N Demni 
  
RADON TRANSFORM ON SPHERES AND GENERALIZED BESSEL FUNCTION ASSOCIATED WITH DIHEDRAL GROUPS

Motivated by Dunkl operators theory, we consider a generating series involving a modified Bessel function and a Gegenbauer polynomial, that generalizes a known series already considered by L. Gegenbauer. We actually use inversion formulas for Fourier and Radon transforms to derive a closed formula for this series when the parameter of the Gegenbauer polynomial is a strictly positive integer. As a by-product, we get a relatively simple integral representation for the generalized Bessel function associated with even dihedral groups D 2 (2p), p ≥ 1 when both multiplicities sum to an integer. In particular, we recover a previous result obtained for D 2 (4) and we give a special interest to D 2 (6). The paper is closed with adapting our method to odd dihedral groups thereby exhausting the list of Weyl dihedral groups.

Introduction

The dihedral group D 2 (n) of order n ≥ 2 is defined as the group of regular n-gone preserving-symmetries ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]). It figures among reflections groups associated with root systems for which a spherical harmonics theory, generalizing the one of Harish-Chandra on semisimple Lie groups from a discrete to a continuous range of multiplicities, was introduced by C. F. Dunkl in the late eightees (see Ch.I in [START_REF] Chybiryakov | Harmonic and Stochastic Analysis of Dunkl Processes[END_REF]). Since then, a huge amount of research papers on this new topic and on its stochastic side as well emerged yielding fascinating results (Ch. II, III in [START_REF] Chybiryakov | Harmonic and Stochastic Analysis of Dunkl Processes[END_REF]). For instance, probabilistic considerations allowed the author to derive the so-called generalized Bessel function associated with dihedral groups ([4]). For even values n = 2p, p ≥ 1, this function depending on two real variables, say (x, y) ∈ R 2 , is expressed in polar coordinates x = ρe iφ , y = re iθ , ρ, r ≥ 0, φ, θ ∈ [0, π/2p] as where

• k = (k 0 , k 1
) is a positive-valued multiplicity function, l i = k i -1/2, i ∈ {1, 2}, γ = p(k 0 + k 1 ). • I 2jp+γ , p l1,l0 j are the modified Bessel function of index 2jp + γ and the j-th orthonormal Jacobi polynomial of parameters l 1 , l 0 respectively (the orthogonality (Beta) measure need not to be normalized here. In fact, the normalization only alters the constant c p,k below).

• The constant c p,k depends on p, k and is such that D W k (0, y) = 1 for all y = (r, θ) ∈ [0, ∞) × [0, π/2p] (see [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF])

c p,k = 2 k0+k1 Γ(p(k 1 + k 0 ) + 1)Γ(k 1 + 1/2)Γ(k 0 + 1/2) Γ(k 0 + k 1 + 1) .
In a subsequent paper ( [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF]), the special case p = 2 corresponding to the group of square-preserving symmetries was considered. The main ingredient used there was the famous Dijksma-Koornwinder's product formula for Jacobi polynomials ( [START_REF] Dijksma | Spherical Harmonics and the product of two Jacobi polynomials[END_REF]) which may be written in the following way ( [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF]): andµ α is the symmetric Beta probability measure whose density is given by

c(α, β)p α,β j (cos 2φ)p α,β j (cos 2θ) = (2j+α+β+1) C α+β+1 2j (z φ,θ (u, v))µ α (du)µ β (dv) where α, β > -1/2, c(α, β) = 2 α+β+1 Γ(α + 1)Γ(β + 1) Γ(α + β + 1) , z φ,θ (u, v) = u cos θ cos φ + v sin θ sin φ,
µ α (du) = Γ(α + 1) √ πΓ(α + 1/2) (1 -u 2 ) α-1/2 1 [-1,1] (u)du, α > -1/2.
Inverting the order of integration, we were in front of the following series

(2) 2 rρ γ j≥0 (2j + k 0 + k 1 )I 2jp+γ (ρr)C k0+k1 2j (z pφ,pθ (u, v)) for (u, v) ∈] -1, 1[ 2 , which specializes for p = 2 to 1 2 j≡0[4] (j + γ)I j+γ (ρr)C γ/2 j/2 (z 2φ,2θ (u, v)).
Using the identity noticed by Y. Xu ([13]):

