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Linear Matrix Inequality based static output feedback sliding mode
control for discrete time systems

Srinath Govindaswamy, Thierry Floquet, and Sarah K. Spurgeon

Abstract— This paper discusses the design of a static out-
put feedback based sliding mode controller for MIMO non-
minimum phase discrete time systems. In previous work, it
was shown that by identifying a minimal set of current and
past outputs to determine an extended output signal, an
augmented system can be obtained which permits the design of
a sliding manifold based upon output information only, which
renders the sliding mode dynamics stable. In this paper, it is
shown that if the extended outputs chosen span the state zero
directions of an invariant zero of the system, then the invariant
zero disappears from the augmented system. Linear matrix
inequalities are then used for sliding surface design. Such
controllers have great potential within reconfigurable control
schemes for application in the presence of multiple sensor
failures. The methodology is applied to an aircraft system to
show the efficacy of the design philosophy.

I. INTRODUCTION

In continuous time, a sliding mode is generated by means
of discontinuities in the control signals about a surface in the
state space [29]. It is required that the discontinuity surface,
usually called the sliding surface, is attained from any initial
condition in a finite time interval. For an appropriately
selected controller, the motion on the surface, or sliding
mode, is completely insensitive to any matched uncertainty
in the system [29], [6]. In a discrete control implementation,
the control signal is held constant during the sample period
and hence it is not possible, in general, to attain a sliding
mode which would require the control to switch at infinite
frequency. As a result, the invariance properties of contin-
uous time sliding-mode control can be lost. The obvious
solution of sampling at high frequency, which will closely
approximate continuous time, may not be possible for given
hardware specifications. This has led to interest in the area
of discrete time sliding-mode control (DSMC). For the case
of uncertain discrete systems, it is not possible to ensure
the states remain on a surface within the state space and
for this reason much of the early DSMC literature focused
on establishing a discrete time counterpart to the (continuous
time) reachability condition [3], [11], [23]. A comprehensive
overview of these early developments is given in [19]. One
distinctive feature is that DSMC does not necessarily require
the use of a discontinuous control strategy [26]. The results
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presented in [13], [26] show that an appropriate choice of
sliding surface, used with the equivalent control required to
ensure sliding, can guarantee a bounded motion about the
surface in the presence of bounded matched uncertainty and
that the use of a relay/switch in the control law is detrimental
to performance.

Early contributions in sliding mode control were devel-
oped in a framework in which all the system states are
available. This may not be realistic for practical engineering
problems and has motivated the need for output feedback
controllers. A number of algorithms have been developed for
robust stabilization of uncertain systems which are based on
sliding surfaces and output feedback control schemes [30],
[5]. In [30], a geometric condition is developed to guarantee
the existence of the sliding surface and the stability of the
reduced order sliding motion. Edwards and Spurgeon derived
an algorithm [5], [6] which is convenient for practical use.
Based on the work in [30], some dynamic feedback sliding
mode controllers have been proposed [15], [24]. In all the
above output feedback sliding mode control schemes, it is an
a priori requirement that the system under consideration is
minimum phase and relative degree one and that a particular
sub-system must be output feedback stabilisable [6].

Compared with continuous time sliding-mode strategies,
the design problem in discrete time is much less mature.
Other than early work in [25], much of the literature assumes
all states are available [10], [13], [28]. Discrete sliding mode
control schemes which have restricted themselves to output
measurements alone have often been observer based schemes
with or without disturbance estimation [17], [27]. Recent
exceptions have been the work in [20] which considers
both static and dynamic output feedback problems, and the
discrete time versions of certain higher-order sliding-mode
control schemes [1], [2].

