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1. Introduction

Fix a prime number p. The aim of this paper is to define a complete
moduli stack of degree-p covers Y → X , with Y a stable curve which is a
G-torsor over X , for a suitable group scheme G/X . The curve X is a twisted
curve in the sense of [5, 4] but in general not stable. This follows the same
general approach as the characteristic-0 paper [1], but diverges from that
of [4], where the curve X is stable, the group scheme G is assumed linearly
reductive, but Y is in general much more singular.

The approach is based on [12, Proposition 1.2.1] of Raynaud, and the
more general notion of effective model of a group-scheme action due to the
second author [13]. The general strategy was outlined in [2] in a somewhat
special case.

1.1. Rigidified group schemes. The group scheme G comes with a sup-
plementary structure which we call a generator. Before we define this notion,
let us briefly recall from Katz-Mazur [10, §1.8] the concept of a full set of
sections. Let Z → S be a finite locally free morphism of schemes of degree
N . Then for all affine S-schemes Spec(R), the R-algebra Γ(ZR,OZR

) is lo-
cally free of rank N and has a canonical norm mapping. We say that a set
of N sections x1, . . . , xN ∈ Z(S) is a full set of sections if and only if for any
affine S-scheme Spec(R) and any f ∈ Γ(ZR,OZR

), the norm of f is equal to
the product f(x1) . . . f(xN ).
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2 ABRAMOVICH AND ROMAGNY

Definition 1.2. Let G→ S be a finite locally free group scheme of order p.
A generator is a morphism of S-group schemes γ : (Z/pZ)S → G such that
the sections xi = γ(i), 0 ≤ i ≤ p − 1, are a full set of sections. A rigidified
group scheme is a group scheme of degree p with a generator.

The notion of generator is easily described in terms of the Tate-Oort clas-
sification of group schemes of order p. This is explained and complemented
in appendix A.

Remark 1.3. One can define the stack of rigidified group schemes a bit
more directly: consider the Artin stack GSp of group-schemes of degree p,
and let Gu → GSp be the universal group-scheme - an object of Gu over
a scheme S consists of a group-scheme G → S with a section S → G. It
has a unique non-zero point over Q corresponding to Z/pZ with the section
1. The stack of rigidified group schemes is canonically isomorphic to the
closure of this point.

Of course describing a stack as a closure of a sub-stack is not ideal from
the moduli point of view, and we find the definition using Katz–Mazur
generators more satisfying.

1.4. Stable p-torsors. Fix a prime number p and integers g ≥ 2, h, n ≥ 0.

Definition 1.5. A stable n-marked p-torsor of genus g (over some base
scheme S) is a triple

(X ,G, Y )

where

(1) (X , {Σi}ni=1) is an n-marked twisted curve of genus h,
(2) (Y, {Pi}ni=1) is a nodal curve of genus g with étale marking divisors

Pi → S, which is stable in the sense of Deligne-Mumford-Knudsen,
(3) G → X is a rigidified group-scheme of degree p,
(4) Y → X is a G-torsor and Pi = Σi ×X Y for all i.

Note that as usual the markings Σi (resp. Pi) are required to lie in the
smooth locus of X (resp. Y ). They split into two groups. In the first group
Σi is twisted and [Pi : S] = 1, while in the second group Σi is a section
and [Pi : S] = p. The number m of twisted markings is determined by
(2g − 2) = p(2h− 2) +m(p− 1) and it is equivalent to fix h or m.

The notion of stable marked p-torsor makes sense over an arbitrary base
scheme S. Given stable n-marked p-torsors (X ,G, Y ) over S and (X ′,G′, Y ′)
over S′, one defines as usual a morphism (X ,G, Y ) → (X ′,G′, Y ′) over S →
S′ as a fiber diagram. This defines a category fibered over SpecZ that we
denote STp,g,h,n.

Our main result is:

Theorem 1.6. The category STp,g,h,n/SpecZ is a proper Deligne-Mumford
stack with finite diagonal.

Notice that STp,g,h,n contains an open substack of étale Z/pZ-covers.
Identifying the closure of this open locus remains an interesting question.
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1.7. Organization. Section 2 is devoted to Proposition 2.1, in particular
showing the algebricity of STp,g,h,n. Section 3 completes the proof of Theo-
rem 1.6 by showing properness. We give simple examples in Section 4. Two
appendices are provided - in Appendix A we discuss embeddings of group
schemes of order p into smooth group schemes. In Appendix B we recall
some facts about the Weil restriction of closed subschemes, and state the
representability result in a form useful for us.

1.8. Acknowledgements. We thank Sylvain Maugeais for helping us clar-
ify a point in this paper.

2. The stack STp,g,h,n

In this section, we review some basic facts on twisted curves and then we
show:

Proposition 2.1. The category STp,g,h,n/SpecZ is an algebraic stack of
finite type over Z.

2.2. Twisted curves and Log twisted curves. We review some mate-
rial from Olsson’s treatment in [4, Appendix A], with some attention to
properness of the procedure of “log twisting”.

Recall that a twisted curve over a scheme S is a tame Artin stack C → S
with a collection of gerbes Σi ⊂ C satisfying the following conditions:

(1) The coarse moduli space C of C is a prestable curve over S, and the
images Σ̄i of Σi in C are the images of disjoint sections σi : S → C
of C → S landing in the smooth locus.

(2) Étale locally on S there are positive integers ri such that, on a

neighborhood of Σi we can identify C with the root stack C( ri

√

Σ̄i).
(3) Near a node z of C write Csh = Spec(Osh

S [x, y]/(xy − t))sh. Then

there exists a positive integer az and an element s ∈ Osh
S such that

saz = t and

Csh = [SpecOsh
S [u, v]/(uv − s))sh/µaz ],

where µaz acts via (u, v) 7→ (ζu, ζ−1v) and where x = uaz and y =
vaz .

The purpose of [4, Appendix A] was to show that twisted curves form
an Artin stack which is locally of finite type over Z. There are two steps
involved.

The introduction of the stack structure over the markings is a straightfor-
ward step: the stack M

tw
g,δ of twisted curves with genus G and n markings

is the infinite disjoint union M
tw
g,δ = ⊔Mr

g,δ, where r runs over the possible

marking indices, namely vectors of positive integers r = (r1, . . . , rn), and
the stacks Mr

g,δ are all isomorphic to each other - the universal family over

M
r
g,δ is obtained form that over M

(1,...,1)
g,δ by taking the ri-th root of Σ̄i.
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The more subtle point is the introduction of twisting at nodes. Ols-
son achieves this using the canonical log structure of prestable curves, and
provides an equivalence between twisted curves with r = (1, . . . , 1) and log-
twisted curves. A log twisted curve over a scheme S is the data of a prestable
curve C/S along with a simple extension MS

C/S →֒ N . Here MS
C/S is

F. Kato’s canonical locally free log structure of the base S of the family
of prestable curves C/S, and a simple extension is an injective morphism
MS

C/S →֒ N of locally free log structures of equal rank where an irreducible

element is sent to a multiple of an irreducible element up to units.
We now describe an aspect of this equivalence which is relevant for our

main results. Consider a family of prestable curves C/S and denote by
ι : SingC/S → C the embedding of the locus where π : C → S fails to be
smooth. A node function is a section a of π∗ι∗NSingC/S . In other words it
gives a positive integer az for each singular point z of C/S in a continuous
manner. Given a morphism T → S, we say that a twisted curve C/T with
coarse moduli space CT is a-twisted over C/S if the index of a node of C
over a node z of C is precisely az.

