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On finite time observer design for multicellular converter

Michael Defoort, Mohamed DjeniaThierry Floquet and Wilfrid Perruquetti

Abstract— The aim of this paper is to estimate the capacitor's For the first order sliding modes, it is common to deal with
voltages by tacking the hybrid behavior of the multicellular con-  the issues of stability, robustness and convergence rate of
verter into account. A nonlinear finite time observer is given in the equilibrium by means of a Lyapunov approach [23]. For

order to solve this problem. The stability and properties of the . L S
proposed homogeneous finite time observer are studied using higher sliding mode and finite time observers, the proof of

Lyapunov theory. Our approach enables the stabilization of the  Stability is usually done using geometric homogeneity Base
observation errors in spite of the presence of perturbations. methods. Hence, the estimation of the convergence time and

Simulations highlight the efficiency of the proposed strategy.  the study of robustness properties looks problematic. In [4
Index Terms—multicellular converter, higher order sliding 5 strong Lyapunov function for the super-twisting algarith
mode, nonlinear observer, switched system, finite time stability. is proposed, allowing the study of stability, robustnesd an
convergence rate of the equilibrium.
I. INTRODUCTION In this paper, a Lyapunqv fupction will be designed, based
P lectronics h b Ning th h the | on a quadratic like function, in order to deeply study the
ower electronics have been evolving throug € aﬂ:aching time estimation and robustness of the homogenous

decades due to the developments of the Semiconducrf%ite time observer proposed in [20]. This observer is then

power components and new sy;tems of energy Conver.s'gﬂplied in order to estimate the capacitor voltages in a mul-
[6]. Among these systems, multicellular converters, Whlca%

d he beainni f the 90's [17 based ellular converter whose hybrid behavior, due to swishe
appeare at't € beginning o the 90's [17], are base on't reases the difficulty. The results are illustrated witine
association in series of the elementary cells of commutatiog; . 1ations

During this last decade, these systems become more an(r:]1 '

more attractive to industrial applications, especiallyhigh- 1. MULTICELLULAR CONVERTER MODELING
power applications [18]. Indeed, the harmonic contentsieft  The multicellular converter is based on the combination of
waveforms are improved compared to the classical two levesementary cells of commutation. Figure 1 depicts the topol
converter technology using the same switching frequencygy of a converter withp independent commutation cells.
Furthermore, this structure enables the reduction of thghe independency is due to ttie— 1) internal capacitors
losses due to commutations of power semiconductors whid can be considered only for a few switching periods. As
allowing cheap electronics components of large diffusion. 3 matter of fact, the current flows from the soudo the

To benefit as well as possible from the large potential ajutputi through different converter switches. The multicel-
the multicellular structure, an appropriate distributmfithe |ylar converter shows, by its structure, a hybrid behaviee d
voltages crossing each cell is needed. These voltages @ediscrete variables (i.e. switching or commutation Ipgic
generated when a suitable control of switches is applied [a]. Note that because of the presence of capacitors, there

order to obtain a specific value. The control of switchegre also continuous variables (i.e. currents and voltages)
allows to cancel the harmonics at the switching frequency

and to reduce the ripple of the chopped voltage [9]. Anyway, Sp S.i.flz SZ Sl
the knowledge of the capacitor voltages is always needed. —=° ....... _ e w_\__\_
Furthermore, it is important to note that the use of physical Lo L o
extra sensors in order to measure such voltages increasé&s( Cp— fCJ§ Lozl

. . . . . VC : . VCJ . . 'Vcl
the cost and the complexity of the system. That is why, its L Lo e B Vs
estimation by means of an observer becomes an attractive, j5——"r—"------ N s
and economical solution.

Different observer based methods have been developed for Fig. 1. Multicellular converter
nonlinear systems such as, for instance, adaptive observer
[9], observers by input-output injection [10], higher arde |t is important to highlight that the electrical switches
sliding mode observers [15], [8], [5], [21], [7] or finite ten constraints should be similar. This requirement implies a
observers [19], [20]. unigue voltage switch constraint gf. Thus, it is necessary to
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The dynamics of the converter, with a load consisting in &. Approach 1: Nonlinear observation theory
resistanceR and an inductance, is given by the following

i . : In this approach, the converter is considered as a nonlinear
differential equations:

continuous system and tools from nonlinear observation

) R E . theory [11] are used to study the observability.
p—-1 7Cj .
e T e T(Sj+1—sj) Considering the system (3), one can see that there are
(1) several operating switching modes for which the stais
P N not observable. For instance, if = U = --- = up_1 =0,
Ve, = a(sl+1_sl)’ J=1...p=1 the voltagesVe; (Vj ={1,...,p—1}) become completely

herel is the load s th ) is th unobservable. Nevertheless, these operating switchirdgmo
w ltere IS tthe .Oa}(h currenF;;, IS td(; (.:a;);:cnanltie(c. 'Sfttﬁ occur only during some part of the control sequence. Indeed,
voltage n thej—th capacitor anc= 1S the voltage ot IN€ i 44 4c0yrs for all the control sequences then the physical

source. Each commutation cell is controlled by the binary, o oot is jow because the multicellular converter does no
input signalS; € {0,1}. SignalS; =1 means that the upper operate