For continuous time systems, it was shown in [9] that
the relative degree condition associated with the solution
of the existence problem can be weakened if a classical
sliding mode observer is combined with sliding mode exact
differentiators to generate additional independent output
signals from the available measurements. In [12], it was
shown that by using the output signal at the current time
instant together with a limited amount of information from
previous sample instants, the class of systems for which
an output feedback based sliding mode controller can be
developed is significantly broadened. It is shown here that
if the extended output spans the state zero directions of
an invariant zero of the original plant, the invariant zero
disappears from the augmented system. The design of the



sliding surface is formulated as an LMI problem. It is shown
that by extending the available outputs, the methodology
can be applied to cases where systems experience multiple
sensor failures and require reconfigurable control using the
remaining available outputs.

The paper is structured as follows. Section 2 presents the
problem motivation. The existence problem is considered in
Section 3 and a control law to ensure the sliding mode is
attained is given in Section 4. A motivational reconfigurable
control example, from the class of discrete systems which
could not previously be stabilised by output feedback sliding
mode control, is presented to illustrate the approach.

II. MOTIVATION

Consider the discrete, linear, time invariant state space
system representation given below:

xk+1 = Axk +Buk (1)

yk = [(y1)k...(yp)k]T = Cxk,(yi)k = Cixk (2)

where xk ∈Rn is the state vector, yk ∈Rp is the output vector
and uk ∈ Rm is the control input. It is assumed that m ≤ p,
the pair (A,B) is controllable and without loss of generality,
that rank(C) = p and that column rank(B) = m.

Consider the development of a control law based on output
measurements only which will induce an ideal sliding motion
on the surface

s = {x ∈ Rn : FCxk = 0} (3)

for some selected matrix F ∈Rm×p. It is well known that for
a unique equivalent control to exist, the matrix FCB∈Rm×m

must have full rank. As

rank(FCB)≤ min{rank(F), rank(CB)} (4)

it follows that both F and CB must have full rank. As F
is a design parameter, it can be chosen to be full rank.
A necessary condition for FCB to be full rank, and thus
for solvability of the output feedback sliding mode design
problem, thus becomes that CB must have rank m. If this
rank condition holds and any invariant zeros of the triple
{A,B,C} lie in the unit disk, then the existence of a matrix
F defining the surface (3), which provides a stable sliding
motion with a unique equivalent control is determined from
the stabilizability by output feedback of a specific, well-
defined subsystem of the plant [6].

III. THE EXISTENCE PROBLEM

It will be assumed in this work that the matrix A is
invertible. Such a property often occurs in discrete-time
linear systems. For instance, consider the continuous time
linear time invariant system

ż(t) = Fz(t)+Gu(t) (5)

If the system (1)-(2) is the discretized form of the continuous
time system (5) under sampling i.e,

A = e(Ft),B =
∫ T

0
eFtdτG (6)

then it is shown in [22] (page 386) that the state space matrix
A is invertible.

Thus, the system (2) can be rewritten as:

xk = A−1(xk+1−Buk) (7)
yk = Cxk (8)

A. Generation of the extended output
Consider system (1)-(2) without any a priori assumptions

relating to either the stability of the invariant zeros or the
fulfillment of the matching condition. The main idea here is
to construct a matrix C̃:

C̃ =




C1
...

C1A−µ1+1

...
Cp
...

CpA−µp+1




(9)

such that C̃ is full rank, rank(C̃B) = rank(B), and any
invariant zeros of the triple {A,B,C̃} lie inside the unit disk.
Also, the µi are chosen such that p̃ = ∑p

i=1 µi is minimal.
Note that C̃ = C means that the original system is output

feedback stabilizable using existing methods (see e.g. [6]).