Proposition 2.3. Fix a family of prestable curves C/S of genus g with
n markings over a noetherian scheme S. Further fix marking indices r =
(r1, . . . , rn) and a node function a. Then the category of a-twisted curves
over C/S with marking indices given by r is a proper and quasi-finite tame
stack over S.

Proof. The problem is local on S, and further it is stable under base change
in S. So it is enough to prove this when S is a versal deformation space of a
prestable curve Cs of genus g with n markings, over a closed geometric point
s ∈ S, in such a way that we have a chart Nk → MS

C/S of the log structure,

where k is the number of nodes of Cs. The image of the i-th generator of Nk

in OS is the defining equation of the smooth divisor Di where the i-th node
persists. Now consider an a-twisted curve over φ : T → S, corresponding to
a simple extension φ∗MS

C/S → N where the image of the i-th generator mi

becomes an ai-multiple up to units. This precisely means that O∗
CT
mi, the

principal bundle associated to OS(−Di), is an ai-th power. In other words,
the stack of a-twisted curves over C/S is isomorphic to the stack

S( a1
√

D1 · · · an
√

Dn) = S( a1
√

D1) ×S · · · ×S S( an
√

Dn)

encoding ai-th roots of OS(Di). This is evidently proper and quasi-finite
tame stack over S. ♠

We now turn to the index of twisted points in a stable p-torsor.

Lemma 2.4. Let (X ,G, Y ) be a stable p-torsor. Then the index of a point
x ∈ X divides p.

Proof. Let r be the index of x and d the local degree of Y → X at a point
y above x. Since Y → X is finite flat of degree p and G acts transitively
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on the fibers, then d | p. Let f : X → X be the coarse moduli space of X .
In order to compute d, we pass to strict henselizations on S, X and Y at
the relevant points. Thus S is the spectrum of a strictly henselian local ring
(R,m), and we have two cases to consider.

If x is a smooth point,

• X ≃ SpecR[a]sh,
• Y ≃ SpecR[s]sh,
• X ≃ [D/µr] with D = SpecR[u]sh and ζ ∈ µr acting by u 7→ ζu.

Consider the fibered product E = Y ×X D. The map E → Y is a µr-torsor
of the form E ≃ SpecOY [w]/(w

r − f) for some invertible function f ∈ O×
Y ,

and E → D is a µr-equivariant map given by u 7→ ϕw for some function ϕ
on Y . Let x̃ : Speck → D be a point mapping to x in X i.e. corresponding
to u = m = 0, and let ϕ̄, f̄ be the restrictions of ϕ, f to Yx̃. The preimage
of x̃ under E → D is a finite k-scheme with algebra k[s][w]/(ϕ̄, wr − f̄). We
see that d = r dimk k[s]/(ϕ̄) and hence the index r divides p.

If x is a singular point, there exist λ, µ, ν in m such that

• X ≃ Spec(R[a, b]/(ab − λ))sh,
• Y ≃ Spec(R[s, t]/(st− µ))sh,
• X ≃ [D/µr] where D = Spec(R[u, v]/(uv − ν))sh,

and ζ ∈ µr acts by u 7→ ζu and v 7→ ζ−1v. The scheme E = Y ×X D is
of the form E ≃ SpecOY [w]/(w

r − f) for some invertible function f ∈ O×
Y ,

and the map E → D is given by u 7→ ϕw, v 7→ ψw−1 for some functions
ϕ,ψ on Y satisfying ϕψ = ν. Let x̃ : Speck → D be a point mapping to x
and let ϕ̄, ψ̄, f̄ be the restrictions of ϕ,ψ, f to Yx̃. The preimage of x̃ under
E → D is a finite k-scheme with algebra k[s, t][w]/(st, ϕ̄, ψ̄, wr − f̄). We see
that d = r dimk k[s, t]/(st, ϕ̄, ψ̄) and hence r divides p. ♠

2.5. Proof of proposition 2.1. Let δ = (δ1, . . . , δn) be the sequence of
degrees of the markings Pi on the total space of stable p-torsors, with each
δi equal to 1 or p. We build STp,g,h,n from existing stacks: the stack Mg,δ

of Deligne-Mumford-Knudsen stable marked curves (for the family of curves
Y ), the stack M of twisted curves (for the family of marked twisted curves
X ), and Hilbert schemes and Hom stacks for construction of Y → X and G.

Bounding the twisted curves. We have an evident forgetful functor
STp,g,h,n → Mg,δ ×M. Note that the image STp,g,h,n → M lies in an open
substack M

′ of finite type over Z: the index of the twisted curve X divides
p by Lemma 2.4, and its topological type is bounded by that of Y . The
stack M

′ parametrizing such twisted curves is of finite type over Z by [4,
Corollary A.8].

Set MY,X = Mg,δ ×M
′. This is an algebraic stack of finite type over Z.

The map Y → X . Consider the universal family Y → MY,X of stable
curves of genus g and the universal family X → MY,X of twisted curves,
with associated family of coarse curves X → MY,X . Since Hilbert schemes
of fixed Hilbert polynomial are of finite type, there is an algebraic stack
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Hom≤p
MY,X

(Y,X), of finite type over MY,X , parametrizing morphisms Ys →
Xs of degree ≤ p between the respective fibers. By [4, Corollary C.4]

the stack Hom≤p
MY,X

(Y,X ) corresponding to maps Ys → Xs with target the

twisted curve is of finite type over Hom≤p
MY,X

(Y,X), hence over MY,X . There

is an open substackMY→X parametrizing flat morphisms of degree precisely
p. We have an evident forgetful functor STp,g,h,n →MY→X lifting the func-

tor STp,g,h,n → Mg,δ ×M
′ above.

