
HAL Id: hal-00519715
https://hal.science/hal-00519715v1

Submitted on 4 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Order statistics and heavy-tail distributions for
planetary perturbations on Oort cloud comets

Radu S. Stoica, Shuyan Liu, Youri Davydov, Marc Fouchard, Alain Vienne,
Giovanni Valsecchi

To cite this version:
Radu S. Stoica, Shuyan Liu, Youri Davydov, Marc Fouchard, Alain Vienne, et al.. Order statistics and
heavy-tail distributions for planetary perturbations on Oort cloud comets. Astronomy & Astrophysics
- A&A, 2010, 513 (A14), 9 p. �10.1051/0004-6361/200912871�. �hal-00519715�

https://hal.science/hal-00519715v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A&A 513, A14 (2010)
DOI: 10.1051/0004-6361/200912871
c© ESO 2010

Astronomy
&

Astrophysics

Order statistics and heavy-tailed distributions for planetary
perturbations on Oort cloud comets

R. S. Stoica1, S. Liu1, Yu. Davydov1, M. Fouchard2,3 ,�, A. Vienne2,3, and G. B. Valsecchi4

1 University Lille 1, Laboratoire Paul Painlevé, 59655 Villeneuve d’Ascq Cedex, France
2 University Lille 1, LAL, 59000 Lille, France

e-mail: marc.fouchard@univ-lille1.fr
3 Institut de Mécanique Céleste et Calcul d’Ephémérides, 77 av. Denfert-Rochereau, 75014 Paris, France
4 INAF – IASF, via Fosso del Cavaliere 100, 00133 Roma, Italy

Received 12 July 2009 / Accepted 19 November 2009

ABSTRACT

Aims. This paper tackles important aspects of comet dynamics from a statistical point of view. Existing methodology uses numerical
integration to compute planetary perturbations to simulate such dynamics. This operation is highly computational. It is reasonable to
investigate a way in which a statistical simulation of the perturbations can be handled more easily.
Methods. The first step to answer such a question is to provide a statistical study of these perturbations in order to determine their
main features. The statistical tools used are order statistics and heavy-tailed distributions.
Results. The study carried out indicated a general pattern exhibited by the perturbations around the orbits of the planets. These
characteristics were validated through statistical testing and a theoretical study based on the Öpik theory.

Key words. methods: statistical – celestial mechanics – Oort Cloud

1. Introduction

Comet dynamics are among the most difficult phenomena to
model in celestial mechanics. Indeed their dynamics is strongly
chaotic, which makes individual motions of known comets
hardly reproducible for more than a few orbital periods. When
the origin of comets is under investigation, one has to fall back
on the use of statistical tools in order to model the motion of
a huge number of comets supposed to be representative of the
actual population. Ideally, statistical modelling should also be
reliable on a time scale comparable to the age of the solar sys-
tem.

Due to their very elongated shapes, comet trajectories are af-
fected by planetary perturbations during close encounters with
planets. In particular, the perturbations induced by the major
planets are fundamental in determining the evolution of comet
trajectories. Consequently, it is of major importance to model
these perturbations in a way which is statistically reliable and
which needs the shortest computing time.

A direct numerical integration of a six-bodies-restricted
problem (Sun, Jupiter, Saturn, Uranus, Neptune, Comet) for each
time a comet enters the planetary region of the solar system is not
possible due to the cost in computer time.

Looking for an alternative approach, we can take advantage
of the fact that planetary perturbations for the Oort cloud comets
are uncorrelated. In fact the orbital periods of such comets are
so much longer than those of the planets that when the comet
returns, the phases of the latter can be taken at random. Thus
we can build a synthetic integrator à la Froeschlé and Rickman
(Froeschlé & Rickman 1981) to speed up the modeling. The crit-
icism by Fouchard et al. (2003) to such an approach does not

� Present address: observatoire de Lille, 1 Impasse de l’Observatoire,
59 000 Lille, France.

apply in the present case because, as was pointed out above, suc-
cessive planetary perturbations of Oort cloud comets are uncor-
related.

The aim of this paper is to give a statistical description of a
large set of planetary perturbations assumed to be representative
of those acting on Oort cloud comets entering the planetary re-
gion. To this purpose we use order statistics and heavy-tailed
distributions.

