂(t,τk)
ŷ(t,τk)

]
=

3+nknot

∑
j=1

CjB j,3(t) (14)

whereCj ∈ R2 are the coefficients of the third-order B-spline andB j,3 is the B-spline

8
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Figure 5: Flatness and motion planning

basis function computed recursively as follows:

B j,0(t) =
{

1 if nodj ≤ t < nodj+1,
0 otherwise.

∀d ∈ {1,2,3}, (15)

B j,d(t) =
t−nodj

nodj+d+2−nodj
B j,d−1(t)+

nodj+d+1− t

nodj+d+1−nodj+1
B j+1,d−1(t).

Finally, the time domain is truncated into smaller intervals by quadratic laws. The
optimal coefficientsCj are numerically found using the constrained feasible sequential
quadratic optimization algorithm [18]. See [19] for a detailed analysis of the efficiency
of this approach. To finish, the open-loop control inputs are deduced using equation
(12).

4 Trajectory tracking controller

The task, for this module, is to design the wheel velocities such that the robot tracks
the reference trajectory generated in the previous one.
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4.1 Formulation of the tracking problem

The reference trajectory(xr ,yr ,θr), generated by the motion planning algorithm fulfills
the differential equation:




ẋr

ẏr

θ̇r


 =




cosθr 0
sinθr 0

0 1




[
vr

wr

]
, (16)

where the desired velocitiesvr andwr satisfy:

|vr | ≤ vmax− εv and |wr | ≤ wmax− εw.

By directly applyingvr andwr , the robot does not follow the reference trajectory with
a good accuracy. It is obvious that the real control inputsv andw rely on the state
measurementsx, y andθ . Due to measurement noise and modeling uncertainties, there
are input uncertainties forv andw. That is to say, the actual equation of the robot
trajectory fulfills the following uncertain differential equation:




ẋ
ẏ
θ̇


 =




cosθ 0
sinθ 0

0 1




[
v+δv

w+δw

]
(17)

whereδv andδw represent the uncertainties.
Control inputsv andw must be designed such that system (17) follows reference

(16) in spite of the perturbations. In fact, the goal is to asymptotically stabilize the
tracking errorsex = xr − x, ey = yr − y andeθ = θr − θ to zero while respecting the
saturation constraints (3).

Transforming the tracking errors expressed in the inertial frame to the robot frame,
the error coordinates can be denoted as:




e1

e2

e3


 =




cosθ sinθ 0
−sinθ cosθ 0

0 0 1







ex

ey

eθ


 .

Accordingly, the tracking error dynamics is represented by:

ė= f1(e, t)+ f2(e, t)(U +δ ) (18)

where 



e = [e1,e2,e3]T ,
U = [v,w]T ,
δ = [δv,δw]T ,

f1(e, t) =




vr cose3

vr sine3

wr


 ,

f2(e, t) =



−1 e2

0 −e1

0 −1


 .
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It should be pointed out that such a system cannot be stabilized by continuously
differentiable, time-invariant, state feedback control laws. In this paper, we combine
integral sliding mode control with time-varying state feedback in order to further ro-
bustify against perturbations.

4.2 Proposed methodology

The basic idea is to use an integral sliding mode controller to reject the matched pertur-
bation (i.e. perturbations that enter the state equation at the same point as the control
inputs). The integral sliding mode control algorithm is designed in two steps [20]:

1. the selection of a suitable integral sliding variables such that, while sliding, the
control objective is fulfilled,

2. the design of corresponding control inputsU constraining the system trajectories
to evolve on the sliding surface from the initial time instant.

For system (18), the control law is defined as follows:

U(q, t) = U0(q, t)+U1(q, t). (19)

The nominal controlU0(q, t) is responsible for the performance of the nominal system.
U1(q, t) is a discontinuous control action that reject the perturbations by ensuring the
sliding motion.