The rigidified group scheme G. The scheme Y2 = Y ×X Y is flat of
degree p over Y . Giving it the structure of a group scheme over Y with unit
section equal to the diagonal Y → Y2 is tantamount to choosing structure
Y -arrows m : Y2 ×Y Y2 → Y2 and i′ : Y2 → Y2, which are parametrized by a
Hom-scheme, and passing to the closed subscheme where these give a group-
scheme structure (that this condition is closed follows from representability
of the Weil restriction, see the discussion in the appendix and in particular
Corollary B.4). Giving a group scheme G over X with isomorphism G×XY ≃
Y2 is tantamount to giving descent data for Y2 with its chosen group-scheme
structure. This is again parametrized by a suitable Hom-scheme. Finally
requiring that the projection Y2 → Y correspond to an action of G on Y is
a closed condition (again by Weil restriction, see Corollary B.4).

Passing to a suitable Hom-stack we can add a homomorphism Z/pZ → G,
giving a section X → G (equivalently a morphism X → Gu, see remark 1.3).
By [10, corollary 1.3.5], the locus of the base where this section is a generator
is closed. Since Y2 → Y and Y → X are finite, all the necessary Hom stacks
are in fact of finite type.

The resulting stack is clearly isomorphic to STp,g,h,n.

3. Properness

Since STp,g,h,n → SpecZ is of finite type, we need to prove the valuative
criterion for properness.

We have the following situation:

(1) R is a discrete valuation ring with spectum S = SpecR, fraction
field K with corresponding generic point η = SpecK, and residue
field κ with corresponding special point s = Specκ.

(2) (Xη ,Gη, Yη) a stable marked p-torsor of genus g over η.

By an extension of (Xη,Gη, Yη) across s we mean

(1) a local extension R→ R′ with K ′/K finite,
(2) a stable marked p-torsor (X ′,G′, Y ′) of genus g over S′ = SpecR′,

and
(3) an isomorphism (X ′,G′, Y ′)′η ≃ (Xη,Gη , Yη)×η η

′.

We have

Proposition 3.1. An extension exists. When extension over S′ exists, it is
unique up to a unique isomorphism.
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Proof. Extension of Yη. Since Mg,δ is proper, there is a stable marked
curve Y ′ extending Yη over some S′, and this extension is unique up to a
unique isomorphism. We replace S by S′, and assume that there is Y over
S with generic fiber Yη.

Coarse extension of Xη. By unicity, the action of G on Yη induced by
the map GXη → Gη extends to Y . There is a finite extension K ′/K such that
the intersection points of the orbits of geometric irreducible components of
Yη under the action of G are all K ′-rational. We may and do replace S by
the spectrum of the integral closure of R in K ′. Let us call Y1, . . . , Ym the
orbits of irreducible components of Y and {yi,j}1≤i,j≤m their intersections,
which is a set of disjoint sections of Y . For each i = 1, . . . ,m we define a
morphism πi : Yi → Xi as follows. If the action of G on Yi is nontrivial
we put Xi := Yi/G and πi equal to the quotient morphism. If the action
of G on Yi is trivial, note that we must have char(K) = p, since the map
from Yi to its image in X is a G-torsor while GX → G is an isomorphism in

characteristic 0. Then we consider the Frobenius twist Xi := Y
(p)
i and we

define πi : Yi → Xi to be the relative Frobenius. Finally we let X be the
scheme obtained by glueing the Xi along the sections xi,j = πi(yi,j) ∈ Xi

and xj,i = πj(yi,j) ∈ Xj . There are markings ΣX
i ⊂ X given by the closures

in X of the generic markings Σ
Xη

i . It is clear that the morphisms πi glue to
a morphism π : Y → X.

Extension of Xη and Yη → Xη along generic nodes and mark-
ings. In the following two lemmas we extend the stack structure of Xη, and
then the map Yη → Xη, along the generic nodes and the markings:

Lemma 3.2. There is a unique extension X of the twisted curve Xη over

X, such that X → X is an isomorphism away from the generic nodes and
the markings.

Proof. We follow [4, proof of proposition 4.3]. First, let Σ
Xη

i,η be a marking
on Xη and let Pi,η ⊂ Yη be its preimage. There are extensions Pi ⊂ Y and

ΣX
i ⊂ X. Let r be the index of Xη at Σ

Xη

i,η . Then we define X to be the stack

of r-th roots of ΣX
i on X. This extension is unique by the separatedness of

stacks of r-th roots.
Now let xη ∈ Xη be a node with index r and let x ∈ Xs be its reduction.

Locally in the étale topology, around x the curve X looks like the spectrum
of R[u, v]/(uv). Let Bu resp. Bv be the branches at x in X. The stacks
of r-th roots of the divisor u = 0 in Bu an of the divisor v = 0 in Bv are
isomorphic and glue to give a stack X . By definition of r we have X η ≃ Xη.
This extension is unique by the separatedness of stacks of r-th roots, so the
construction of X descends to X. ♠
Lemma 3.3. There is a unique lifting Y → X .

Proof. We need to check that there is a lifting at any point y ∈ Ys which
either lies on a marking or is the reduction of a generic node. We can
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apply the purity lemma [4, Lemma 4.4] provided that the local fundamental
group of Y at y is trivial and the local Picard group of Y at y is torsion-
free. In order to see this, we replace R by its strict henselization and Y
by the spectrum of the strict henselization of the local ring at y. We let
U = Y r {y}.

If y lies on a marking then Y is isomorphic to the spectrum of R[a]sh.
Since this ring is local regular of dimension 2, the scheme U has trivial
fundamental group by the Zariski-Nagata purity theorem, and trivial Picard
group by Auslander-Buchsbaum. Hence the purity lemma applies.

If y is the reduction of a generic node, then Y is isomorphic to the strict
henselization of R[a, b]/(ab). Let Ba = Spec(R[a]sh) resp. Bb = Spec(R[b]sh)
be the branches at y and Ua = U ∩Ba, Ub = U ∩Bb.

The schemes Ua and Ub have trivial fundamental group by Zariski-Nagata,
and they intersect in Y in a single point of the generic fibre. Moreover the
map Ua ⊔Ub → U , being finite surjective and finitely presented, is of effective
descent for finite étale coverings [9, Exp. IX, cor. 4.12]. It then follows from
the Van Kampen theorem [9, Exp. IX, th. 5.1] that π1(U) = 1.

For the computation of the local Picard group, first notice that since
Ba, Bb are local regular of dimension 2 we have Pic(Ua) = Pic(Ub) = 0, and
moreover it is easy to see that H0(Ua,O×

Ua
) = R× and similarly for Ub. Now

we consider the long exact sequence in cohomology associated to the short
exact sequence

0 → O×
U → ia,∗O×

Ua
⊕ ia,∗O×

Ua
→ iab,∗O×

Uab
→ 0

where the symbols i? stand for the obvious closed immersions. We obtain

Pic(U) = coker
(

H0(Ua,O×
Ua
)⊕H0(Ub,O×

Ua
) → H0(Uab,O×

Uab
)
)

= K×/R× = Z,

which is torsion-free as desired. ♠

Note that we still need to introduce stack structure over special nodes of
X .