C ν j (cos ζ) = C 2ν 2j 1 + cos ζ 2 z µ ν-1/2 (dz), ν > -1/2, ξ ∈ [0, π],
we were led to j≡0 [START_REF] Demni | Radial Dunkl processes associated with Dihedral systems[END_REF] (j + γ)I j+γ (ρr)C γ j (z 2φ,2θ (u, v))

which we wrote as 1 4

4 s=1 j≥0 (j + γ)I j+γ (ρr)C γ j (z 2φ,2θ (u, v))e isjπ/2
after the use of the elementary identity

(3) 1 n m s=1 e 2iπsj/m = 1 if j ≡ 0[m], 0 otherwise,
valid for any integer m ≥ 1. Accordingly (Corollary 1.2 in [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF])

D W k (ρ, φ, r, θ) = i (γ-1)/2 ρr 1 + z 2φ,2θ (u, v) 2 µ l1 (du)µ l0 (dv)
where

i α (x) := ∞ m=0 1 (α + 1) m m! x 2 2m
is the normalized modified Bessel function ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]) and γ = 2(k 0 +k 1 ) ≥ 2 is even. This is a relatively simple integral representation of D W k since the latter function may be expressed as a bivariate hypergeometric function of Bessel-type. Recall also that it follows essentially from closed formulas due to L. Gegenbauer (equations (4), (5), p.369 in [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]):

2 rρ γ j≥0 (j + γ)I j+γ (ρr)C γ j (cos ζ)(±1) j = 1 Γ(γ)
e ±ρr cos ζ .

In this paper, we shall see that a relatively simple integral representation of D W k still exists for general integer p ≥ 2 and integer ν := k 0 + k 1 ≥ 12 . In fact, with regard to (2), one has to derive closed formulas for both series below (4)

f ± ν,p (R, cos ζ) := 2 R pν j≥0 (j + ν)I p(j+ν) (R)C ν j (cos ζ)(±1) j
with R = ρr and cos ζ := cos ζ(u, v) = z pφ,pθ (u, v). The obtained formulas reduce to Gegenbauer's results when p = 1, ν ≥ 1 is an integer, and do not exist up to our knowledge. Moreover, our approach is somewhat geometric since we shall interpret the sequence: (±1) j I p(j+ν) (R), j ≥ 0 for fixed R as the Gegenbauer-Fourier coefficients of ζ → f ± ν,p (R, cos ζ), and since spherical functions on the sphere viewed as a homogeneous space are expressed by means of Gegenbauer polynomials ( [START_REF] Abouelaz | Sur la transformation de Radon de la sphère S d[END_REF]). Then, following [START_REF] Abouelaz | Sur la transformation de Radon de la sphère S d[END_REF], solving the problem when ν is a strictly positive integer amounts to appropriately use inversion formulas for Fourier and Radon transforms. Our main result is stated as

Proposition 1. Assume ν ≥ 1 is a strictly positive integer, then R 2 pν f ± ν,p (R, cos ζ) = 1 2 ν (ν -1)! - 1 sin ζ d dζ ν 1 p p s=1 e ±R cos[(ζ+2πs)/p] .
A first glance at the main result may be ambiguous for the reader since the LHS depends on cos ζ while the RHS depends on cos(ζ/p), p ≥ 1. But cos(ζ/p), p ≥ 1 may be expressed, though in a very complicated way (inverses of linearization formulas), as a function of cos ζ. For instance, when p = 2,

cos(ζ/2) = 1 + cos ζ 2 , ζ ∈ [0, π].
One then recovers Corollary 1.2. in [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF] after using appropriate formulas for modified Bessel functions. When p = 3, one has to solve a special cubic equation. To proceed, we rely on results from analytic function theory and the required solution is expressed by means of Gauss hypergeometric functions ( [START_REF] Hille | Analytic Function Theory[END_REF]) in contrast to Cardan's solution. Therefore, we get a somewhat explicit formula for the series (2), though much more complicated than the one derived for p = 2. The paper is closed with adapting our method to odd dihedral groups, in particular to D 2 (3) thereby exhausting the list of dihedral groups that are Weyl groups (p = 1 corresponds to the product group Z 2 2 ).