The rest of this paper is organised as follows. Section 2 is de-
voted to the presentation of the mechanism producing the data,
i.e. the planetary perturbations and the statistical tools used to
analyse the data. These tools are order statistics and heavy-tail
distributions, which respectively allow the study and the mod-
eling of the data distribution, with special attention to its sym-
metry, skewness and tail fatness. The obtained results are shown
and interpreted in the third section. The results are finally anal-
ysed from a more theoretical point of view using the Öpik theory
in Sect. 4. The paper closes with conclusions and perspectives.

2. Statistical tools

2.1. Data compilation

By planetary perturbations we mean the variations of the orbital
parameters between their values before entering the planetary
region of the solar system, i.e. the barycentric orbital element
of the osculating cometary orbit (zi, qi, cos ii, ωi,Ωi)T (where q,
i, ω, Ω are the perihelion distance, the inclination, the argu-
ment of perihelion and the longitude of the ascending node and
z = −1/a with a the semi-major axis), and their final values
(z f , q f , cos i f , ω f ,Ω f )T that is either when the comet is at its
aphelion or when it is back on a Keplerian barycentric orbit.
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Between its initial and final values, the system Sun + Jupiter
+ Saturn + Uranus + Neptune + comet is integrated using the
RADAU integrator at the 15th order (Everhart 1985) for a max-
imum of 2000 yrs. Then the planetary perturbations obtained
through this integration are (Δz = z f − zi,Δq = q f − qi,Δ cos i =
cos i f − cos ii,Δω = ω f − ωi,ΔΩ = Ω f − Ωi)T . The details on
the numerical experiment used to perform the integrations may
be found in Rickman et al. (2001).

Repeating the above experiment with a huge number of
comets (namely 9 600 000), one gets a set of planetary pertur-
bations. The comets are chosen with uniform distribution of the
perihelion distance between 0 and 32 AU, the cosine of the eclip-
tic inclination between –1 and 1 and the argument of perihelion,
and the longitude of the ascending node between 0 and 360◦.
The initial mean anomaly is chosen in a way that the perihe-
lion passage on its initial Keplerian orbit occurs randomly with
a uniform distribution between 500 and 1500 years after the be-
ginning of the integration.

In the present study each perturbation is associated to the
couple (cos ii, qi) because the perturbations are mainly depend-
ing on qi and cos ii (Fernández 1981). Similarly, since the orbital
energy is the main quantity which is affected by the planetary
perturbations, we will consider only these perturbations here.

Consequently, our data are composed by a set of triplets
(cos ii, qi, Z) where Z = z f − zi denotes the perturbations of the
cometary orbital energy by the planets, and (cos ii, qi) a point in
a space denoted by K. We call Z the perturbation mark for the
remainder of the paper.

2.2. Exploratory analysis based on order statistics

Let Z1, . . . , Zn be a sequence of independent identically dis-
tributed random variables and let F(z) = P(Z ≤ z), z ∈ R be the
corresponding cumulative distribution function. Let us consider
also Σn, the set of permutations on {1, . . . , n}.

The order statistics of the sample (Z1, . . . , Zn) is the rear-
rangement of the sample in increasing order and it is denoted
by (Z(1,n), . . . , Z(n,n)). Hence Z(1,n) ≤ . . . ,≤ Z(n,n), and there exists
a random permutation σn ∈ Σn in the form of

(Z(1,n), . . . , Z(n,n)) = (Zσn(1), . . . , Zσn(n)). (1)

Below some classical results from the literature are presented
(David 1981; Delmas & Jourdain 2006). If F is continuous, then
almost surely Z(1,n) < . . . , < Z(n,n) and the permutation σn in
definition (1) is unique. If Z1 has a probability density f , then
the probability density of the order statistics is given by

n!1{z1 < . . . zn} f (z1) . . . f (zn).

A major characteristic of order statistics is that they allow quan-
tiles approximations. The quantiles are one of the most easy-to-
use tools for characterising a probability distribution. In practice,
the data distribution can be described by such empirical quan-
tiles.