S";]’itCh ‘i‘th_elo —th cell ish“on;] and the IOWeLS(WiIC?f”iS “%ﬁ"h From the observability rank condition [13] of the system
whereass; =0 means that the upper switch s “off” and the 3y it tollows that at most two components »fare simul-

lower SV‘_"tCh ISont. ) taneously observable. System (3) can be written as follows:
The discrete control input can be described as follows: R E

{uj = S-S, j=1..p-1 @) b= e tYs

p = S | ®)
' -1

Assuming that only the load currehtcan be measured (i.e. Vs = — ijzl LT:JUJZ

y=1), the system (1) can be represented as follows:
R E V. with Vs = —£ 571 u;V;. From the observability rank con-
I = ——l+—up— z?;llﬂuj dition of system (5), one can deduce thaand Vs can be
L L L simultaneously observable.
From the estimation of;, one can deduce the capacitor

: I :
Ve, = auj’ j=1,...,p-1 ©) voltagesVe,, Ve, .. ., Ve, 1. Indeed, sincd; (j={1,...,p—
1}) slowly varies during the measurement time interval, one
y = | can obtainp— 1 measurements ofs (i.e. VI, V2, .. VP
such that:

Using the hybrid system formalism [16], one can describe

1 ut ok
the system (3) as: Vs . 1 p-1| | Vo
: : = —T| : o :
x = f(xu) p-1 p-1 p-1
{ y = h(xu) “) Vs ug o Upg Veps
. . is invertible.
where x = [I,Vcl,...,VC,H]T € RP is the continuous state,
u=[uy,...,up|" is the applied control input which only takes B. Approach 2: Z-observability theory
discrete values. The function(x,u) = A(u)x+B(u) and  Here, the observability properties of the state vector is
h(x,u) = Cx are vector fields defined as: studied from the concept aZ—observability for switched
R u _Upa systems [14]. This approach uses the fact that the multi-
u- OL OL cellular converter belongs to a particular class of switghi
AU) = ! hybrid systems. For such a class, the observation concept
: : - : is linked to the switches. Hence, it is important to give the
% o .. 0 following definitions.
E T Definition 1: [16] A hybrid time trajectory is a finite
B(u) = [LUWO,---,O} sequencdy, = {lj }i—on such that:
o lj= [ti,07ti,1), forall 0<i<N
c=11,0,...,0] o Forall 0<i <N, ti1=t110

* to0=tini andtn 1 =tend
Furthermore(Ty) is defined as the ordered list afassoci-
This section is devoted to the observability analysis ofited toTy, i.e. {u'}i—on Whereu' is the value ofu on the
the capacitor voltage¥;; (j = {1,...,p—1}) from the intervall;.
measurement of the curremtand the knowledge of the
control input sequenca. This analysis can be done using Definition 2: [14] For system (4), the function= Z(t,X)
the two following approaches [2]. is said to beZ—observable with respect to the hybrid time

I1l. OBSERVABILITY ANALYSIS



trajectory Ty and (Ty), if for all trajectories (t,x,u) and A. Finite time observer design

(t,x,u) defined in[tin/ivtend]' the equalityh(x,u) = h(x',u) Assuming that the curreritis measured, the finite time
implies Z(t,x) = Z(t,x). observer for the system (5) is designed as follows:
Theorem 1:[14] Consider system (4) and a fixed hybrid _— —FSI +%up+\75+ klz}’;11|uj|[| ffJa

time trajectory Ty and (Tn). Suppose thatz = Z(t,x) is
always continuous under any admissible control input. If A p-1 5 a1
there is a sequence of linear projectidi};_q \ such that: Vs = 3 f“ + K[l 1]
« forall 0<i <N, RZ(t,x) is Z—observable fot € I,
« Rank([RJ,...,R]]) =dim(2),
. RZEX) oo ¢ l; where{PT BT} has a full rank
in R%im(z)xdim(z)_

)