Extension of Gη over generic points of X s. Let ξ be the generic

point of a component of X s. Let U be the localization of X at ξ and V be
its inverse image in Y . Consider the closure Gξ of Gη in AutU V .

Proposition 3.4. The scheme Gξ → U is a finite flat group scheme of
degree p, and V → U is a Gξ-torsor.

Proof. This is a generalization of [12, Proposition 1.2.1], see [13, Theorem
4.3.5]. ♠

Extension of Gη over the smooth locus of X/S. Quite generally,
for a stable p-torsor (X ,G, Y ) over a scheme T , by AutX Y we denote the
algebraic stack whose objects over an T -scheme U are pairs (u, f) with
u ∈ X (U) and f a U -automorphism of Y ×X U . Now consider X sm, the
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smooth locus of X/S, and its inverse image Y sm in Y . Then Y sm → X sm is
flat. Let Gsm be the closure of Gη in AutX sm Y sm.

Proposition 3.5. The scheme Gsm → X sm is a finite flat group scheme of
degree p, and Y sm → X sm is a Gsm-torsor.

Proof. Given Proposition 3.4, and since X sm has local charts U → X sm

with U regular 2-dimensional, this follows from [2, Propositions 2.2.2 and
2.2.3]. ♠

Extension of Gsm over generic nodes of X/S. Consider the com-
plement X 0 of the isolated nodes of X s, and its inverse image Y 0 in Y .

Lemma 3.6. The morphism Y 0 → X 0 is flat.

Proof. It is enough to verify the claim at the reduction xs of an arbitrary
generic node xη ∈ Xη. Since generic nodes remain distinct in reduction, it is
enough to prove that Y → X is flat at a chosen point ys ∈ Y above xs. Since
the branches at ys are not exchanged by G, étale locally Y and X are the
union of two branches which are flat over S and the restriction of Y → X to
each of the branches at xs is flat. Since proper morphisms descend flatness
([8], IV.11.5.3) it follows that Y → X is flat at ys. ♠

Let G0 be the closure of Gsm in AutX 0 Y 0.

Proposition 3.7. The stack G0 → X 0 is a finite flat group scheme of degree
p, and Y 0 → X 0 is a G0 torsor.

Proof. We only have to look around the closure of a generic node. Again
since proper morphisms descend flatness, it is enough to prove the claim
separately on the two branches. Then the result follows again from [2,
Propositions 2.2.2 and 2.2.3] by the same reason as in the proof of 3.5. ♠

Twisted structure at special nodes. Let P be a special node of X.
By [2, Section 3.2] there is a canonical twisted structure X at P determined
by the local degree of Y/X. If near a given node Yη/Xη is inseparable, then
this degree is p. Otherwise Y/X has an action of Z/pZ which is nontrivial
near P , and therefore the local degree is either 1 or p. Then X is twisted
with index p at P whenever this local degree is p. These twisted structures
at the varios nodes P glue to give a twisted curve X .

We claim that this X is unique up to a unique isomorphism. This follows
from Proposition 2.3 below. Indeed, let a be the node function which to a
node P of X gives the local degree of Y/X at Y , and let ri be the fixed
indices at the sections. Then the stack of a-twisted curves over X/S with
markings of indices ri is proper over S, hence X is uniquely determined by
Xη up to unique isomorphism.

By [2, Lemma 3.2.1], there is a unique lifting Y → X , and by [2, Theorem
3.2.2] the group scheme G0 extends uniquely to G → X such that Y is a G-
torsor. The rigidification extends immediately by taking the closure, since
G → X is finite. ♠
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4. Examples

4.1. First, some non-examples. Consider a smooth projective curve X
of genus h > 1 in characteristic p and and a p-torsion point in its Jacobian,
corresponding to a µp-torsor Y

′ → X. This is not a stable p-torsor in the
sense of Definition 1.5: the curve Y ′ is necessarily singular. In fact, Y ′ → X
may be described by a locally logarithmic differential form ω on X, such
that if locally ω = df/f for some f ∈ O×

X then Y ′ is given by an equation
zp = f . Since the genus h > 1, all differentials on X have zeroes, and each
zero of ω (i.e. a zero of the derivative of f with respect to a coordinate)
contributes to a unibranch singularity on Y ′.

Now consider a ramified Z/pZ-cover Y → X of smooth projective curves
over a field. Let y ∈ Y be a fixed point for the action of Z/pZ and let x ∈ X
be its image. In characteristic 0, since the stabilizer of y is a multiplicative
group, the curveX may be twisted at x to yield a stable Z/pZ-torsor Y → X .
However in characteristic p the stabilizer is additive and the result is not a
Z/pZ-torsor. Hence ramified covers of smooth curves in characteristic p do
not provide stable Z/pZ-torsors.

However something else does occur in both examples: the torsor Y ′ → X
of the first example, and the branched cover Y → X in the second, lift to
characteristic 0. The reduction back to characteristoc p of the corresponding
stable torsor “contains the original cover” in the following sense: there is
a unique component X whose coarse moduli space is isomorphic to X. In
particular that component X is necessarily a twisted curve, and the group
scheme over it has to degenerate to αp over the twisted points. We see a
manifestation of this in the next example.

4.2. Limit of a p-isogeny of elliptic curves. Now consider the case where
X is an elliptic curve, with a marked point x, over a discrete valuation ring
R of characteristic 0 and residue characteristic p. For simplicity assume that
R contains µp; let η be the generic point of SpecR and s the closed point of
SpecR. Given a p-torsion point on X with non-trivial reduction, we obtain
a corresponding nontrivial µp-isogeny Y ′ → X. Over the generic point η
we can make Y ′

η stable by marking the fiber Pη over xη. But note that the
reduction of Pη in Y is not étale, hence something must modified. Since our
stack is proper, a stable p-torsor Y → X limiting Y ′

η → Xη exists, at least
over a base change of R. Here is how to describe it.

Consider the completed local ringOY ′,O ≃ R[[Z]] at the origin O ∈ Y ′
s and

its spectrum D. Then Dη is identified with an open p-adic disk modulo Galois
action. Write Pη = {Pη,1, . . . , Pη,p} as a sum of points permuted by the µp-
action. Then the Pη,i induce K-rational points of Dη which moreover are
π-adically equidistant, i.e. the valuation v = vπ(Pη,i − Pη,j) is independent
of i, j. It follows that after blowing-up the closed subscheme with ideal
(πv, Z) these points reduce to p distinct points in the exceptional divisor.
Thus after twisting at the node, the fiber Ys → Xs over the special point s
of R is described as follows:



MODULI OF GALOIS p-COVERS IN MIXED CHARACTERISTICS 11

Ys

��

Y ′
s ∪ P1

��

P

��

? _oo

X ′
s E ∪Q {0}? _oo

Here

• Ys is a union of two components Y ′
s ∪ P1, attached at the origin of

Y ′
s .