Two prominent aspects are now presented. The first one
shows how to compute empirical quantiles using order statistics.
Let us assume that F is continuous and that there exists a unique
solution zq to the equation F(z) = q with q ∈ (0, 1). Clearly, zq
is the q-quantile of F. Let (k(n), n ≥ 1) be an integer sequence
with 1 ≤ k(n) ≤ n and limn→∞ k(n)

n = q. Then the sequence of
the empirical quantiles (Z(k(n),n), n ≥ 1) converges almost surely
towards zq.

The second aspect allows the computation of confidence in-
tervals and hypothesis testing. If Z1 has a continuous probability

density f with f (zq) > 0 for q ∈ (0, 1) and if it is supposed that
k(n) = nq+o(

√
n), then Z(k(n),n) converges in distribution towards

zq as follows:

√
n(Z(k(n),n) − zq)

L→ N
(
0,

q(1 − q)
f (zq)2

)
·

The exploratory analysis we propose for the perturbation data
sets is based on the computation of empirical quantiles. There
are several reasons motivating such a choice. First, little is
known about the prior distribution concerning the perturbation
marks, except that they are distributed around zero and that they
are uniformly located in K. This implies that very few hypothe-
ses with respect to the data can be made. Clearly, in order to
apply such an analysis the only assumptions needed are the con-
ditions of validity for the central limit theorem. From a practical
point of view, an empirical quantiles-based analysis allows the
checking of the tails, the symmetry and the general spatial pat-
tern of the data distribution. From a theoretical point of view,
the mathematics behind this tool allow us a rather rigorous anal-
ysis.

2.3. Stable distribution models

Stable laws are a rich class of probability distributions that al-
low heavy tails and skewness and have many nice mathematical
properties. They are also known in the literature under the name
of α-stable, stable Paretian or Lévy stable distributions. These
models were introduced by Levy (1925). Below some basic no-
tions and results on stable distributions are given (Borak et al.
2005; Feller 1971; Samorodnitsky & Taqqu 1994).

A random variable Z has a stable distribution if for any
A, B > 0, there is a C > 0 and D ∈ R1 in a way that

AZ1 + BZ2
L
=CZ + D,

where Z1 and Z2 are independent copies of Z, and “
L
=” denotes

equality in distribution.
A stable distribution is characterised by four parameters

α ∈ (0, 2], β ∈ [−1, 1], γ � 0 and δ ∈ R1 and it is denoted
by Sα(β, γ, δ). The role of each parameter is as follows: α de-
termines the rate at which the distribution tail converges to zero,
β controls the skewness of the distribution, whereas γ and δ are
the scale and shift parameters, respectively. Figure 1 shows the
influence of these parameters on the distribution shape.

The linear transformation of a stable random variable is also
a stable variable. If α ∈ (0, 2), then E|Z|p < ∞ for any 0 < p < α
and E|Z|p = ∞ for any p � α. The distribution is Gaussian if α =
2. The stable variable with α < 2 has an infinite variance, and the
corresponding distribution tails are asymptotically equivalent to
a Pareto law (Skorokhod 1961). More precisely{

limz→∞ zαP{Z > z} = (1+β)
2 σ,

limz→∞ zαP{Z < −z} = (1−β)
2 σ.

, (2)

where σ = Cαγα, Cα = 1−α
2Γ(2−α) cos(πα/2) if α � 1 and Cα = 2

π

elsewhere. The distribution is symmetric whenever β = 0, or
skewed otherwise. In the case α < 1, the support of the distri-
bution Sα(β, γ, 0) is the positive half-line when β = 1 and the
negative half-line when β = −1. If α > 1, then the first order
moment exists and equals the shift parameter δ.

One of the technical difficulties in the study of stable dis-
tribution is that except for a few cases (Gaussian, Cauchy and
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Fig. 1. Influence of the parameters on the shape of a stable distribution:
a) β parameter; b) α, γ and δ parameters.

Lévy), there is no explicit form for the densities. The charac-
teristic function can be used instead to describe the distribution.
There exist numerical methods able to approximate the proba-
bility density and the cumulative distribution functions (Nolan
1997). Simulation algorithms for sampling stable distribution
can be found in Borak et al. (2005); Chambers et al. (1976).

