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On finite time observer design for multicellular converter

Michael Defoort, Mohamed Djemaı̈, Thierry Floquet and Wilfrid Perruquetti

Abstract— The aim of this paper is to estimate the capacitor’s
voltages by tacking the hybrid behavior of the multicellular con-
verter into account. A nonlinear finite time observer is given in
order to solve this problem. The stability and properties of the
proposed homogeneous finite time observer are studied using
Lyapunov theory. Our approach enables the stabilization of the
observation errors in spite of the presence of perturbations.
Simulations highlight the efficiency of the proposed strategy.

Index Terms— multicellular converter, higher order sliding
mode, nonlinear observer, switched system, finite time stability.

I. I NTRODUCTION

Power electronics have been evolving through the last
decades due to the developments of the semiconductor
power components and new systems of energy conversion
[6]. Among these systems, multicellular converters, which
appeared at the beginning of the 90’s [17], are based on the
association in series of the elementary cells of commutation.
During this last decade, these systems become more and
more attractive to industrial applications, especially inhigh-
power applications [18]. Indeed, the harmonic contents of the
waveforms are improved compared to the classical two levels
converter technology using the same switching frequency.
Furthermore, this structure enables the reduction of the
losses due to commutations of power semiconductors while
allowing cheap electronics components of large diffusion.

To benefit as well as possible from the large potential of
the multicellular structure, an appropriate distributionof the
voltages crossing each cell is needed. These voltages are
generated when a suitable control of switches is applied in
order to obtain a specific value. The control of switches
allows to cancel the harmonics at the switching frequency
and to reduce the ripple of the chopped voltage [9]. Anyway,
the knowledge of the capacitor voltages is always needed.
Furthermore, it is important to note that the use of physical
extra sensors in order to measure such voltages increases
the cost and the complexity of the system. That is why, its
estimation by means of an observer becomes an attractive
and economical solution.

Different observer based methods have been developed for
nonlinear systems such as, for instance, adaptive observers
[9], observers by input-output injection [10], higher order
sliding mode observers [15], [8], [5], [21], [7] or finite time
observers [19], [20].
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For the first order sliding modes, it is common to deal with
the issues of stability, robustness and convergence rate of
the equilibrium by means of a Lyapunov approach [23]. For
higher sliding mode and finite time observers, the proof of
stability is usually done using geometric homogeneity based
methods. Hence, the estimation of the convergence time and
the study of robustness properties looks problematic. In [4],
a strong Lyapunov function for the super-twisting algorithm
is proposed, allowing the study of stability, robustness and
convergence rate of the equilibrium.

In this paper, a Lyapunov function will be designed, based
on a quadratic like function, in order to deeply study the
reaching time estimation and robustness of the homogenous
finite time observer proposed in [20]. This observer is then
applied in order to estimate the capacitor voltages in a mul-
ticellular converter whose hybrid behavior, due to switches,
increases the difficulty. The results are illustrated with some
simulations.

II. M ULTICELLULAR CONVERTER MODELING

The multicellular converter is based on the combination of
elementary cells of commutation. Figure 1 depicts the topol-
ogy of a converter withp independent commutation cells.
The independency is due to the(p−1) internal capacitors
and can be considered only for a few switching periods. As
a matter of fact, the current flows from the sourceE to the
output I through different converter switches. The multicel-
lular converter shows, by its structure, a hybrid behavior due
to discrete variables (i.e. switching or commutation logic)
[1]. Note that because of the presence of capacitors, there
are also continuous variables (i.e. currents and voltages).
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Fig. 1. Multicellular converter

It is important to highlight that the electrical switches
constraints should be similar. This requirement implies a
unique voltage switch constraint ofE

p . Thus, it is necessary to
ensure an equilibrated distribution of the capacitor voltages.
Under these conditions, the reference voltage of the capacitor
j ( j = {1, . . . , p−1}) is:

Vc j ,re f = j
E
p



The dynamics of the converter, with a load consisting in a
resistanceR and an inductanceL, is given by the following
differential equations:




İ = −
R
L

I +
E
L

Sp−∑p−1
j=1

Vc j

L
(Sj+1−Sj)

V̇c j =
I
c j

(Sj+1−Sj), j = 1, . . . , p−1

(1)

whereI is the load current,c j is the capacitance,Vc j is the
voltage in the j−th capacitor andE is the voltage of the
source. Each commutation cell is controlled by the binary
input signalSj ∈ {0,1}. SignalSj = 1 means that the upper
switch of the j−th cell is “on” and the lower switch is “off”
whereasSj = 0 means that the upper switch is “off” and the
lower switch is “on”.