Proof of the main result

Recall the orthogonality relation for Gegenbauer polynomials ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]):

π 0 C ν j (cos ζ)C ν m (cos ζ)(sin ζ) 2ν dζ = δ jm πΓ(j + 2ν)2 1-2ν Γ 2 (ν)(j + ν)j! = δ jm π2 1-2ν Γ(2ν) (j + ν)Γ 2 (ν) C ν j (1) = δ jm ν √ πΓ(ν + 1/2) Γ(ν + 1) C ν j (1) (j + ν)
where we used Γ(ν + 1) = νΓ(ν), the Gauss duplication's formula ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF])

√ πΓ(2ν) = 2 2ν-1 Γ(ν)Γ(ν + 1/2),
and the special value ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF])

C ν j (1) = (2ν) j j! . Equivalently, if µ ν (d cos ζ) is the image of µ ν (dζ) under the map ζ → cos ζ, then (j + ν) C ν j (cos ζ)C ν m (cos ζ)µ ν (d cos ζ) = νC ν j (1)δ jm so that (4) yields ν(±1) j 2 R pν I p(j+ν) (R) = W ν (cos ζ)f ± ν,p (R, cos ζ)µ ν (d cos ζ) (5) 
where

W ν j (cos ζ) := C ν j (cos ζ)/C ν j (1 
) is the j-th normalized Gegenbauer polynomial. Thus, the j-th Gegenbauer-Fourier coefficients of ζ → f ± ν,p (R, cos ζ) are given by

ν(±1) j 2 R pν I p(j+ν) (R), p ≥ 2.
Following [START_REF] Abouelaz | Sur la transformation de Radon de la sphère S d[END_REF] p.356, the Mehler's integral representation of W ν j ([9], p.177)

W ν j (cos ζ) = 2 ν Γ(ν + 1/2) Γ(ν) √ π (sin ζ) 1-2ν ζ 0 [cos(j + ν)t](cos t -cos ζ) ν-1 dt valid for real ν > 0, transforms (5) to 2 R pν (±1) j I p(j+ν) (R) = 2 ν π π 0 f ± ν,p (R, cos ζ) sin ζ ζ 0 [cos(j + ν)t](cos t -cos ζ) ν-1 dtdζ = 2 ν π π 0 [cos(j + ν)t] π t f ± ν,p (R, cos ζ) sin ζ(cos t -cos ζ) ν-1 dζdt. ( 6 
)
The second integral displayed in the RHS of the second equality is known as the Radon transform of ζ → f ± ν,p (R, cos ζ) and inversion formulas already exist ( [START_REF] Abouelaz | Sur la transformation de Radon de la sphère S d[END_REF]). As a matter of fact, we firstly need to express (±1) j+ν I p(j+ν) , when ν ≥ 1 is an integer, as the Fourier-cosine coefficient of order j + ν of some function. This is a consequence of the Lemma below. Secondly, we shall use the appropriate inversion formula for the Radon transform.

Lemma. For any integer p ≥ 1 and any t ∈ [0, π]:

2 j≥0 (±1) j I pj (R) cos(jt) = I 0 (R) + 1 p p s=1 e ±R cos[(t+2πs)/p] .
Proof of the Lemma: we will prove the (+) part, the proof of the (-) part follows the same lines with minor modifications. Write

2 j≥0 I pj (R) cos(jt) = j≥0 I pj (R)[e ijt + e -ijt ] = I 0 (R) + j∈Z I pj (R)e ijt
where used the fact that I j (r) = I -j (r), j ≥ 0. Using the identity (3), one obviously gets

j∈Z I pj (R)e ijt = 1 p p s=1 j∈Z I j (R)e ij(t+2πs)/p .
The (+) part of the Lemma then follows from the generating for modified functions ( [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]):

e (z+1/z)R/2 = j∈Z I j (R)z j , z ∈ C.
The Lemma yields

I pj (R) = I 0 (R)δ j0 + 1 π π 0 cos(jt) 1 p p s=1
e ±R cos[(t+2πs)/p] dt for any integer j ≥ 0. Assuming that ν is a stricltly positive integer, one has are even functions. This is true since

ζ → f (R, cos ζ) sin ζ(cos t -cos ζ) ν-1
is an odd function so that

t -t f (R, cos ζ) sin ζ(cos t -cos ζ) ν-1 dζ = 0,
and since cos[(-t + 2sπ)/p] = cos[(t + 2(p -s)π)/p] so that one performs the index change s → p -s and notes that the terms corresponding to s = 0 and s = p are equal. Similar arguments yield the 2π-periodicity of these functions, therefore, the Fourier-cosine transforms of their restrictions on (-π, π) coincide with their Fourier transforms on that interval. By injectivity of the Fourier transform and 2π-periodicity,

R 2 pν π t f ν,p (R, cos ζ) sin ζ(cos t -cos ζ) ν-1 dζ = 1 2 ν p p s=1
e ±R cos[(t+2πs)/p] for all t since both functions are continuous. Finally, the Proposition follows from Theorem 3.1. p.363 in [START_REF] Abouelaz | Sur la transformation de Radon de la sphère S d[END_REF].