Due to the previous considerations, parameter estimation
is still an open and challenging problem. Several methods are
available in the literature (Fama & Roll 1971; McCulloch 1986;
Mittnik et al. 1999; Nolan 2001; Press 1972). Nevertheless, these
methods all have the same drawback in the sense that the data is
supposed to be a sample of a stable law. It is a well known fact
that if the data come from a different distribution, the inference
of the tail index may be strongly misleading. A solution to this
problem is to estimate the tail exponent (Hill 1975) and then es-
timate distribution parameters if α ∈ (0, 2].

Still, there remains the problem of the parameter estimation
whenever the tail exponent is greater than 2. Under these circum-
stances, distributions with regularly varying tails can be consid-
ered. A random variable has a distribution with regularly varying
tails of an index of α ≥ 0 if p, q ≥ 0, p+q = 1 and a slowly vary-
ing function L, i.e. limz→∞ L(λz)

L(z) = 1 for any λ > 0, so that{
limz→∞ zαL(z)P{Z > z} = p,
limz→∞ zαL(z)P{Z < −z} = q. (3)

It is important to notice that the conditions (2) can be obtained
from (3) whenever L(z) = 1/σ and p = (1 + β)/2.

The parameter estimation algorithm proposed by Davydov
& Paulauskas (1999, 2004) is constructed under the assump-
tion that the sample distribution has the asymptotic property (2).
The algorithm gives three estimated values α̂, β̂, σ̂. The δ̂ can be

computed easily whenever α > 1, by approximating it using
the empirical mean of the samples. This parameter estimation
method can be used for stable distribution and in this case, α̂
should indicate positive values lower than 2. At the same time,
the strong point of the method is that it can be used for data
which do not follow stable distributions. In this case the data
distribution is assumed to have regularly varying tails. The weak
point of this algorithm is that in this case it does not give indica-
tions concerning the body of the distribution. Nevertheless this
method allows in both cases a rather complete characterisation of
a wide panel of probability distributions. The code implementing
the algorithm is available just by simple demand to the authors.

3. Results

3.1. Empirical quantiles

The lack of stationarity of the perturbation marks imposes the
partitioning of the location space in a finite number of cells. Let
us consider such a partition K = ∪n

i=1Ki. The cells Ki are disjoint,
and they all have the same volume. The size of the volume has
to be big enough in order to contain a sufficient number of per-
turbations. At the same time, the volume has to be small enough
to allow for stationarity assumptions for the perturbation marks
inside a cell. After several trial and errors, we have opted for
a partition made of square cells Ki, all having the same volume
0.1×0.1 AU, so that each cell contains about 1500 perturbations.

We were interested in three questions concerning the pertur-
bation marks distributions. The first two questions are related
to the tails and the symmetry of the data distribution. The third
question is related to a more delicate problem. It is a well known
fact that the perturbation locations follow an uniform distribution
in K. Nevertheless, little is known about the spatial distribution
of the perturbation marks, except that they are highly depen-
dent on their corresponding locations. So, the third question to
be formulated is the following: do the distributions of the pertur-
bation marks exhibit any pattern depending on the perturbation
location?

For this purpose, empirical q-quantiles were computed in
each cell. Most of these values indicate that the perturbation
marks are distributed around the origin, while no particular spa-
tial pattern is exhibited in the perturbation location space.

On the other hand, the situation is completely different for
extreme q-values such as 0.01, 0.05, 0.95, 0.99. These quantiles
indicate rather important values around the semi-major axis of
each planet. In order to check if these values may reveal heavy
tail distributions, the difference based indicator zq − n̂q was built.
The first term of this indicator represents an empirical q-quantile.
The second term is the theoretical q-quantile of the normal law
with mean and standard deviation given by z0.50 and 0.5(z0.84 −
z0.16). Hence, for values of q approaching 1, positive values of the
indicator may suggest heavy-tail behaviour for the data. Clearly,
this indicator may be used also for quantiles approaching 0. In
this case, it is the negative sign that reveals the fatness of the
distribution tail.