The discrete control input can be described as follows:
{

u j = Sj+1−Sj , j = 1. . . p−1
up = Sp

(2)

Assuming that only the load currentI can be measured (i.e.
y = I ), the system (1) can be represented as follows:





İ = −
R
L

I +
E
L

up−∑p−1
j=1

Vc j

L
u j

V̇c j =
I
c j

u j , j = 1, . . . , p−1

y = I

(3)

Using the hybrid system formalism [16], one can describe
the system (3) as:

{
ẋ = f (x,u)
y = h(x,u)

(4)

where x = [I ,Vc1, . . . ,Vcp−1]
T ∈ R

p is the continuous state,
u= [u1, . . . ,up]

T is the applied control input which only takes
discrete values. The functionsf (x,u) = A(u)x+ B(u) and
h(x,u) = Cx are vector fields defined as:

A(u) =




−R
L −u1

L . . . −
up−1

Lu1
c1

0 . . . 0
...

...
.. .

...
up−1
cp−1

0 . . . 0




B(u) =

[
E
L

up,0, . . . ,0

]T

C = [1,0, . . . ,0]

III. O BSERVABILITY ANALYSIS

This section is devoted to the observability analysis of
the capacitor voltagesVc j ( j = {1, . . . , p− 1}) from the
measurement of the currentI and the knowledge of the
control input sequenceu. This analysis can be done using
the two following approaches [2].

A. Approach 1: Nonlinear observation theory

In this approach, the converter is considered as a nonlinear
continuous system and tools from nonlinear observation
theory [11] are used to study the observability.

Considering the system (3), one can see that there are
several operating switching modes for which the statex is
not observable. For instance, ifu1 = u2 = · · · = up−1 = 0,
the voltagesVc j (∀ j = {1, . . . , p− 1}) become completely
unobservable. Nevertheless, these operating switching modes
occur only during some part of the control sequence. Indeed,
if it occurs for all the control sequences then the physical
interest is low because the multicellular converter does not
operate.

From the observability rank condition [13] of the system
(3), it follows that at most two components ofx are simul-
taneously observable. System (3) can be written as follows:





İ = −
R
L

I +
E
L

up +Vs

V̇s = −∑p−1
j=1

I
Lc j

u2
j

(5)

with Vs = − 1
L ∑p−1

j=1 u jVc j . From the observability rank con-
dition of system (5), one can deduce thatI and Vs can be
simultaneously observable.

From the estimation ofVs, one can deduce the capacitor
voltagesVc1,Vc2, . . . ,Vcp−1. Indeed, sinceVc j ( j = {1, . . . , p−
1}) slowly varies during the measurement time interval, one
can obtainp− 1 measurements ofVs (i.e. V1

s ,V2
s , ...V p−1

s )
such that:




V1
s
...

V p−1
s


 = − 1

L




u1
1 . . . u1

p−1
...

.. .
...

up−1
1 . . . up−1

p−1







Vc1
...

Vcp−1




is invertible.

B. Approach 2: Z−observability theory

Here, the observability properties of the state vector is
studied from the concept ofZ−observability for switched
systems [14]. This approach uses the fact that the multi-
cellular converter belongs to a particular class of switching
hybrid systems. For such a class, the observation concept
is linked to the switches. Hence, it is important to give the
following definitions.

Definition 1: [16] A hybrid time trajectory is a finite
sequenceTn = {Ii}i=0,N such that:

• Ii = [ti,0, ti,1), for all 0≤ i ≤ N
• For all 0≤ i ≤ N, ti,1 = ti+1,0

• t0,0 = tini and tN,1 = tend

Furthermore,〈TN〉 is defined as the ordered list ofu associ-
ated toTN, i.e. {ui}i=0,N whereui is the value ofu on the
interval Ii .