B. Zeros and Zero directions

Consider the system in (1)-(2) with xk ∈ Rn, uk ∈ Rm,
yk ∈Rp, where A,B,C are all real matrices with appropriate
dimensions. Then, the number z is defined as the invariant
zero of (1)-(2) iff there exists vectors 0 6= xz ∈ Cn and
uz ∈ Cm, such that the triple z,xz,uz satisfies

[
zI−A B

C 0

][
xz
uz

]
= 0 (10)

where, I is the identity matrix of dimension n. Here, xz is
called the state zero direction and uz is called the input zero
direction. As seen in [12], it can be shown that any invariant
zeros of the triple {A,B,C̃} are amongst the invariant zeros of
the triple {A,B,C}. It can also be shown that if an appropriate
choice of extended outputs is available, the invariant zeros
from the original triple (A,B,C) may disappear from the
augmented system. This is particularly useful if any of
the invariant zeros of (A,B,C) are unstable. The choice of
augmented outputs to remove transmission zeros is explained
in the lemma below.

Lemma 1
Let z be the invariant zero of the original triple (A,B,C)

with zero direction xz. Assume the zero direction xT
z is

spanned by the rows of the augmented output matrix C̃. Then
the invariant zero z is not present in the augmented triple
(A,B,C̃).
If z is an invariant zero of the original triple with zero
direction xz, it follows that

Cxz = 0



and thus xz is in the null space of C.
By construction of the augmented output, xz belongs to the

range space of C̃. The additional rows of C̃ are constructed
by post multiplying particular rows of C by a full rank matrix
of the form A−l . It follows that the augmented rows of C̃ lie
in the range of C and thus C̃xz cannot be identically zero as
xz lies in the null space of C by definition. Thus, z is not an
invariant zero of (A,B,C̃).

Hence by suitably selecting the augmented outputs such
that they span the state zero direction of an unstable invariant
zero, it is possible to remove unstable invariant zeros from
the augmented system.

C. Design of the sliding manifold and analysis of the equiv-
alent dynamics

Assume that it is possible to construct a matrix C̃ as
defined in (9). Then, the requirements for solvability of the
output feedback sliding mode design problem are determined
by the triple {A,B,C̃}. It remains to find a suitable sliding
variable that depends on the available measurements only.
Extend the original outputs as shown below:

ỹk =




(y1)k
...

(y1)k−µ1+1
...

(yp)k
...

(yp)k−µp+1




From the system (7)-(8), it can be computed that:

yk = Cxk

yk−1 = CA−1(xk−Buk−1)
yk−2 = CA−2xk−CA−2Buk−1−CA−1Buk−2

...
yk− j = CA− jxk−CA− jBuk−1−·· ·−CA−1Buk− j

= CA− jxk−
j

∑
l=1

CA−lBuk− j+l−1

Thus, the extended output matrix ỹ can be expressed as
follows:

ỹk = C̃xk−M




ū1
ū2
...

ūp


 (11)

with, for i = 1, ..., p:

ūi =




uk−1
uk−2

...
uk−µi+1




M = diag
{

M1, ...,Mp
}

Mi =




0 0 . . . . . . 0
CiA−1B 0 . . . . . . 0

CiA−2B CiA−1B
. . .

...
...

. . . 0
...

... CiA−1B 0
CA−µi+1B . . . . . . CiA−2B CiA−1B




where Mi∈ Rµi×(µi−1). If the outputs are extended such that
rank(C̃) is n (i.e when C̃ is invertible), it can be seen from
(11) that it is possible to write the state as a function of ỹ
(the current and the past outputs) and ui (the past inputs). In
this case the transmission zeros can always be removed from
the augmented system and the controller design is performed
as a state feedback design using the estimates of the states.
The following class of sliding manifolds, that only depend
on known variables, can then be defined

sk = Fỹk +FM




ū1
ū2
...