In Fig. 2 the values obtained for the difference indicator
z0.99 − n̂0.99 are shown. It can be observed that its rather impor-
tant values appeared whenever the perturbations are located in
the vicinity of a planet orbit. All these values tend to form a spa-
tial pattern similar to an arrow-like shape. As it can be observed,
this shape is situated around the planet orbit and points from the
right to left. It tends to vanish when the cosine of the inclina-
tion angle approaches −1. The prominence of this arrow shape
clearly depends on the closest planet: the bigger the planet, the
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(a)

(b)

(c)

(d)

Fig. 2. Empirical quantiles based difference indicator z0.99 − n̂0.99 for the
perturbation marks around the major planets. The corresponding range
intervals are specified in parentheses: a) Jupiter ([−0.0005, 0.0044]);
b) Saturn ([4.2 × 10−7, 0.0012]); c) Uranus ([−4.1 × 10−7, 6.9 × 10−5]);
and d) Neptune ([1.2 × 10−6, 5.8 × 10−5]). For each diagram the y-axis
corresponds to the initial perihelion distance in AU, and the x-axis to the
cosine of the inclination. We recall that the respective semi-major axis
of the four giant planets are aJ = 5.2 AU, aS = 9.6 AU, aU = 19.2 AU,
aN = 30.1 AU.

Fig. 3. Exploring the symmetry using empirical quantiles difference
z0.99 − |z0.01| for the perturbation marks around Jupiter. Axis are as for
Fig. 2. The range interval is [−0.0025, 0.0014].

sharper is the arrow-like shape. This can be observed by looking
at the change of values for the difference indicator with respect
to the size of the planet. These observations fulfil some common
sense expectations: the comet perturbations tend to be more im-
portant whenever a comet crosses the orbit of a giant planet.

Since these phenomena are observed for extremal q-
quantiles, they indicate that the distribution tails may be an im-
portant feature for the data. Hence, a statistical model for the
data should be able to reproduce these characteristics of the per-
turbation marks.

Empirical quantiles can be also used in a straightforward way
as symmetry indicators of the data distribution. Clearly, by just
checking whenever the difference zq − |z1−q| tends to 0, this may
suggest a rather symmetric data distribution. Figure 3 shows the
computation of such differences for each data cell. The values
obtained are rather low all over the studied region. Nevertheless,
there are some regions, and especially around the Jupiter’s orbit
we may suspect the data distributions to be a little bit skewed.
Still, since the perturbations have comparatively low numerical
values, assessing the symmetry using the proposed indicator has
to be done cautiously.

It is reasonable to expect a more reliable answer concerning
this question by using a statistical model. Clearly, such a model
should be able to reproduce the symmetry of the data distribution
as well.

The central limit theorem available for the order statistics al-
lows the construction of an hypothesis test. Since our analysis
leads us towards heavy-tailed distribution models, a statistical
test was performed as a precaution to verify wether a more sim-
ple model can be fit to the data. The normality assumption was
considered as the null hypothesis for the test. The test was per-
formed for the data in each cell, by considering that the normal
distribution parameters are given by the empirical quantiles as
explained previously. The p-values were computed using a χ2

distribution. In this context, the local normality assumption for
the perturbation marks is globally rejected. Figure 4 shows the
result of testing the normality of the z0.95 empirical quantile com-
puted around the Jupiter’s orbit.

Indeed, there exist regions where the normality assumptions
cannot be rejected for the considered quantile. Still, the regions
where this hypothesis is rejected clearly indicate that normality
cannot be assumed throughout. Therefore, a parametric statisti-
cal model has to be able to reflect this situation and indicate the
cases for “heavy” or stable distribution tails.
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Fig. 4. p-values computed to test the normality of the empirical quan-
tiles z0.95 around Jupiter.

The only parameter used during this exploratory analysis
was the partitioning of the location domain K. There is one more
question to answer: do the obtained results depend on the pat-
terns exhibited by the data, or they are just a consequence of the
partitioning in cells of the data locations? To answer this ques-
tion, a bootstrap procedure and a permutation test were imple-
mented (Davison & Hinkley 1997).

Bootstrap samples were randomly selected by uniformly
choosing 20% from the entire perturbations data set. Difference
indicators were computed for this special data set. This operation
was repeated 100 times. At the end of the procedure, the empiri-
cal means of the difference indicators were computed. In Fig. 5a
the bootstrap mean of the indicator z0.99 − n̂0.99 around Jupiter’s
orbit is showed. As expected, the same pattern is obtained as in
Fig. 2a: important values are grouped around the planet’s orbit
and exhibit an arrow-like shape pointing from right to left.