Definition 2: [14] For system (4), the functionz= Z(t,x)
is said to beZ−observable with respect to the hybrid time



trajectory TN and 〈TN〉, if for all trajectories (t,x,u) and
(t,x′,u′) defined in[tini , tend], the equalityh(x,u) = h(x′,u′)
implies Z(t,x) = Z(t,x′).

Theorem 1:[14] Consider system (4) and a fixed hybrid
time trajectory TN and 〈TN〉. Suppose thatz = Z(t,x) is
always continuous under any admissible control input. If
there is a sequence of linear projections{Pi}i=0,N such that:

• for all 0≤ i ≤ N, PiZ(t,x) is Z−observable fort ∈ Ii ,
• Rank

(
[PT

0 , . . . ,PT
N ]
)

= dim(z),

•
dP̄iZ(t,x)

dt
= 0 for t ∈ Ii where

{
P̄T

i ,PT
i

}
has a full rank

in R
dim(z)×dim(z).

Then, z is Z−observable with respect to the hybrid time
trajectoryTN and 〈TN〉.

Remark 1:The first condition of Theorem 1 implies that
there is at least a time interval in which the variablePiZ(t,x)
is Z−observable; whereas the second one implies that all the
components ofZ are observable in a given time interval of
the hybrid time trajectoryTN. The third condition requires
that components ofZ which are not observable inIi must
remain constant within this time interval. It prevents from
the loose of observability and from the “re-observation” of
variables which have been already estimated.

The application of Theorem 1 to the multicellular con-
verter yields the following result:

Lemma 1:Consider the system (3) and the functionz=
x. Then,z is Z−observable with respect to the hybrid time
trajectoryTN and 〈TN〉 =

{
ui
}

i=0,N, if the vectors
{

ui
}

i=0,N
generate the spaceRp−1, where

ui = u (6)

on the time intervalIi .

Remark 2:Lemma 1 ensures that the current crosses
through all the capacitors; roughly speaking, in a linear
independent form. In other words, afterp−1 time intervals
(i.e. p−1 control sequences) the measurement of the load
current I allows to obtain a set of(p−1) linearly indepen-
dent equations with respect to the voltages in the(p−1)
capacitors; which enables to estimate the capacitors of the
converter. This result is, in essence, similar as the result
presented in Approach 1. Indeed, it is needed at leastp−1
time intervals whose corresponding sequencesui are linearly
independent, in order to estimateVc j , ∀ j ∈ {1, . . . , p−1}.

IV. CAPACITOR VOLTAGES ESTIMATION

Hereafter, a finite time observer is designed in order to
estimate the capacitor voltages of the multicellular converter
by using only the measurement of the currentI . Due to
the particular structure of the observer, finite time stability
of the observation error is shown using Lyapunov stability
arguments.

A. Finite time observer design

Assuming that the currentI is measured, the finite time
observer for the system (5) is designed as follows:




˙̂I = −
R
L

I +
E
L

up +V̂s+k1 ∑p−1
j=1 |u j |⌈I − Î⌋α

˙̂Vs = −∑p−1
j=1

I
Lc j

u2
j +K2⌈I − Î⌋2α−1

(7)

The positive constantsk1, K2 andα will be defined hereafter.
The continuous function⌈a⌋b is the function described as:

∀a∈ R, ∀b≥ 0, ⌈a⌋b = |a|bsign(a) (8)

Define the observation errors as:
{

e1 = I − Î
e2 = Vs−V̂s

(9)

Equations (5)-(7) yield the dynamics of the observation
error as:





ė1 = e2−k1 ∑p−1
j=1 |u j |⌈e1⌋

α

ė2 = −K2⌈e1⌋
2α−1

(10)

In order to simplify the system (10), one can note:

K1 = k1

p−1

∑
j=1

|u j | (11)

Hence, the dynamics (10) can be written as follows:
{

ė1 = e2−K1⌈e1⌋
α

ė2 = −K2⌈e1⌋
2α−1 (12)

Through this paper, it is assumed that:
• there isTN such thatz= x is Z−observable with respect

to the hybrid time trajectory of system (1).
• there is a constantτ > 0 such that for any time interval

Ii , |ti,1− ti,0| is larger thanτ.