4.2.1 Integral sliding mode controller

Let us define the sliding variables(q, t) = [s1(q, t),s2(q, t)]T ∈ R2 as:

s(q, t) = P

[
e(t)−e(tinitial )−

∫ t

tinitial

( f1(e,ν)+ f2(e,ν)U0(q,ν))dν
]
, (20)

where matrixP ∈ R2×3 is such thatP f2(e, t) is invertible for all t ∈ R+. Making

P =
[−1 0 0

0 0 −1

]
, the above condition is fulfilled. One can note that, at the initial

time instantt = tinitial , the sliding variable satisfiess(q, t) = 0, such that the controlled
system always starts on the sliding surface{s(q, t) = 0}.

Remark 5 To simplify notation, we will omit some of the functions’ arguments from
now on.

Based on the following Lyapunov function candidate,V = 1
2sTs, the discontinuous

control term can be determined such thatV̇ < 0, guaranteeing the attractivity of the
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sliding surface. One can obtain:

V̇ = sT (Pė−P( f1 + f2U0))

= sT (P( f1 + f2(U +δ ))−P( f1 + f2U0))

= sT (P f2(U1 +δ ))

=
(
[P f2]

T s
)T

(U1 +δ )

=
[
s1 −e2s1 +s2

]
(U1 +δ ) < 0

The above condition holds if:

U1 =
[ −M1sign(s1)
−M2sign(−e2s1 +s2)

]
(21)

whereM1 andM2 are gain high enough to enforce the sliding motion.

The trajectory evolves on{s= 0} from t = tinitial and remains there in spite of the
perturbations. To determine the motion equations on the sliding surface, the equivalent
control method [21] is used. The time derivative of the sliding variable is:

ṡ = P(ė− f1− f2U0)
= P f2(U1 +δ )

The equivalent control is obtained by solving the equations= 0 for U1:

U1eq =−δ (22)

By substitutingU1eq for U1 in (18), one can obtain the sliding dynamics:

ė= f1(e)+ f2(e)U0 (23)

Remark 6 From equation (23), several conclusions can be drawn. Firstly, the sliding
dynamics do not contain the matched perturbation: it has been successfully rejected.
Secondly, with respect to the conventional sliding mode control, we have gained some
extra degrees of freedom. Indeed,U0 can be used in order to stabilize the nominal
system and to deal with the unmatched perturbation.

4.2.2 Time-varying state feedback controller

The second part of the controller design is to find a saturated control lawU0 such that
the sliding dynamics (23) is globally asymptotically stable. The chosen control law
U0 has been developed by Jiang in [22]. The motivation for such a choice is that this
design takes into account the actuator bounds. It is described by:

U0 =

[
v0 = vr cose3 +λ3 tanhe1

w0 = wr + λ1vr e2
1+e2

1+e2
2

sine3
e3

+λ2 tanhe3

]
(24)

12



Note that the positive parametersλ1, λ2 andλ3 can be designed such that the bounds
of the controls are met for our controllers. Indeed, it can be seen that:

|v0| ≤ vmax− εv +λ3, |w0| ≤ wmax− εw +
λ1(vmax− εv)

2
+λ2

Remark 7 The control gains can be designed such that the bounds on the control in-
puts are satisfied. In order to design these constants, a compromise must be found
between the optimality, the performance and the robustness with respect to perturba-
tions.

From (2), it is straightforward to obtain the wheel velocities:
{

wright = v−Rw
r

wle f t = v+Rw
r

5 Experimental results

5.1 Experimental setup

The proposed motion planning and control algorithms are implemented on the mobile
robot Pekee manufactured at Wany Robotics company (see Fig. 6). An overview of
the experimental setup is shown in Fig. 7. An Intel486 micro-processor running
at 75MHz hosts the integral sliding mode controller written in C. The robot operates
under linux real time and its software integrates sensor and communication data. It
communicates through wireless Ethernet capable of transmitting data up to3Mb/s.
One miniature color vision camera C-Cam8 is mounted on the robot. A C program
accesses the streaming data coming into the frame grabber from the camera and stores
the data in a320×240image file. The robot is also equipped with 15 infra-red sensors
used for local identification of the environment and two encoders.