The permutation test follows the same steps as the bootstrap
procedure except that the perturbations are previously permuted.
This means that all the perturbations are modified as follows:
for a given perturbation the mark is kept while its location is
exchanged with the location of another randomly chosen pertur-
bation. This procedure should destroy any pre-existing structure
in the data. In this case, we expect that applying a bootstrap pro-
cedure on this new data set will indicate no relevant patterns. In
Fig. 5b the result of such a permutation test is shown. The exper-
iment was carried out in the vicinity of Jupiter’s orbit. After per-
muting the perturbations as indicated, the previously described
bootstrap procedure was applied in order to estimate bootstrap
means of the difference indicator z0.99 − n̂0.99. The result con-
firmed our expectations in the sense that no particular structure
or pattern is observed. This clearly indicates that the analysis re-
sults were due mainly to the original data structure and not to the
partitioning of the perturbations location domain in cells.

At the same time, the permutation test is also a verification
of the proposed exploratory methodology. This methodology
depends on a precision parameter to characterise the hidden
structure or pattern exhibited by the data. Still, whenever such a
structure does not exist at all, the present method detects nothing.

3.2. Inference using heavy-tail distributions

The empirical observations of the perturbation marks distribu-
tions indicated fat tails and skewness behaviour. This leptokurtic
character of the perturbation distributions was observed espe-
cially in the vicinity of the planets’orbits. In response to this em-
pirical evidence heavy-tail distribution modeling was chosen.

(a)

(b)

Fig. 5. Validation of the analysis based on the computation of the
difference indicator z0.99 − n̂0.99 around Jupiter. The correspond-
ing range intervals are given in parentheses: a) bootstrap procedure
([−0.0004, 0.0057); b) permutation test ([0.0008, 0.0013]).

The same cell partitioning as for the exploratory analysis is
maintained. The previously mentioned algorithm to estimate sta-
ble law parameters was run for the data in each cell.

In Fig. 6 the estimation result of the tail exponent is shown.
A region can be clearly observed which is formed by the cells
corresponding to estimated α values lower than 2. This kind of
region may be located around each orbit which corresponds to
a big planet. The shape of this region is less picked than the
region obtained using empirical quantiles. Still, the two results
are coherent. Both results indicate that the heavy-tailed character
of the perturbations distributions exhibits a spatial pattern. This
spatial pattern is located around the orbits of the major planets.

The skewness of the data distribution can be analysed by
looking at the results shown in Fig. 7. Indeed, it can be observed
that there are cells containing perturbations following a skewed
distribution. The obtained results indicate neither the presence of
a pattern by such distributions nor the presence of such a pattern
around the orbits of the major planets.

The estimation results for the σ and δ parameters are pre-
sented in Fig. 8. The scale parameter indicates how heavy the
distribution tails are. It may be observed in Fig. 8a that the most
important values of σ tend to form a spatial pattern similar to the
patterns formed by the difference indicator based on order statis-
tics and the tail exponent, respectively. The results obtained for
the δ parameter indicate that a shift of the perturbation may exist
around the orbit of the corresponding big planets.

To check these results a statistical test using the central
limit theorem for order statistics was built. This result can be
used to verify if the empirical quantiles from a cell are coming
from the distribution characterised by the parameters previously
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(a)

(b)

(c)

(d)

Fig. 6. Estimation result of the tail exponent α for the perturbation
marks around the major planets. The corresponding range intervals
are given in parentheses: a) Jupiter ([0.98, 5.7]); b) Saturn ([1.1, 7.5]);
c) Uranus ([1.1, 7.5]) and d) Neptune ([0.85, 4.6]).

Fig. 7. Estimation result of the skewness parameter β for the perturba-
tion marks around Jupiter. The range interval is [−0.44, 0.44].

(a)

(b)

Fig. 8. Estimation result of the scale parameter σ range interval
([0, 0.0042]) and shift parameter δ range interval ([−0.0002, 0.0002])
for the perturbation marks around Jupiter.

estimated. Figure 9 shows the result of a test verifying that the
z0.99 quantiles around the Jupiter’s orbit are originated from a
heavy-tail distribution, while the quantiles outside this region are
coming instead from Pareto distribution. It can be observed that
high results for the p-values are spread around the entire region:
for 81.5% of the cells we cannot reject the null hypothesis. This
result is obviously a far better characterisation of the distribution
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Fig. 9. p-values computed to test if the empirical quantiles z0.99 around
the Jupiter’s orbit are originated from a heavy-tail distribution.

tails of the perturbations than the test for the normality assump-
tion performed in the preceding section.