Remark 3:Sinceu remains constant on the time interval
Ii , one should guarantee that the reaching timeti,0 < Ti < ti,1
onto the manifold

{
e= [e1,e2]

T | e1 = 0, e2 = 0
}

is lower
than τ. According to the above assumptions, there is a
hybrid time trajectory such that the capacitor voltages are
observable. Then, sincee2 equals to zero on the time interval
[Ti , ti,1], by the means of the procedure defined in Section III,
one can obtain an estimation of the capacitor voltages, i.e.
Vc j , ∀ j = {1, . . . , p−1}.

According to Remark 3, the objective, i.e. the estimation
of the capacitor voltages, is achieved when the finite time
stabilization of the system (12) is guaranteed.

Consider some perturbations̃f (e) =
[

f̃1(e1), f̃2(e1)
]T

∈

R
2 on the system (3) due to resistance uncertainties for

instance. In this case, the dynamics of the observation errors
(12) is replaced by:

{
ė1 = e2−K1⌈e1⌋

α + f̃1(e1)

ė2 = −K2⌈e1⌋
2α−1 + f̃2(e1)

(13)



Theorem 2:Suppose that the perturbations of the system
(13) satisfy: 




f̃1(0) = 0

|
˙̃f 1(e1)| ≤ δ1|e1|

2α−1

| f̃2(e1)| ≤ δ2|e1|
2α−1

(14)

for some constantsδ1 ≥ 0 andδ2 ≥ 0.
Consider the matrixA0:

A0 =

[
−αK1 α
−K2 0

]

where 1
2 ≤ α < 1 and the gainsK1 > 0, K2 > 0 are chosen

such that matrixA0 is Hurwitz and are sufficiently large.
Then, the system (13) is globally finite-time stable.

Proof: Consider the following vector:

ξ =

[
ξ1

ξ2

]
=

[
⌈e1⌋

α

e2 + f̃1

]
(15)

Define the candidate Lyapunov function as:

V(ξ ) = ξ TPξ (16)

P = PT =

[
p1 p3

p3 p2

]
> 0 is the solution of the following

algebraic Lyapunov equation:

AT
0 P+PA0 = −Q (17)

whereQ = QT > 0 is a positive definite matrix.
One can note thatV(ξ ) is continuous, positive definite and

radially unbounded inR2. Furthermore, it is differentiable
everywhere except on the manifold{e1 = 0}. Since the
trajectory of system (12) cannot stay on this set, before
reaching the origin, the derivative ofV can be calculated
as in the conventional way (see [12] for further details).

Since

ξ̇ =

[
α|e1|

α−1
(

e2−K1⌈e1⌋
α + f̃1

)

−K2⌈e1⌋
2α−1 +

˙̃f 1 + f̃2

]

= |e1|
α−1

[
α (ξ2−K1ξ1)

−K2ξ1

]
+

[
0

˙̃f 1 + f̃2

]

= |e1|
α−1A0ξ +

[
0

˙̃f 1 + f̃2

]

the time derivative ofV along the solutions of system (13)
is given by:

V̇ = −
1

|e1|1−α

(
ξ TQξ +2ξ TP

[
0

|e1|
1−α

(
˙̃f 1 + f̃2

)
])

(18)

where

2ξ TP

[
0

˙̃f 1 + f̃2

]
= 2(

˙̃f 1 + f̃2)(p3ξ1 + p2ξ2) (19)

Using the bound on the perturbation (14), it can be shown
that:

2ξ TP

[
0

|e1|
1−α

(
˙̃f 1 + f̃2

)
]
≤ 2(δ1 +δ2)(p3ξ 2

1 + p2|ξ1||ξ2|)

(20)

Since, for allε > 0,

p2|ξ1||ξ2| ≤
ε
2

ξ 2
1 +

p2
2

2ε
ξ 2

2

One has:

2ξ TP

[
0

|e1|
1−α

(
˙̃f 1 + f̃2

)
]
≤ µ2

1ξ 2
1 + µ2

2ξ 2
2 (21)

with µ1 = (δ1 +δ2)(2|p3|+ ε) and µ2 = (δ1 +δ2)
p2

2
ε . Thus,

V̇ ≤ − 1
|e1|1−α ξ TQ̃ξ

≤ − 1
|e1|1−α λmin{Q̃}||ξ ||2

(22)

where

Q̃ = Q+

[
µ1 0
0 µ2

]
(23)

Hence, if the gainsK1 and K2 are chosen such that̃Q > 0,
thenV̇ is negative definite.