The positive constantg, K, anda will be defined hereatfter.
The continuous functioria|® is the function described as:
vaeR,vb>0, [a|’=]aPsign(a) (8)
Then, z is Z—observable with respect to the hybrid time Define the observation errors e}s.
trajectory Ty and (Ty). { e = I—-1 ©)
& = Vs—Vs
Remark 1:The first condition of Theorem 1 implies that Equations (5)-(7) yield the dynamics of the observation
there is at least a time interval in which the variaBI&(t,x) error as:
is Z—observable; whereas the second one implies that all the
components oZ are observable in a given time interval of
the hybrid time trajectoryly. The third condition requires . 201
that components of which are not observable ih must & = —Kpfe
remain constant within this time interval. It prevents from In order to simplify the system (10), one can note:
the loose of observability and from the “re-observation” of -1
variables which have been already estimated. Ky = kg z |uj| (11)

& = e—ky|ylel

(10)

The application of Theorem 1 to the multicellular con-

i _ Hence, the dynamics (10) can be written as follows:
verter yields the following result:

Lemma 1:Consider the system (3) and the functine- { e1 = &-K (%Jfl (12)
X. Then,z is Z—observable with respect to the hybrid time & = -Kfe]
trajectoryTy and (Tn) = {u'};_q . if the vectors{u'}, o\ Through this paper, it is assumed that:
generate the spadeP~1, where « there isTy such thatz= x is Z—observable with respect
i to the hybrid time trajectory of system (1).
u=u (6) . A
« there is a constant > 0 such that for any time interval
on the time interval;. li, |ti1—tio| is larger thant.

Remark 2:Lemma 1 ensures that the current crosses Remark 3:Sinceu remains constant on the time interval
through all the capacitors; roughly speaking, in a lineak, one should guarantee that the reaching tirpe< T; <tj 1
independent form. In other words, after-1 time intervals onto the manifold{e=[e;,&]" | e1=0, & =0} is lower
(i.e. p—1 control sequences) the measurement of the loaban 7. According to the above assumptions, there is a
currentl allows to obtain a set ofp— 1) linearly indepen- hybrid time trajectory such that the capacitor voltages are
dent equations with respect to the voltages in (pe-1) observable. Then, sine equals to zero on the time interval
capacitors; which enables to estimate the capacitors of tfig,t; 1], by the means of the procedure defined in Section III,
converter. This result is, in essence, similar as the reswhe can obtain an estimation of the capacitor voltages, i.e.
presented in Approach 1. Indeed, it is needed at Ipasl V¢, Vj={1,...,p—1}.
time intervals whose corresponding sequentese linearly According to Remark 3, the objective, i.e. the estimation
independent, in order to estimaie, Vj € {1,...,p—1}. of the capacitor voltages, is achieved when the finite time

stabilization of the system (12) is guaranteed.

. - - T
Consider some perturbationye) = [fl(el),fz(el) €

R? on the system (3) due to resistance uncertainties for
mstance In this case, the dynamics of the observatiomserro
(12) is replaced by:

IV. CAPACITOR VOLTAGES ESTIMATION

Hereafter, a finite time observer is designed in order to
estimate the capacitor voltages of the multicellular comre
by using only the measurement of the curréntDue to
the particular structure of the observer, finite time stgbil 6 = e—Kfe|+ ﬂ(el)
of the observation error is shown using Lyapunov stability { & = —Kle]2@ 14 fye)
arguments.

(13)



Theorem 2:Suppose that the perturbations of the syster8ince, for alle > 0,

(13) satisfy: )
T0) — I3
fi(O)_O P2|é1]|&2 §§5f+ 2%522
a(er)] < afer 22 (14)
|f2(e1)| < Bleg]?01 One has:
for some constantd; > 0 andd > 0. T 0 5o 5en
Consider the matrixy: 2P PER <f1+ E) <prér+pzés  (21)
Ao — —aK; a ,
K0 with 1y = (31 + &) (2|ps| +¢) and iz = (81 + &) 2. Thus,

where% < a <1 and the gain¥; > 0, K; > 0 are chosen v < 1 TR
such that matrixAg is Hurwitz and are sufficiently large. = \1 et Qf (22)
Then, the system (13) is globally finite-time stable. < Amin{ Q}H|E ]2

: _ |E1\1 a
Proof: Consider the following vector:

¢ NG where
1 ~
‘= L‘z] - [ez + i‘ﬂ (13) Q=0Q+ {%1 ﬁz] (23)

Define the candidate Lyapunov function as: _
Hence, if the gainK; andK; are chosen such th& > 0,

V(&) =¢&TPE (16)  thenV is negative definite.