The previous test certifies that the perturbations distributions
tails exhibit a stable or regular variation behaviour. If the pertur-
bations are close to the orbit of a big planet they have mainly a
stable behaviour. Figure 10 shows the p-values of a χ2-test im-
plemented for the perturbations with an estimated tail exponent
α < 2. This test allows us to check the perturbations also for
their distribution body. It can be observed that in almost all these
regions the assumption of stable distributions is accepted.

For the perturbations with a tail exponent greater than 2, an
alternative family of distributions with regularly varying tails
was considered for modelling. Its expressions is given below:

f (z) =
Cκ,α

1+ | κz − ω |α+1
, (4)

with Cκ,α the normalising constant, κ the scale parameter, ω the
location parameter and α the tail exponent.

The parameter estimation for such distributions was done in
several steps. First, the tail exponent α was obtained from the
previous algorithm. Second, the location parameter ω was esti-
mated by the empirical mean of the data samples. Finally, the
normalising constant Cκ,α and the scale parameter κ were esti-
mated using the method of moments.

A χ2 statistical test was done for the perturbations with
α ≥ 2. The null hypothesis considered was that the considered
perturbations follow a regularly varying tail distribution (4) with
parameters given by the previously described procedure. The ob-
tained p-values are shown in Fig. 11. It can be noticed that in the
majority of considered cells the null hypothesis is accepted.

4. Discussion and interpretation

Some of the features present in the Figures can be explained
in the framework of the analytical theory of close encounters
(Opik 1976; Greenberg et al. 1988; Carusi et al. 1990; Valsecchi
& Manara 1997).

Let us consider the magnitude of the perturbations in the
vicinity of a = aJ = 5.2 AU (Jupiter). The colour coding of
Fig. 2 is related to the magnitude P of the perturbation, corre-
sponding to

Z = − 1
a f
+

1
ai
∝ h f − hi, (5)

where a and h are the orbital semi-major axis and the orbital en-
ergy of the heliocentric Keplerian motion of the comet respec-
tively. The subscripts i and f stand, respectively, for initial and
final, i.e., before and after the interaction with Jupiter.

(a)

(b)

(c)

(d)

Fig. 10. p-values of a χ2 statistical test for the perturbations with α < 2
around the major planets: a) Jupiter; b) Saturn; c) Uranus; d) Neptune.

Perturbations at planetary encounters are characterised by
large and in general asymmetric tails, as was shown by various
authors (Everhart 1969; Oikawa & Everhart 1979; Froeschlé &
Rickman 1981); an analytical explanation of these features was
given by Carusi et al. (1990) and by Valsecchi et al. (2000), and

Page 7 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912871&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912871&pdf_id=10


A&A 513, A14 (2010)

(a)

(b)

(c)

(d)

Fig. 11. p-values of a χ2 statistical test for the perturbations with α ≥ 2
around the major planets: a) Jupiter; b) Saturn; c) Uranus; d) Neptune.

the consequences on the orbital evolution of comets was dis-
cussed by Valsecchi & Manara (1997).

We now consider the case of parabolic initial orbits (our
orbits are in fact very close to parabolic), and discuss the

conditions under which we can expect asymmetric tails in the
energy perturbation distributions.

The condition for the tails of the energy perturbation distri-
bution to be symmetric is (Carusi et al. 1990; Valsecchi et al.
2000):

cos θ = 0,

where we have for a parabolic orbit:

cos θ =
1 − U2

2U

U =

√
3 − 2

√
2q/ap cos i

cos θ =

√
2q/ap cos i − 1√

3 − 2
√

2q/ap cos i
,

where ap is the orbital semi-major axis of the planet encoun-
tered, and U is the planetocentric velocity of the comet at en-
counter, in units of the orbital velocity of the planet itself.
Making the appropriate substitutions, the condition cos θ = 0
in the q-cos i plane turns out to be:

cos i =

√
ap

2q
.

Anyway, the finite size of the available perturbation sample must
be taken into account, as the tails would become sufficiently pop-
ulated to show any asymmetry only for very large samples.