From the standard inequality for quadratic forms, one can
deduce that:

λmin{P}||ξ ||2 ≤V(ξ ) ≤ λmax{P}||ξ ||2 (24)

where||ξ || is the Euclidean norm.

Using (24) and 0<
1−α
2α

, one can obtain:

|e1|
1−α ≤ ||ξ ||

1−α
α ≤

V
1−α
2α (ξ )

λ
1−α
2α

min {P}
(25)

As α >
1
2, one can deduce thatV(ξ ) is a strong Lyapunov

function for the system (13) since:

V̇ ≤−γ(Q̃)V
3α−1

2α (26)

with

γ(Q̃) =
λmin{Q̃}λ

1−α
2α

min {P}

λmax{P}

Since the transformation (15) is continuous, it follows that
ξ converges to zero in finite time, then,e1 ande2 converge
to 0 and− f̃1, respectively.

Using the property of perturbatioñf1 given in (14), it
follows that a trajectory of the system (13) starting from
e0 ∈ R

2 converges to the origin in finite time and reaches
that point at most after:

T =
2α

3α −1
V

3α−1
2α (e0)

γ(Q̃)
(27)

Remark 4: It is interesting to note that the limit case
α = 1 corresponds to the Luenberger observer and allows an
asymptotic convergence of the observation errors. The case
α = 1

2 corresponds to the classical super-twisting observer.



V. SIMULATION RESULTS

In order to illustrate the performance of the proposed finite
time observer, we consider here a 3 cells converter connected
to anRL load. This converter can be modeled by the system
(1) where p = 3. Its parameters are as follows:c1 = c2 =
40.10−6F , R= 131Ω, L = 0.001H.

The voltage of the source isE = 30V. The inputs of
the switchesu j , j = {1,2,3} are generated for the hybrid
time trajectory given in Fig. 2. This sequence of control is
periodic with a period of 0.2msand satisfies the assumptions
of Lemma 1. Hence,z= x is Z−observable with respect to
the hybrid time trajectory for system (1). Moreover, one can
see in Fig. 4 thatVc1 (Vc2 resp.) remains constant during
a certain time interval. The chopping frequency and the
sampled period areF = 5kHzandT = 5.10−6s, respectively.

2 2.05 2.1 2.15 2.2 2.25
−1

0

1
x 10

−3

u 1

2 2.05 2.1 2.15 2.2 2.25
−1

0

1
x 10

−3

u 2

2 2.05 2.1 2.15 2.2 2.25
0

0.5

1
x 10

−3

u 3

Fig. 2. Applied control inputs

The available measurement is the currentI . The problem
of the capacitor voltages estimation can be viewed as the
finite-time stabilization of the system (12). Applying Theo-
rem 2, one can set the parameters of the observers as follows:
K2 = 1500 andK1 = 500.

Figures 3-5 depict the results obtained with the finite time

observer whenα =
3
4

is selected. One can note the high
convergence rate of the observer errors. One can see the
equal distribution of the voltage constraints on each cells
(i.e. steady conditionsE3 = 10V for Vc1 and 2E

3 = 20V for
Vc2). It is worth noticing that the high frequency oscillations
are of low amplitude. It is interesting to note in Fig. 6 that the
finite time observer gives good results in terms of robustness
properties with respect to resistance variation (25% around
its nominal value).

VI. CONCLUSION

In this paper, a nonlinear finite time observer has been
designed for a multicellular converter. The problem of the
capacitor voltages estimation is solved. A Lyapunov function
has been introduced in order to study the stability and
properties of the proposed homogeneous finite time observer.
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