Remark. When ν = (d -1)/2 for some integer d ≥ 1, the Gegenbauer-Fourier transform is interpreted as the Fourier Transform on the sphere S d+1 considered as a homogenous space SO(d + 1)/SO(d). More precisely, the spherical functions of this space are given by ( [START_REF] Abouelaz | Sur la transformation de Radon de la sphère S d[END_REF] p.356):

W ν j ( z, N ) , z ∈ S d+1 ,
where N = (0, • • • , 0, 1) ∈ S d+1 is the north pole and •, • denotes the Euclidian inner product on R d+1 .

Corollary 1. For any integer

ν ≥ 1 j≥0 (2j + ν)I p(2j+ν) (R)C ν 2j (cos ζ) = 1 2 ν Γ(ν) - 1 sin ζ d dζ ν 1 p p s=1 cosh (R cos[(ζ + 2πs)/p]) .
3. Weyl group settings p = 2, 3: explicit formulas 3.1. p=2. Letting p = 2 and using the fact that u → cosh u is an even function, our main result yields

4 R 2 ν j≥0 (2j+ν)I 2(2j+ν) (R)C ν 2j (cos ζ) = 1 2 ν Γ(ν) - 4 R 2 sin ζ d dζ ν cosh (R cos(•/2)) (ζ). Noting that - 4 R 2 sin ζ d dζ cosh (R cos(•/2)) (ζ) = 1 R cos t/2 d dt (u → cosh u) |u=R cos(ζ/2) ,
after the use of the identity sin

ζ = 2 sin ζ/2 cos ζ/2, it follows that - 4 R 2 sin ζ d dζ ν cosh (R cos(•/2)) (ζ) = 1 u d du ν (u → cosh u) |u=R cos(ζ/2) = 1 u d du ν-1 (u → sinh u u ) |u=R cos(ζ/2) = π 2 d du ν-1 u → I 1/2 (u) √ u |u=R cos(ζ/2) = π 2 1 u ν-1/2 I ν-1/2 (u) |u=R cos(ζ/2) = √ π 2 ν Γ(ν + 1/2) i ν-1/2 (R cos(ζ/2))
where the fourth equality is a consequence of the differentiation formula (6) p.79 in [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]. With the help of Gauss duplication's formula, one easily gets:

4 R 2 ν j≥0 (2j + ν)I 2(2j+ν) (R)C ν 2j (cos ζ) = 1 2Γ(2ν) i ν-1/2 (R cos(ζ/2))
and finally recovers Corollary 1.2 in [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF] since Thus, we are led to find a root lying in [-1, 1] of the cubic equation

c 2,k /c(k 1 -1/2, k 0 -1/2) = Γ(2ν +1)/ν.
Z 3 -(3/4)Z -(cos ζ)/4 = 0 for |Z| < 1. Set Z = ( √ -1/2)T, |T | < 2
, the above cubic equation transforms to

T 3 + 3T -2 √ -1 cos ζ = 0.
The obtained cubic equation already showed up in analytic function theory in relation to the local inversion Theorem ([10] p.265-266). Amazingly (compared to Cardan's formulas), its real and both complex roots are expressed through the Gauss Hypergeometric function 2 F 1 . Since we are looking for real Z = ( √ -1/2)T , we shall only consider the complex roots (see the bottom of p. 266 in [START_REF] Hille | Analytic Function Theory[END_REF]):

T ± = ± √ -1 √ 3 2 F 1 - 1 6 , 1 6 , 1 2 
;

cos 2 ζ - 1 3 cos ζ 2 F 1 1 3 , 2 3 , 3 2 
; cos 2 ζ so that

Z ± = ± √ 3 2 2 F 1 - 1 6 , 1 6 , 1 2 ; cos 2 ζ - 1 6 cos ζ 2 F 1 1 3 , 2 3 , 3 2 
; cos 2 ζ .