ūp


 (12)

= FC̃xk (13)

where F ∈m×p̃ is a design parameter.
To analyse the stability of the resulting sliding motion, it

is now convenient to introduce a coordinate transformation
to the usual regular form, making the final p̃ states of the
system depend directly on the extended outputs [6]:

A =
[

A11 A12
A21 A22

]
B =

[
0

B2

]
C̃ =

[
0 T

]
(14)

x =
[

x̄1
x̄2

]

where T ∈R p̃×p̃ is an orthogonal matrix, A11 ∈R(n−m)×(n−m)

and the remaining sub-blocks in the system matrix are
partitioned accordingly. The corresponding switching surface
parameter is given by

p̃−m↔ m↔[
F1 F2

]
= FT

(15)

where T is the matrix from equation (14). As a result

FC̃ =
[

F1C f F2
]

(16)

where
C f =

[
0(p̃−m)×(n−p̃) I(p̃−m)

]
(17)

Therefore FC̃B = F2B2 and the square matrix F2 is non-
singular. The canonical form in (14) can be viewed as a
special case of the regular form normally used in sliding
mode controller design, and thus the reduced-order sliding
motion is governed by a free motion with system matrix

As
11 = A11−A12F−1

2 F1C f (18)

which must therefore be stable. If K ∈ Rm×( p̃−m) is defined
as K = F−1

2 F1 then

As
11 = A11−A12KC f (19)



and the problem of hyperplane design is equivalent to a static
output feedback problem for the system (A11,A12,C f ). In or-
der to utilize the existing literature it is necessary that the pair
(A11,A12) is controllable and (A11,C f ) is observable. The
former is ensured as (A,B) is controllable. The observability
of (A11,C f ), is not so straightforward, but can be investigated
by considering the canonical form below.

Lemma 2
Let (A,B,C̃) be a linear system with p̃ > m and

rank(C̃B) = m. Then a change of coordinates exists so that
the system triple with respect to the new coordinates has the
following structure:
• The system matrix can be written as

A =
[

A11 A12
A21 A22

]

where A11 ∈ R(n−m)×(n−m) and the sub-block A11 when
partitioned has the structure

A11 =




Ao
11 Ao

12
0 Ao

22
Am

12

0 Ao
21 Am

22




where Ao
11 ∈ Rr×r, Ao

22 ∈ R(n−p̃−r)×(n−p̃−r) and Ao
21 ∈

R(p̃−m)×(n−p̃−r) for some r ≥ 0 and the pair (Ao
22,A

o
21)

is completely observable.
• The input distribution matrix B and the output distribu-

tion matrix C̃ have the structure in (14).

For a proof and a constructive algorithm to obtain this
canonical form see [5].

In the case where r > 0, the intention is to construct
a new system (Ã11, B̃1,C̃ f ) which is both controllable and
observable with the property that

λ (As
11) = λ (Ao

11)∪λ (Ã11− B̃1KC̃ f ).

To this end, as in [5], partition the matrices A12 and Am
12 as

A12 =
[

A121
A122

]
and Am

12 =
[

Am
121

Am
122

]

where A122 ∈ R(n−m−r)×m and Am
122 ∈ R(n−p̃−r)×( p̃−m)

and form a new sub-system represented by the triple
(Ã11,A122,C̃ f ) where

Ã11 =
[

Ao
22 Am

122
Ao

21 Am
22

]

C̃ f =
[

0(p̃−m)×(n−p̃−r) I(p̃−m)
]

(20)

It follows that the spectrum of As
11 decomposes as

λ (A11−A12KC f ) = λ (Ao
11)∪λ (Ã11−A122KC̃ f )

Lemma 3 [5]
The spectrum of Ao

11 represents the invariant zeros of
(A,B,C̃).

It follows directly that for a stable sliding motion, the
invariant zeros of the system (A,B,C̃) must lie inside the
unit disk and the triple (Ã11,A122,C̃ f ) must be stabilisable
with respect to output feedback.