• Xs is a twisted curve with two components E ∪Q
• Here E = Xs( p

√
x) and Q = P1( p

√∞), with the twisted points at-
tached.

• The map Ys → Xs decomposes into Y ′
s → E and P1 → Q.

• P1 → Q is an Artin–Schreier cover ramified at ∞.
• The curve is marked by the inverse image of 0 ∈ Q in P1, which is a
Z/pZ-torsor P ⊂ P1.

• The map Y ′
s → E is a lift of Y ′

s → Xs.
• The group scheme G → X is generically étale on Q and generically
µp on E, but the fiber over the node is αp.

Notice that we can view Y ′
s → E, marked by the origin on Y ′

s , as a twisted
torsor as well, but this twisted torsor does not lift to characteristic 0 simply
because the marked point on Y ′

s can not be lifted to an invariant divisor.
This is an example of the phenomenon described at the end of Section 4.1
above.

A very similar picture occurs when the cover Y ′
η → Xη degenerates to

an αp-torsor. If, however, the reduction of the cover is a Z/pZ-torsor, then
Y ′ → X, marked by the fiber over the origin, is already stable and new
components do not appear.

4.3. The double cover of P1 branched over 4 points. Consider an
elliptic double cover Y over P1 in characteristic 0 given by the equation
y2 = x(x − 1)(x − λ). Marked by the four branched points, it becomes a
stable µ2-torsor over the twisted curve Q = P1(

√
0, 1,∞, λ). What is its

reduction in characteristic 2? We describe here one case, the others can be
described in a similar way.

If the elliptic curve Y has good ordinary reduction Es, the picture is as
follows: Ys has three components P1 ∪ Es ∪ P1. The twisted curve Xs also
has three rational components Q1 ∪ Q2 ∪Q3. The map splits as P1 → Q1,
Es → Q2 and P1 → Q3, where the first and last are generically µ2-covers,
and Es → Q2 is a lift of the hyperelliptic cover Es → P1. The fibers of G at
the nodes of Xs are both α2. The points 0, 1,∞, λ reduce to two pairs, one
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pair on each of the two P1 components, for instance:

P1 ∪ Es ∪ P1

��

{0, 1} � � // Q1 ∪Q2 ∪Q3 {λ,∞}.? _oo

Appendix A. Group schemes of order p

In this section, we give some complements on group schemes of order p.
The main topic is the construction of an embedding of a given group scheme
of order p into an affine smooth one-dimensional group scheme (an analogue
of Kummer or Artin-Schreier theory). Although not strictly necessary in
the paper, this result highlights the nature of our stable torsors in two
respects : firstly because the original definition of generators in [10, § 1.4]
involves a smooth ambient group scheme, and secondly because the short
exact sequence given by this embedding induces a long exact sequence in
cohomology that may be useful for computations of torsors.

Anyway, let us now state the result.

Definition A.1. Let G→ S be a finite locally free group scheme of order p.

(1) A generator is a morphism of S-group schemes γ : (Z/pZ)S → G
such that the sections xi = γ(i), 0 ≤ i ≤ p − 1, are a full set of
sections.

(2) A cogenerator is a morphism of S-group schemes κ : G→ µp,S such
that the Cartier dual (Z/pZ)S → G∨ is a generator.

We will prove the following.

Theorem A.2. Let S be a scheme and let G → S be a finite locally free
group scheme of order p. Let κ : G→ µp,S be a cogenerator. Then κ can be
canonically inserted into a commutative diagram with exact rows

0 // G //

κ

��

G
ϕκ

//

��

G ′

��

// 0

0 // µp,S // Gm,S
p

// Gm,S // 0

where ϕκ : G → G ′ is an isogeny between affine smooth one-dimensional
S-group schemes with geometrically connected fibres.

In order to obtain this, we introduce two categories of invertible sheaves
with sections: one related to groups with a cogenerator and one related to
groups defined as kernels of isogenies, and we compare these categories.

Remark A.3. Not all group schemes of order p can be embedded into an
affine smooth group scheme as in the theorem. For example, assume that
there exists a closed immersion from G = (Z/pZ)Q to some affine smooth
one-dimensional geometrically connected Q-group scheme G . Then G is a
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form of Gm,Q and G is its p-torsion subgroup. Since G is trivialized by a
quadratic field extension K/Q, we obtain GK ≃ µp,K. This implies that
K contains the p-th roots of unity, which is impossible for p > 3. Similar
examples can be given for Z/pZ over the Tate-Oort ring Λ⊗Q.

A.4. Tate-Oort group schemes. We recall the notations and results of
the Tate-Oort classification of group schemes of degree p over the ring Λ
(section 2 of [15]). We introduce two fibered categories:

• a Λ-category TG of triples encoding groups,
• a Λ-category TGC of triples encoding groups with a cogenerator.

Let χ : Fp → Zp be the unique multiplicative section of the reduction map,
that is χ(0) = 0 and if m ∈ F×

p then χ(m) is the (p−1)-st root of unity with
residue equal to m. Set

Λ = Z[χ(Fp),
1

p(p− 1)
] ∩ Zp.

There is in Λ a particular element wp equal to p times a unit.

Definition A.5. The category TG is the category fibered over SpecΛ whose
fiber categories over a Λ-scheme S are as follows.

• Objects are the triples (L, a, b) where L is an invertible sheaf and

a ∈ Γ(S,L⊗(p−1)), b ∈ Γ(S,L⊗(1−p)) satisfy a⊗ b = wp1OS
.

• Morphisms between (L, a, b) and (L′, a′, b′) are the morphisms of
invertible sheaves f : L→ L′, viewed as global sections of L⊗−1⊗L′,
such that a⊗ f⊗p = f ⊗ a′ and b′ ⊗ f⊗p = f ⊗ b.

The main result of [15] is an explicit description of a covariant equivalence
of fibered categories between TG and the category of finite locally free group
schemes of order p. The group scheme associated to a triple (L, a, b) is

denoted GL
a,b. Its Cartier dual is isomorphic to GL−1

b,a .

Examples A.6. We have (Z/pZ)S = GOS

1,wp
and µp,S = GOS

wp,1
. Moreover

if G = GL
a,b then a morphism (Z/pZ)S → G is given by a global section

u ∈ Γ(S,L) such that u⊗p = u⊗ a and a morphism G → µp,S is given by a
global section v ∈ Γ(S,L−1) such that v⊗p = v ⊗ b.

Lemma A.7. Let S be a Λ-scheme and let G = GL
a,b be a finite locally free

group scheme of rank p over S. Then:

(1) Let γ : (Z/pZ)S → G be a morphism of S-group schemes given by a
section u ∈ Γ(S,L) such that u⊗p = u⊗ a. Then γ is a generator if

and only if u⊗(p−1) = a.
(2) Let κ : G → µp,S be a morphism of S-group schemes given by a

section v ∈ Γ(S,L−1) such that v⊗p = v⊗b. Then κ is a cogenerator
if and only if v⊗(p−1) = b.