Since for ζ = π/2, cos ζ/3 = cos π/6 = √ 3/2, it follows that cos(ζ/3) = √ 3 2 2 F 1 - 1 6 , 1 6 , 1 2 ; cos 2 ζ - 1 6 cos ζ 2 F 1 1 3 , 2 3 , 3 2 ; cos 2 ζ for all ζ ∈ (0, π). Now, write Z = Z(cos ζ) so that cos[(ζ + 2sπ)/3] = cos(2sπ/3) cos(ζ/3) -sin(2sπ/3) 1 -cos 2 (ζ/3) = cos(2sπ/3)Z(cos ζ) -sin(2sπ/3) 1 -Z 2 (cos ζ)
for any 1 ≤ s ≤ 3. It follows that

f ν,3 (R, cos ζ) = 1 3Γ(ν) - 4 R 3 sin ζ d dζ ν 3 s=1 g s (RZ(cos ζ))
where

g s (u) = cosh cos(2sπ/3)u -sin(2sπ/3) R 2 -u 2 , u ∈ (-1, 1). Finally, f ν,3 (R, cos ζ) = 1 3Γ(ν) 4 R 3 d du ν 3 s=1 h s (u) |u=cos ζ where h s (u) := g s (RZ(u)), 1 ≤ s ≤ 3. For instance, let ν = 1, then it is not difficult to see that d du h s (u) |u=cos ζ = R sin ζ/3 dZ du |u=cos ζ sin ξ + 2πs 3 sinh sin ξ + 2πs 3 
for any s ∈ {1, 2, 3} and the derivative of u → Z(u) is computed using the differentiation formula for 2 F 1 :

d du 2 F 1 (a, b, c; u) = ab c 2 F 1 (a + 1, b + 1, c + 1; u), |u| < 1, c = 0.
As the reader may conclude, formulas are cumbersome compared to the ones derived for p = 2.

Odd Dihedral groups

Let n ≥ 3 be an odd integer. For odd dihedral groups D 2 (n), the generalized Bessel function reads ([4] p.157):

D W k (ρ, φ, r, θ) c n,k 2 rρ nk j≥0 I n(2j+k) (ρr)p -1/2,l0 j (cos(2nφ))p -1/2,l0 j (cos(2nθ))
where k ≥ 0, ρ, r ≥ 0, θ, φ ∈ [0, π/n], and

c n,k = 2 k Γ(nk + 1) √ πΓ(k + 1/2) Γ(k + 1)
.

In order to adapt our method to those groups, we need to write down the product formula for orthonormal Jacobi polynomials in the limiting case α = -1/2 or equivalently k 1 = 0. But note that, from an analytic point of view, this generalized Bessel function is obtained from the one associated with even dihedral groups via the substitutions k 1 = 0, p = n. Hence one expects the product formula for orthonormal Jacobi polynomials still holds in the limiting case. Indeed, the required limiting formula was derived in [START_REF] Dijksma | Spherical Harmonics and the product of two Jacobi polynomials[END_REF] p.194 using implicitely the fact that the Beta distribution µ α converges weakly to the dirac mass δ 1 . In order to fit it into our normalizations, we proceed as follows: use the well-known quadratic transformation ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]):

P -1/2,k-1/2 j (1-2 sin 2 (nθ)) = (-1) j P k-1/2,-1/2 j (2 sin 2 (nθ)-1) = (-1) j (1/2) j (k) j C k 2j (sin(nθ))
where P α,β j is the (non orthonormal) j-th Jacobi polynomial, together with cos(2nθ) = 1 -2 sin 2 (nθ) to obtain

-1/2,k-1/2 j (cos(2nθ))P -1/2,k-1/2 j (cos(2nφ)) = (1/2) j (k) j 2 C k 2j (sin(nθ))C k 2j (sin(nφ)).
Now, let k > 0 and recall that the squared L 2 -norm of

P -1/2,k-1/2 j is given by ([8]) 2 k 2j + k Γ(j + 1/2)Γ(j + k + 1/2) j!Γ(j + k) = 2 k √ πΓ(k + 1/2) Γ(k) (1/2) j (k) j (k + 1/2) j (2j + k)j! .
Recall also the special value