�

Figure 6: Pekee mobile robot
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Figure 7: Overview of the experimental setup

The vehicle’s wheelbase is taken toR= 0.3m with vmax= 0.8m/s, wmax= 5rad/s
and the sampling period is100ms. The computation timeδ t including the image
processing and the motion planning algorithm is about two minutes on the on-board
75MHz PC. In order to decrease the computation delay, we used the socket protocol
communication and wireless communication link. The vision data are sent to a Pentium
IV 2.4GHzPC for image processing and for the generation of the optimal trajectory.
This protocol enables to reduceδ t to less than0.2s.

5.2 Experimental results

We run experiments on different environments cluttered with obstacles. The corre-
sponding videos are available at: http://www.isen.fr/∼sst lille/fichiers/Icra.wmv.

In these experiments, obstructed areas are created with circular obstacles in the
workspace. Some of them are initially out of view from the robots’ on-board sensors
and may be discovered during the robot movement. The performance criteria is the
length of the traveled distance. For the motion planner, the chosen parameters are
described in Tab. 1. Furthermore, the parameters for the tracking algorithm are given
in Tab. 2. For comparison purpose, the gainsM1 andM2 needed to enforce the sliding
mode are the same in all the experiments in which they occur. The discontinuous
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Tp 2s
Tc 0.5s

nknot 6
εv 0.3m/s
εw 1rad/s

Table 1: Parameters of the motion planner

λ1 0.5
λ2 1
λ3 0.5
M1 0.2
M2 0.2

Table 2: Parameters of the tracking algorithm

controls are approximated by:

U1 =

[
−M1

s1
|s1|+0.0001

−M2
−e2s1+s2

|−e2s1+s2|+0.0001

]

Figures 10(a) and 11 depict the executed trajectories in unknown environments.
First, the robot visualizes the scene and applies the image processing. The nearest ob-
stacles in view from its on-board sensors are detected. In order to take into account
the size of the robot, the radius of these obstacles is increased by0.3m (dotted lines
around obstacles). According to the detected obstacles, a collision-free trajectory is
planned. Then, the integral sliding mode controller enables to track the desired trajec-
tory in spite of uncertainties and errors. During the execution, the robot plans, in real
time, its next optimal collision-free trajectory by taking into account new information
from its infra-red and camera sensors. The effectiveness, perfect performance of ob-
stacle avoidance, real time and high robustness properties are demonstrated by these
experimental results.

Figures 8, 9 and 10 highlight the performance for the proposed tracking module.
The first experiment is made without using feedback controller. By directly apply-
ing the open-loop control inputs, the robot does not follow its planned trajectory due
to measurement noise and modeling uncertainties. One can see in Fig. 8(b) that the
distance between the actual and planned trajectories, i.e.

√
(x−xr)2 +(y−yr)2, di-

verges. The second one is made using only the time-varying state feedback controller.
The third experiment is made using the combination “integral sliding mode controller
plus the time-varying state feedback controller”. One can note that using only the time-
varying state feedback controller, the robustness performance is not good enough. The
use of an integral sliding mode controller enables to improve the precision motion
tracking.
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6 Conclusion

An architecture for real time navigation of an autonomous mobile robot evolving in an
uncertain environment with obstacles is proposed. It provides the following practical
advantages:

• First, it enables to take into account the dynamic limitations on velocities.

• Further, receding horizon planner is a viable method for real time trajectory gen-
eration. Depending on computing resources, the use of flatness, B-spline para-
metrization and constrained feasible sequential quadratic programming can take
less than one second to compute an optimal collision-free trajectory.

• Also, the combination of integral sliding mode control with other methods like
time-varying state feedback improves the robustness properties of the closed-
loop system. Therefore, high precision trajectory tracking is achieved in spite of
uncertainties and modeling errors.

Experimental results show the effectiveness of our practical scheme (real time, high
robustness properties and good performance for obstacle avoidance).
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Figure 8: Experimental results without using the trajectory tracking module
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Figure 9: Experimental results using the time-varying state feedback controller
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Figure 10: Experimental results using the integral sliding mode and time-varying state
feedback controllers
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Figure 11: Experimental results using the integral sliding mode and time-varying state
feedback controllers in a more complex map
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