Proof. The proof of (2) follows from (1) by Cartier duality so we only deal
with (1). The claim is local on S so we may assume that S is affine equal to
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Spec(R) and L is trivial. It follows from [15] that G = SpecR[x]/(xp − ax)

and the section γ(i) : Spec(R)
i→ (Z/pZ)R → G is given by the morphism of

algebras R[x]/(xp−ax) → R, x 7→ χ(i)u. Thus γ is a generator if and only if
Norm(f) =

∏

f(χ(i)u) for all functions f = f(x). In particular for f = 1+x
one finds Norm(f) = (−1)pa+1 and

∏

(1+χ(i)u) = (−1)pup−1+1. Therefore
if γ is a generator then up−1 = a. Conversely, assuming that up−1 = a we
want to prove that Norm(f) =

∏

f(χ(i)u) for all f . It is enough to prove
this in the universal case where R = Λ[a, b, u]/(ab − wp, u

p − u). Since a is
not a zerodivisor in R, it is in turn enough to prove the equality after base
change to K = R[1/a]. Then GK is étale and the morphism

K[x]/(xp − ax) = K[x]/
∏

(x− χ(i)u) → Kp

taking f to the tuple (f(χ(i)u))0≤i≤p−1 is an isomorphism of algebras. Since
the norm in Kp is the product of the coordinates, the result follows. ♠

Definition A.8. The category TGC is the category fibered over SpecΛ
whose fibers over a Λ-scheme S are as follows.

• Objects are the triples (L, a, v) where L is an invertible sheaf and

a ∈ Γ(S,L⊗(p−1)), v ∈ Γ(S,L⊗−1) satisfy a⊗ v⊗(p−1) = wp1OS
.

• Morphisms between (L, a, v) and (L′, a′, v′) are the morphisms of
invertible sheaves f : L→ L′, viewed as global sections of L⊗−1⊗L′,
such that a⊗ f⊗p = f ⊗ a′ and v′ ⊗ f = v.

By lemma A.7, the category TGC is equivalent to the category of group
schemes with a cogenerator. The functor from group schemes with a cogen-
erator to group schemes that forgets the cogenerator is described in terms
of categories of invertible sheaves by the functor ω : TGC → TG given by
ω(L, a, v) = (L, a, v⊗(p−1)).

Note also that lemma A.7 tells us that for any locally free group scheme
G over a Λ-scheme S, there exists a finite locally free morphism S′ → S of
degree p− 1 such that G×S S

′ admits a generator or a cogenerator.

A.9. Congruence group schemes. Here, we introduce and describe a Z-
category TCG of triples encoding congruence groups.

Let R be ring with a discrete valuation v and let λ ∈ R be such that
(p − 1)v(λ) ≤ v(p). In [14] are introduced some group schemes Hλ =
SpecR[x]/(((1+λx)p−1)/λp) with multiplication x1 ⋆x2 = x1+x2+λx1x2.
(The notation in loc. cit. is N .) Later Raynaud called them congruence
groups of level λ and we will follow his terminology. We now define the
analogues of these group schemes over a general base. The objects that are
the input of the construction constitute the following category.

Definition A.10. The category TCG is the category fibered over SpecZ
whose fibers over a scheme S are as follows.
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• Objects are the triples (M,λ, µ) where M is an invertible sheaf over
S and the global sections λ ∈ Γ(S,M−1) and µ ∈ Γ(S,Mp−1) are

subject to the condition λ⊗(p−1) ⊗ µ = p1OS
.

• Morphisms between (M,λ, µ) and (M ′, λ′, µ′) are morphisms of in-
vertible sheaves f : M → M ′ viewed as sections of M−1 ⊗M ′ such
that f ⊗ λ′ = λ and f⊗(p−1) ⊗ µ = µ′.

We will exhibit a functor (M,λ, µ) HM
λ,µ from TCG to the category of

group schemes, with HM
λ,µ defined as the kernel of a suitable isogeny.

First, starting from (M,λ) we construct a smooth affine one-dimensional
group scheme denoted G (M,λ), or simply G (λ). We see λ as a morphism
λ : V(M) → Ga,S of (geometric) line bundles over S, where V(M) =
SpecSym(M−1) is the (geometric) line bundle associated to M . We de-

fine G (λ) as a scheme by the fibered product

G (λ)
1+λ

//

��

Gm,S

��

V(M)
1+λ

// Ga,S .

The points of G (λ) with values in an S-scheme T are the global sections
u ∈ Γ(T,M ⊗OT ) such that 1 + λ⊗ u is invertible. We endow G (λ) with a
multiplication given on the T -points by

u1 ⋆ u2 = u1 + u2 + λ⊗ u1 ⊗ u2 .

The zero section of V(M) sits in G (λ) and is the unit section for the law just
defined. The formula

(1 + λ⊗ u1)(1 + λ⊗ u2) = 1 + λ⊗ (u1 ⋆ u2)

shows that 1+λ : G (λ) → Gm,S is a morphism of group schemes. Moreover, if
the locus where λ : V(M) → Ga,S is an isomorphism is scheme-theoretically

dense, then ⋆ is the unique group law on G (λ) for which this holds. This
construction is functorial in (M,λ): given a morphism of invertible sheaves
f : M → M ′, in other words a global section of M−1 ⊗ M ′, such that
f ⊗ λ′ = λ, there is a morphism f : G (λ) → G (λ′) making the diagram

G (λ)
1+λ

//

f

��

Gm,S

G (λ′)

1+λ′

;;
w

w
w

w
w

w
w

w

commutative. The notation is coherent since that morphism is indeed in-
duced by the extension of f to the sheaves of symmetric algebras.
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Then, we use the section µ ∈ Γ(S,Mp−1) and the relation λ⊗(p−1) ⊗ µ =
p1OS

to define an isogeny ϕ fitting into a commutative diagram

G (λ)
ϕ

//

1+λ
��

G (λ⊗p)

1+λ⊗p

��

Gm,S

∧p
// Gm,S .

The formula for ϕ is given on the T -points u ∈ Γ(T,M ⊗OT ) by

ϕ(u) = u⊗p +

p−1
∑

i=1

{p
i

}

λ⊗(i−1) ⊗ µ⊗ u⊗i

where
{p
i

}

= 1
p

(p
i

)

is the binomial coefficient divided by p. In order to check

that the diagram is commutative and that ϕ is an isogeny, we may work
locally on S hence we may assume that S is affine and that M = OS . In
this case, the two claims follow from the universal case i.e. from points (1)
and (2) in the following lemma.