C k 2j (1) = (2k) 2j (2j)! = 2 2k Γ(2k) Γ(k + j)Γ(k + j + 1/2) Γ(j + 1/2)j! = 2 (k) j (k + 1/2) j (1/2) j j!
where we use Gauss duplication formula twice to derive both the second and the third equalities. It follows that

c(k)p -1/2,k-1/2 j (cos(2nθ))p -1/2,k-1/2 j (cos(2nφ)) = (1/2) j (k) j (2j + k)j! (k + 1/2) j C k 2j (sin(nθ))C k 2j (sin(nφ)) = (2j + k) C k 2j (1) 
C k 2j (sin(nθ))C k 2j (sin(nφ)) = (2j + k) C k 2j (z nφ,nθ (u, 1)) µ k (du),
according to [START_REF] Dijksma | Spherical Harmonics and the product of two Jacobi polynomials[END_REF] p.194, where

c(k) := 2 k+1 √ πΓ(k + 1/2) Γ(k) .
As a matter of fact, we are led again to series of the form 2 R nk j≥0

(2j + k)I n(2j+k) (R)C k 2j (cos ζ) = 1 2 [f + k,n + f - k,n ](R, cos ζ).

Two Remarks

The first remark is concerned with D 2 (4) which coincides with the B 2 -type Weyl group ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]). Recall from ( [START_REF] Demni | Generalized Bessel function of type D. SIGMA[END_REF]) that D W k may be expressed through a bivariate hypergeometric function as

D W k (x, y) = 1 F (1/k1) 0 γ + 1 2 , x 2 2 , y 2 2 , 
where we set x 2 := (x 2 1 , x 2 2 ) = (ρ 2 cos 2 φ, ρ 2 sin 2 φ) and similarly for y 2 . This series is defined via Jack polynomials:

1 F (1/r) 0 (a, x, y) = τ (a) τ J 1/r τ (x)J 1/r τ (y) J 1/r τ (1)|τ |! where 1 = (1, 1), τ = (τ 1 , τ 2 ) is a partition of length 2, |τ | = τ 1 + τ 2 is
its weight and (a) τ is the generalized Pochhammer symbol (see [START_REF] Demni | Generalized Bessel function of type D. SIGMA[END_REF] for definitions). But those polynomials, known also as Jack polynomials of type A 1 , may be expressed through Gegenbauer polynomials, a result due to M. Lassalle (see for instance formula 4.10 in [START_REF] Mangazeev | An analytic formula for the A 2 -Jack polynomials[END_REF]):

J 1/r τ (x 2 ) = (τ 1 -τ 2 )! 2 |τ | (r) τ1-τ2 sin |τ | (2φ)C r τ1-τ2 1 sin(2φ)
where (r) τ1-τ2 is the (usual) Pochammer symbol. As a matter fact, one wonders if it is possible to come from the hypergeometric series to Corollary 1.2 in [START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF] and vice-versa.

The second remark comes in the same spirit of the first one. Consider the odd dihedral system I 2 (3) = {±e -iπ/2 e iπl/3 , 1 ≤ l ≤ 3} ( [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF]). It is isomorphic to the A 2 -type root system defined by {±(1, -1, 0), ±(1, 0, -1), ±(0, 1, -1)} ⊂ R 3 which spans the hyperplane (1, 1, 1) ⊥ . The isomorphism is given by

(z 1 , z 2 , z 3 ) → 1 √ 2 3 2 z 2 , z 3 -z 1 √ 2 
subject to z 1 + z 2 + z 3 = 0 and for the A 2 -type root system, the generalized Bessel function is given by the trivariate hypergeometric series 0 F

(1/k) 0

(see [START_REF] Demni | Generalized Bessel function of type D. SIGMA[END_REF] for the definition). Is it possible to relate this function to is related to the integral representation derived for p = 2?
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  , φ, r, θ) = c p,k 2 rρ γ j≥0 I 2jp+γ (ρr)p l1,l0 j (cos(2pφ))p l1,l0 j (cos(2pθ))

ee

  ±R cos[(t+2πs)/p] dt. , cos ζ) sin ζ(cos t -cos ζ) ν-1 dζ ±R cos[(t+2πs)/p]

3. 2 .

 2 p=3. The corresponding dihedral group D 2 (6) is isomorphic to the Weyl group of type G 2 ([2]). Let ζ ∈]0, π[ and start with the linearization formula: 4 cos 3 (ζ/3) = cos ζ + 3 cos(ζ/3).

  +f - k,3 ](ρr, z 3φ,3θ (u, 1))µ k (du) = 3Γ(3k) 4 [f + k,3 +f - k,3 ](ρr, z 3φ,3θ (u, 1))µ k (du)in the same way the 0 F 1/k1 1
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When p = 2, this condition is equivalent to γ is even as stated in[START_REF] Demni | Product formula for Jacobi polynomials, spherical harmonics and generalized Bessel function of dihedral type[END_REF].