The matrix A122 is not necessarily full rank. Suppose
rank(A122) = m′ then, as in [5], it is possible to construct
a matrix of elementary column operations Tm′ ∈ Rm×m such
that

A122Tm′ =
[

B̃1 0
]

(21)

where B̃1 ∈ R(n−m−r)×m′ and is of full rank. If Km′ = T−1
m′ K

and Km′ is partitioned compatibly as

Km′ =
[

K1
K2

]
lm′

lm−m′

then

Ã11−A122KC̃ f = Ã11−
[

B̃1 0
]

Km′C̃ f

= Ã11− B̃1K1C̃ f

and (Ã11,A122,C̃ f ) is stabilizable by output feedback if and
only if (Ã11, B̃1,C̃ f ) is stabilizable by output feedback. It
follows that:

Lemma 4
The pair (Ã11, B̃1) is completely controllable and (Ã11,C̃ f )

is completely observable.

To design the sliding surface consider the method for
design of a static output feedback gain as given in [18].
The technique in [18] introduces slack variables to decouple
the Lyapunov matrix and the static output feedback gain.
With the additional slack variables and a chosen state space
variable, an LMI problem is solved to obtain the static output
feedback controller. The following theorem is required to
formulate the design of the sliding surface using this method.

Theorem 1
A static output feedback gain K is stabilizing if and only

if there exists a positive definite matrix P = PT > 0 in Rn×n,
non singular matrices G ∈Rm×m and E4 ∈Rn×n, a non-null
matrices E1 ∈ Rn×n and L ∈ Rm×p and arbitrary matrices
E2 ∈ Rn×n, E3 ∈ Rm×n such that the following LMI:




E1Ao +AT
o ET

1 −P ∗
E2Ao −P

E3Ao +AT
122ET

1 +(LC̃ f −GKo) AT
122ET

2
E4Ao−ET

1 P−ET
2

∗ ∗
∗ ∗

E3A122 +AT
122ET

3 − (G+GT ) ∗
E4A122−ET

3 −E4−ET
4


 < 0

(22)

is feasible for a given state feedback gain Ko that stabilizes
the pair (Ã11,A122) with the static output feedback gain given
by

K = G−1L (23)

The matrix Ao here is defined as Ao = Ã11 + A122Ko. For
a conclusive proof for the above theorem refer to [18].



IV. REACHABILITY PROBLEM

It is necessary to force s(k) to zero to ensure the sliding
dynamics are reached. Here the control selected has two
components and is of the form:

uk = Kyỹk− (Φ−A22)sk (24)

Consider

Ts =
[

In−m 0
F1C f F2

]
(25)

with the sub matrices of Ts conformably partitioned. The ma-
trix Ts is nonsingular since by construction F2 is nonsingular.
Let

[
(x1)k

sk

]
= Ts

[
(x1)k
(x2)k

]
(26)

Then with the new coordinates the nominal system can be
written as:

(x1)k+1 = Ā11(x1)k + Ā12sk (27)
sk+1 = F2Ā21(x1)k +F2Ā22F−1

2 sk +Λuk

with Ā11 = A11−A12M , Ā12 = A12F−1
2 , Ā21 = MĀ11 +

A21−A22M and Ā22 = MĀ12 +A22, with M = F−1
2 F1C f and

Λ = F2B2.
The first component of (24) is developed for stabilising the
system (27) and is calculated by using the algorithm given
in [18]. The second component of the control law is used for
shaping the reaching response of the plant and is a design
choice. The control law chosen is similar to the linear control
law given in [20]. The control law here does not use any
dynamics in the sense that there is no explicit estimation of
states or an explicit compensator to achieve control. Thus the
design can be considered as a static output feedback control
law achieved with the available signals.