Lemma A.11. Let O = Z[E,F ]/(Ep−1F−p) and let λ, µ ∈ O be the images
of the indeterminates E,F . Then, the polynomial

P (X) = Xp +

p−1
∑

i=1

{p
i

}

λi−1µXi ∈ O[X]

satisfies:

(1) 1 + λpP (X) = (1 + λX)p, and
(2) P (X + Y + λXY ) = P (X) + P (Y ) + λpP (X)P (Y ).

Proof. Point (1) follows by expanding (1 + λX)p and using the fact that
p = λp−1µ in O. Then we compute:

1 + λpP (X + Y + λXY ) = (1 + λ(X + Y + λXY ))p

= (1 + λX)p(1 + λY )p

= (1 + λpP (X))(1 + λpP (Y ))

= 1 + λp(P (X) + P (Y ) + λpP (X)P (Y )).

Since λ is a nonzerodivisor in O, point (2) follows. ♠
Definition A.12. We denote by HM

λ,µ the kernel of ϕ, and call it the con-

gruence group scheme associated to (M,λ, µ).

This construction is functorial in (M,λ, µ). Precisely, consider two triples
(M,λ, µ) and (M ′, λ′, µ′) and a morphism of invertible sheaves f :M →M ′

viewed as a section of M−1⊗M ′ such that f ⊗λ′ = λ and f⊗(p−1)⊗µ = µ′.

Then we have morphisms f : G (λ) → G (λ′) and f⊗p : G (λ⊗p) → G (λ′⊗p)

compatible with the isogenies ϕ and ϕ′, and f induces a morphism HM
λ,µ →
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HM ′

λ′,µ′ . Note also that the image of HM
λ,µ under 1 + λ : G (λ) → Gm,S factors

through µp,S, so that by construction HM
λ,µ comes embedded into a diagram

0 // HM
λ,µ

//

κ

��

G (λ) //

1+λ

��

G (λ⊗p)

1+λ⊗p

��

// 0

0 // µp,S // Gm,S // Gm,S // 0.

The formation of this diagram is also functorial.

Lemma A.13. The morphism κ : HM
λ,µ → µp,S is a cogenerator.

Proof. We have to show that the dual map (Z/pZ)S → (HM
λ,µ)

∨ is a gener-
ator. This means verifying locally on S certain equalities of norms. Hence
we may assume that S is affine and that M is trivial, then reduce to the
universal case where S is the spectrum of the ring O with elements λ, µ sat-
isfying λp−1µ = p as in lemma A.11, and finally restrict to the schematically
dense open subscheme S′ = D(λ) ⊂ S. Since G (λ) ×S S

′ → Gm,S′ is an

isomorphism, then HM
λ,µ×S S

′ → µp,S′ and the dual morphism also are. The
claim follows immediately. ♠

A.14. Equivalence between TGC and TCG⊗ZΛ. The results of the pre-
vious subsection imply that for a Λ-scheme S, a triple (M,λ, µ) ∈ TCG(S)
gives rise in a functorial way to a finite locally free group scheme with co-
generator κ : HM

λ,µ → µp,S, that is, an object of TGC(S).

Theorem A.15. The functor

F : TCG⊗Z Λ → TGC

defined above is an equivalence of fibered categories over Λ. If (M,λ, µ) has
image (L, a, v) then HM

λ,µ ≃ GL
a,v⊗(p−1) .

Proof. The main point is to describe F in detail using the Tate-Oort clas-
sification, and to see that it is essentially surjective. The description of the
action of F on morphisms and the verification that it is fully faithful offers
no difficulty and will be omitted.

Let (M,λ, µ) be a triple in TCG(S) and let G = HM
λ,µ. We use the

notations of section 2 of [15], in particular the structure of the group µp is
described by a function z, the sheaf of χ-eigensections J = yOS ⊂ Oµp with
distinguished generator y = (p− 1)e1(1− z), and constants

w1 = 1, w2, . . . , wp−1, wp = pwp−1 ∈ Λ.

The augmentation ideal of the algebra OG is the sheaf I generated by M−1,
and by [15] the subsheaf of χ-eigensections is the sheaf I1 = e1(I) where e1
is the OS -linear map defined in [15]. It is an invertible sheaf and L is (by
definition) its inverse.
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We claim that in fact I1 = e1(M
−1). In order to see this, we may work

locally. Let x be a local generator for M−1 and let

t := (p− 1)e1(−x) ∈ I1.

Let us write λ = λ0x for some local function λ0. We first prove that

(⋆) x =
1

1− p

(

t+
λ0t

2

w2
+ · · ·+ λp−2

0 tp−1

wp−1

)

.

In fact, by construction the map Oµp → OG is given by z = 1 + λ0x, so we
get y = (p − 1)e1(1 − z) = λ0t. In order to check the expression for x in
terms of t, we can reduce to the universal case (lemma A.11). Then λ0 is
not a zerodivisor and we can harmlessly multiply both sides by λ0. In this
form, the equality to be proven is nothing else than the identity (16) in [15].
Now write t = αt∗ with t∗ a local generator for I1 and α a local function.
Using (⋆) we find that x = αx∗ for some x∗ ∈ OG. Since x generates M−1

in the fibres over S, this proves that α is invertible. Finally t is a local
generator for I1 and this finishes the proof that I1 = e1(M

−1).

Let x∨ be the local generator forM dual to x and write µ = µ0(x
∨)⊗(p−1)

for some local function µ0 such that (λ0)
p−1µ0 = p. Let t∨ be the local

generator for L dual to t. We define a local section a of L⊗(p−1) by

a = wp−1µ0(t
∨)⊗(p−1)

and a local section v of L−1 by

v = λ0t.

These sections are independent of the choice of the local generator x, because
if x′ = αx then

(x′)∨ = α−1x∨ ; t′ = αt ; (t′)∨ = α−1t∨ ; λ′0 = α−1λ0 ; µ′0 = αp−1µ0

so that

a′ = wp−1µ
′
0(t

′∨)⊗(p−1) = wp−1α
p−1µ0α

1−p(t∨)⊗(p−1) = a

and

v′ = λ′0t
′ = α−1λ0αt = v.

They glue to global sections a and v satisfying

a⊗ v⊗(p−1) = wp1OS
.

Let us prove that a and v are indeed the sections defining G and the co-
generator in the Tate-Oort classification. The verification for a amounts to
checking that the relation

tp = wp−1µ0t

holds in the algebra OG. This may be seen in the universal case where λ0
is not a zerodivisor, hence after multiplying by (λ0)

p this follows from the
equality yp = wpy from [15]. The verification for v amounts to noting that
the cogenerator G→ µp,S is indeed given by y 7→ v.