From the standard inequality for quadratic forms, one can

P=pP = |PL P3| - 0is the solution of the following deduce that:

P3 P2
algebraic Lyapunov equation:

AP+ PAY=—-Q (17)

whereQ= Q' > 0 is a positive definite matrix. "
One can note that (&) is continuous, positive definite and  Using (24) and 6< ———, one can obtain:
radially unbounded ifR2. Furthermore, it is differentiable 20

Amin{P}H|E[1* <V (&) < Amax{P}|€ |7 (24)

where||&|| is the Euclidean norm.

everywhere except on the manifolge; = 0}. Since the L L V%(E)
trajectory of system (12) cannot stay on this set, before le |9 <Jé|I'e < —5—= (25)
reaching the origin, the derivative & can be calculated /\r:ﬁ?{P}
as in the conventional way (see [12] for further details). 1 )
Since As a > 3, one can deduce th&t(¢) is a strong Lyapunov
_ function for the system (13) since:
E o [alel“ (e~ Kaler)? + ) .
—Kofer) 214 1+ F V< yQvE (26)
_ 0 .
o0t a(E_szlgllfl)]+ - with
1 2 ~ /\mln{Q}Amln {P}
= JesI A0 + ma
1 “r 1:2

Since the transformation (15) is continuous, it followsttha
the time derivative ol along the solutions of system (13) & converges to zero in finite time, theey, ande, converge

is given by: to 0 and— f1, respectively. B
) 0 Using the property of perturbatio, given in (14), it
V= |€1|1 |1 &€TQe+28TP e a( n fz) (18) follows that a trajectory of the system (13) starting from
& € R? converges to the origin in finite time and reaches
where that point at most after:
0 ~ o~ 30-1
ZET |ﬁ f ] = 2(f1+ f2)(p351+ pZEZ) (19) T= 2a VT~(90) 27)
o Sa—1 y(Q

Using the bound on the perturbation (14), it can be shown
that:

. 0
2 P[Iall “( +f)

|
Remark 4:1t is interesting to note that the limit case
2 a =1 corresponds to the Luenberger observer and allows an
+ + . -
(01 +2)(Paéi + Paléallél) asymptotic convergence of the observation errors. The case
20) a= % corresponds to the classical super-twisting observer.




V. SIMULATION RESULTS

15
In order to illustrate the performance of the proposed finite
time observer, we consider here a 3 cells converter corthecte
to anRL load. This converter can be modeled by the system  10f
(1) where p = 3. Its parameters are as followsi = ¢; =
40.10 °F, R=131Q, L = 0.001H. S —V
The voltage of the source iE = 30V. The inputs of = . 7
the switchesu;j, j = {1,2,3} are generated for the hybrid ,‘|'f -
time trajectory given in Fig. 2. This sequence of control is okl
periodic with a period of @msand satisfies the assumptions i
of Lemma 1. Hencez = x is Z—observable with respect to
the hybrid time trajectory for system (1). Moreover, one can -5 ‘ ‘ ‘ ‘
see in Fig. 4 thal, (V, resp.) remains constant during 0 0.02 O'O4t[s] 006 008 0.1
a certain time interval. The chopping frequency and the
sampled period arE = 5kHzandT = 5.10 s, respectively. 4 —
-3
1 x 10 ‘
=~ 0Of H H
—1
, 205 . 2.15 . 2.25
x 10°°
2.25
X 10 -6 ‘ ‘ ‘ ‘
1 ‘ ‘ 0 0.02 0.04 0.06 0.08 0.1
=™ 0.5¢ | , t[s]
O L L
2 2.05 2.1 2.15 2.2 2.25 Fig. 3. Observation error iN, for the finite time observer using = 4§1
Fig. 2. Applied control inputs 8

. . zoom
The available measurement is the currenthe problem

of the capacitor voltages estimation can be viewed as the
finite-time stabilization of the system (12). Applying Theo
rem 2, one can set the parameters of the observers as follows
K2 = 1500 andK; = 500.

Figures 3-5 depict the results obtained with the finite time

observer whenor = — is selected. One can note the high
convergence rate o? the observer errors. One can see the
equal distribution of the voltage constraints on each cells
(i.e. steady condition§ = 10V for \, and & = 20v for 3 \ \ \ \
Ve,). It is worth noticing that the high frequency oscillations 002  0.022 0'024t [510'026 0028  0.03
are of low amplitude. It is interesting to note in Fig. 6 tHad t
finite time observer gives good results in terms of robustnes
properties with respect to resistance variation (25% atoun
its nominal value).

Fig. 4. Zoom
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