V. MOTIVATIONAL EXAMPLE

Consider the example of an aircraft from [6] given below.
The plant model represents the fifth-order lateral dynamics
of an L-1011 fixed wing aircraft, with the actuator dynamics
removed. The plant system triple is given by:

A =




0 0 1 0 0
0 −.154 −.0042 1.54 0
0 .249 −1.000 −5.20 0

0.0386 −0.996 −0.0003 −.117 0
0 0.500 0 0 −0.5




B =




0 0
−0.744 −0.032
0.337 −1.1200
0.02 0

0 0


C =




0 1 0 0 −1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0




The plant states are:

x =




φ bank angle (rad)
r yaw rate (rad/sec)
p roll rate (rad/sec)

β side slip angle (rad)
x5 washed-out filter state




with the inputs being

u =
[

δr rudder deflection (rad)
δa aileron deflection (rad)

]

and the outputs

y =




rwo washed out yaw rate (rad)
p roll rate (rad/sec)

β sideslip angle (rad)
φ bank angle (rad)




The sampling rate chosen for discretizing the plant was
t = .1s. Assume that the aircraft has lost the side slip angle
and roll rate.The invariant zeros for the resulting plant triple
(A,B,C) are at [1.00 .9929 − .9671] and thus a stable sliding
surface cannot be designed using the remaining two outputs.
By augmenting the bank angle and the washed out yaw rate
once, it is found that the invariant zeros are removed from the
system with the augmented outputs. The augmented matrix
C̃ in this case is given as

C̃ =




0 1.0000 0 0 −1.0000
0.0003 1.0593 0.0004 −0.1595 −1.0513
1.0000 0 0 0 0
1.0000 0.0004 −0.1052 −0.0270 0




Here the orthogonal transformation matrix T is

T =



−0.5345 0.4990 −0.0132 −0.6820
0.4980 −0.4661 −0.0185 −0.7310
0.4973 0.5349 −0.6829 0.0149
0.4680 0.4975 0.7302 −0.0169




and the subsystem (Ã11,A122,C̃ f ) obtained for the sliding
surface design is

Ã11 =




0.9933 −0.0328 0.0307
0.0056 1.1861 −0.1149
−0.0053 0.2090 0.8684




A122 =




0.0050 −0.0414
−1.2966 0.0211
−1.3871 0.0344


 C̃ f =

[
0 1 0
0 0 1

]

The initial state feedback gain Ko is obtained by pole
placement and the poles are placed at [ .85 .975 .9]. Using
the algorithm given in [18], the gain K for the reduced order
subsystem (Ã11,A122,C̃ f ) is calculated as

K =
[

0.2838 0.2682
−0.3432 −6.8063

]

with the λ (Ã11−A122KC̃ f ) at [0.9849 + 0.0281i 0.9849−
0.0281i 0.0969]. The output feedback gain Ky is obtained by
first obtaining a state feedback gain by placing the poles at
[.98 .975 .96 .985 .95]. Using the algorithm in [18] modified
for the system given in (27), the static output feedback gain
is calculated as:

Ky =
[ −5.2236 10.0550 −1.7262 0.0532

7.4514 −15.1651 2.1197 1.2640

]
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Fig. 1. Response of the statesxk, Control Input uk , sliding surface sk, and
augmented plant output ỹk

Here Φ is chosen as .95Im, where Im is the identity
matrix of dimension m×m. The simulations were performed
with the control law given in (24) and with the initial
conditions [0 .01 0 0 0]. The simulation results are shown
below. Recall that this control law is performing system
reconfiguration following the loss of two sensors. The key
design requirement is that the system response remain stable
given only measurements from the remaining sensors. In
such circumstances one would not expect to be able to
match the performance achievable from the complete set of
measurements.

VI. CONCLUSIONS

A static output feedback sliding mode-type control has
been developed for discrete systems which employs informa-
tion from both the previous and current output measurements.
It has been shown that the invariant zeros of the original
system can be removed from an augmented system if the
minimal set of current and past outputs used to determine the
extended signal span the state input direction associated with
the invariant zero. The sliding surface design was performed
using Linear Matrix Inequalities. It has been shown that the
theory is applicable for systems in the presence of sensor
failure by considering a particular aircraft problem. It is
hypothesized that the methodology presented in this paper
provides a useful core for developing reconfigurable control
schemes for discrete time implementation.
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