MODULI OF GALOIS p-COVERS IN MIXED CHARACTERISTICS 19

This completes the description of F on objects. Finally we prove that F
is essentially surjective. Assume given (L, a, v) and let t be a local generator

for I1 = L−1. Write a = wp−1µ0(t
∨)⊗(p−1), v = λ0t and define an element

x ∈ OG by the expresion (⋆) above. If we change the generator t to another
t′ = αt, then λ′0 = α−1λ0 and x′ = αx. It follows that the subsheaf of OG

generated by x does not depend on the choice of the generator for I1, call it
N . Reducing to the universal case as before, we prove that t = (p−1)e1(−x).
This shows that in fact N is an invertible sheaf and we take M to be its
inverse. Finally we define sections λ ∈ Γ(S,M−1) and µ ∈ Γ(S,M⊗(p−1))

by the local expressions λ = λ0x and µ = µ0(x
∨)⊗(p−1). It is verified like in

the case of a, v before that they do not depend on the choice of t and hence
are well-defined global sections. The equality λ⊗(p−1)⊗µ = p1OS

holds true
and the proof is now complete. ♠

A.16. Proof of theorem A.2. We are now in a position to prove theo-
rem A.2. We keep its notations. Since the construction of the isogeny ϕκ

and the whole commutative diagram is canonical, if we perform it after fppf
base change S′ → S then it will descend to S. We choose S′ = S1 ∐ S2
where S1 = S ⊗Z Z[1/p] and S2 = S ⊗Z Λ. Over S1 the group scheme G
is étale and the cogenerator is an isomorphism by [10, lemma 1.8.3]. We
take G = G ′ = Gm,S and ϕκ is the p-th power map. Over S2 we use theo-
rem A.15 which provides a canonical isomorphism between κ and HM

λ,µ with
its canonical cogenerator, embedded into a diagram of the desired form.
This completes the proof.

Appendix B. Weil restriction of closed subschemes

Let Z → X be a morphism of S-schemes (or algebraic spaces) and denote
by h : X → S the structure map. The Weil restriction h∗Z of Z along h
is the functor on S-schemes defined by (h∗Z)(T ) = HomX(X ×S T,Z). It
may be seen as a left adjoint to the pullback along h, or as the functor of
sections of Z → X.

If Z → X is a closed immersion of schemes (or algebraic spaces) of fi-
nite presentation over S, there are two main cases where h∗Z is known to
be representable by a closed subscheme of S. As is well-known, this has
applications to representability of various equalizers, kernels, centralizers,
normalizers, etc. These two cases are :

(i) if X → S is proper flat and Z → S is separated, by the Grothendieck-
Artin theory of the Hilbert scheme,

(ii) if X → S is essentially free, by [7, Exp. VIII, th. 6.4].

In this appendix, we want to prove that h∗Z is representable by a closed
subscheme of S in a case that includes both situations and is often easier to
check in practice, namely the case where X → S is flat and pure.
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B.1. Essentially free and pure morphisms. We recall the notions of es-
sentially free and pure morphisms and check that essentially free morphisms
and proper morphisms are pure.

In [7, Exp. VIII, section 6], a morphism X → S is called essentially free
if and only if there exists a covering of S by open affine subschemes Si,
and for each i an affine faithfullay flat morphism S′

i → Si and a covering of
X ′

i = X ×S S
′
i by open affine subschemes X ′

i,j such that the function ring of

X ′
i,j is free as a module over the function ring of S′

i.

In fact, the proof of theorem 6.4 in [7, Exp. VIII] works just as well with
a slightly weaker notion than freeness of modules. Namely, for a module M
over a ring A, let us say thatM is good if the canonical mapM →M∨∨ from
M to its linear bidual is injective after any change of base ring A→ A′. It is
a simple exercise to see that this is equivalent to M being a submodule of a
product module AI for some set I, over A and after any base change A→ A′.
For instance, free modules, projective modules, product modules are good.
This gives rise to a notion of essentially good morphism, and in particular
essentially projective morphism. Then inspection of the proof of theorem
6.4 of [7, Exp. VIII] shows that it remains valid for these morphisms.

In [11, 3.3.3], a morphism locally of finite type X → S is called pure if

and only if for all points s ∈ S, with henselization (S̃, s̃), and all points

x̃ ∈ X̃ where X̃ = X ×S S̃, if x̃ is an associated point in its fibre then its
closure in X̃ meets the special fibre. Examples of pure morphisms include
proper morphisms (by the valuative criterion for properness) and morphisms
locally of finite type and flat, with geometrically irreducible fibres without
embedded components ([11, 3.3.4]).

Finally if X → S is locally of finite presentation and essentially free,
then it is pure. Indeed, with the notations above for an essentially free
morphism, one sees using [11, 3.3.7] that it is enough to see that for each
i, j the scheme X ′

i,j is pure over S′
i. But since the function ring of X ′

i,j is

free over the function ring of S′
i, this follows from [11, 3.3.5].

B.2. Representability of h∗Z.

Proposition B.3. Let h : X → S be a morphism of finite presentation, flat
and pure, and let Z → X be a closed immersion. Then the Weil restriction
h∗Z is representable by a closed subscheme of S.

Proof. The question is local for the étale topology on S. Let s ∈ S be
a point and let Oh be the henselization of the local ring at s. By [11,
3.3.13], for each x ∈ X lying over s, there exists an open affine subscheme
Uh
x of X ×S Spec(Oh) containing x and whose function ring is free as an

Oh-module. Since Xs is quasi-compact, there is a finite number of points
x1, . . . , xn such that the open affines Uh

i = Uh
xi

cover it. Since X is locally of
finite presentation, after restricting to an étale neighbourhood S′ → S of s,
there exist affine open subschemes Ui of X inducing the Uh

i . According to
[11, 3.3.8], the locus of the base scheme S where Ui → S is pure is open, so
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after shrinking S we may assume that for each i the affine Ui is flat and pure.
This means that its function ring is projective by [11, 3.3.5]. In other words,
the union U = U1∪· · ·∪Un is essentially projective over S in the terms of the
comments in B.1. If k : U → X denotes the structure map, it follows from
theorem 6.4 of [7, Exp. VIII] that k∗(Z ∩ U) is representable by a closed
subscheme of S. On the other hand, according to [13, 3.1.7], replacing S
again by a smaller neighbourhood of s, the open immersion U → X is S-
universally schematically dense. One deduces immediately that the natural
morphism h∗Z → k∗(Z ∩U) is an isomorphism. This finishes the proof. ♠

This proposition has a long list of corollaries and applications listed in [7,
Exp. VIII, section 6]. In particular let us mention the following :

Corollary B.4. Let X → S be a morphism of finite presentation, flat and
pure and Y → S a separated morphism. Consider two morphisms f, g :
X → Y . Then the condition f = g is represented by a closed subscheme of
S.

Proof. Apply the previous proposition to the pullback of the diagonal of Y
along (f, g) : X → Y ×S Y . ♠
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géométrie algébrique du Bois Marie 1960–61. Documents Mathématiques 3, Société
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