Turning our attention now more generally to the tails of the
energy perturbation distributions, we consider that in different
regions of the q-cos i plane the probability p for the comet on a
parabolic orbit to pass within a given unperturbed minimum dis-
tance b from the planet (the so-called impact parameter) would
be, according to Opik (1976)

p(b) =
b2

a2
pπ sin i sin θ| sinφ| =

b2

a2
p

U

π sin i
√

2 − 2q/ap

· (6)

We note that p(b) can also be considered to be the probability
with which the comet passes within any circle of a given ra-
dius b on the target plane (the plane centred on the planet, and
perpendicular to the unperturbed planetocentric velocity of the
comet).

As for the size of the perturbation, Valsecchi et al. (2000)
show that, in the target plane, the locus of points through which
the comet has to pass in order to undergo an energy perturbation

z = −ap

a f
+

ap

ai
,

(where ai and a f are the semi-major axes of the orbit before and
after the encounter with the planet) is a circle of radius

R =
mpap

m�U2

sin θ′

| cos θ′ − cos θ| ,

where, for a pre-encounter parabolic orbit, cos θ has the expres-
sion seen before, while for cos θ′ and sin θ′, which refer to the
post-encounter orbits that in general are not parabolic, we have

cos θ′ =
1 − U2 − ap/a f

2U

sin θ′ =
√

2U2(3 − ap/a f ) − (1 − ap/a f )2 − U4

2U
;
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Fig. 12. Level curves of z+ around the semi-major axis of Jupiter. The
level of each curve is indicated on the figure.

in our case, in which ap/ai = 0 and z = −ap/a f , this radius is:

R(z) =
mpap

m�U2

√
2U2(3 + z) − (1 + z)2 − U4

|z| ·

Thus, the probability of an energy perturbation of a size equal
or greater than z is proportional to the surface of the circle of
radius R(z).

Moreover, as noted above, the probability that a comet passes
within a circle of a given radius, say R(z), on the target plane can
be computed using Öpik’s expression (6); we therefore conclude
that the probability P(z) that the comet undergoes an energy per-
turbation of a size equal or greater than z is

p(z) =
m2

p

m2�

2U2(3 + z) − (1 + z)2 − U4

πU3z2 sin i
√

2 − 2q/ap

. (7)

Equation (7) may be inverted to derive the value z of the en-
ergy perturbation for which the probability to have a perturbation
greater in absolute value than z is equal to a given p. We obtain
two solutions, z+ and z−, one for the positive perturbations and
one for the negative ones. Each solution is given by

z± =
U2 − 1 ± √

(1 − U2)2 − (1 + U4 − 6U2)(1 + pα)

1 + pα
,

with α = (πU3 sin i
√

2 − 2q/ap) · m2�/m2
p and taking always the

upper, resp. lower, sign.
Figure 12 shows the level curves of z+ for p = 0.01, which

is consistant with Fig. 2. As can be seen, the main features of
Fig. 2 are reproduced. The arrow-like shape observed during the
statistical study can be now observed on the definition domain
imposed by the definition of z+. This strenghtens our interpre-
tation of the features of Fig. 2 as due to the geometry of close
approaches described by the Öpik theory.

5. Conclusion and perspectives

In this paper a statistical study of the planetary perturbations
on Oort cloud comets was carried out. The exploratory analysis
of the perturbation distributions based on order statistics indi-
cated the tail behaviour as a determining feature. Following
this idea, parametric inference for heavy-tail distributions was

implemented. The obtained results indicated that the perturba-
tions follow heavy-tail stable distributions which are not always
symmetric while tending to form a spatial pattern. This pattern is
shaped arrow-like and is situated around the orbits of the major
planets. A theoretical study was carried out, and it was observed
that this pattern is similar to the theoretical curves derived from
the Öpik theory. The perturbations outside this arrow-shaped re-
gion were not exhibiting a stable character and they were mod-
elled by a family of distributions with regularly varying tails.
In both cases, stable and non-stable distributions, the modelling
choices were confirmed by a statistical test.

Clearly, these choices and the estimation parameter estima-
tion procedures can be further improved. Nevertheless, the ob-
tained results give good indications and also good reasons for
developing a probabilistic methodology able to simulate such
planetary perturbations.
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