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CELEBRATING CERCIGNANI’S CONJECTURE FOR THE
BOLTZMANN EQUATION

LAURENT DESVILLETTES, CLÉMENT MOUHOT & CÉDRIC VILLANI

Abstract. Cercignani’s conjecture assumes a linear inequality between the en-
tropy and entropy production functionals for Boltzmann’s nonlinear integral oper-
ator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequal-
ities and spectral gap inequalities, this issue has been at the core of the renewal
of the mathematical theory of convergence to thermodynamical equilibrium for
rarefied gases over the past decade. In this review paper, we survey the vari-
ous positive and negative results which were obtained since the conjecture was
proposed in the 1980s.

This paper is dedicated to the memory of the late Carlo Cercignani, powerful
mind and great scientist, one of the founders of the modern theory of the Boltzmann
equation.
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1.1. The Boltzmann equation. After Maxwell [56] wrote down the basic equation
for the kinetic theory of gases, Boltzmann [14] made so remarkable progress on
this equation that its name remained attached to it. The Boltzmann equation
describes the behavior of a rarefied gas when the only interactions taken into account
are binary collisions. This evolution equation reads

∂f

∂t
+ v · ∇xf = Q(f, f), x ∈ Ω, v ∈ R

d, t ≥ 0,

where Ω ⊂ Rd is the spatial domain (d ≥ 2) and f is the time-dependent particle
distribution function in phase space. In the case when this distribution function is
assumed to be independent of the position, equation (1.1) reduces to the spatially
homogeneous Boltzmann equation

(1.1)
∂f

∂t
(t, v) = Q(f, f)(t, v), v ∈ R

d, t ≥ 0,

where Q is the quadratic Boltzmann collision operator, defined by the bilinear
form

Q(g, f) =

∫

Rd×Sd−1

B
(

|v − v∗|, cos θ
)

(g′∗f
′ − g∗f) dv∗ dσ.

We have used the shorthands f ′ = f(v′), g∗ = g(v∗) and g′∗ = g(v′∗), where

v′ =
v + v∗

2
+

|v − v∗|

2
σ and v′∗ =

v + v∗
2

−
|v − v∗|

2
σ

stand for the pre-collisional velocities of particles which after collision have velocities
v and v∗. Moreover it is usual to introduce the deviation angle θ ∈ [0, π] between
v′ − v′∗ and v − v∗. The function B is called the Boltzmann collision kernel and
it is determined by physics (it is related to the physical cross-section Σ(v− v∗, σ) by
the formula B = |v−v∗|Σ). On physical grounds (in particular galilean invariance),
it is assumed that B ≥ 0 and B is a function of |v − v∗| and cos θ only.

1.2. The collision kernel. In the theory of Maxwell and Boltzmann, the interac-
tion between particles is reflected in the formula for the collision kernel B. It may
be short-range or long-range. The most important case of short-range interaction
is the hard spheres model, where particles are spheres interacting by contact. In
that case, B = |v − v∗| in dimension d = 3 (constant cross-section).

Typical models of long-range interactions are given by inverse power-law forces
[27]. In dimension d = 3, if the intermolecular force scales like r−s with s > 2, then

B(|v − v∗|, cos θ) = |v − v∗|
γ b(θ), θ ∈ [0, π],

where b is smooth except near θ = 0,

b(θ) ∼θ=0 cst θ
−2−ν ,
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and

γ =
s− 5

s− 1
, ν =

2

s− 1
.

It will be interesting to also consider more general kernels B which do not neces-
sarily come from microscopic interactions; a remarkable case is γ = 2.

In the important case of Coulomb interaction, the force scales like the inverse of
the square of the distance between particles; then the Boltzmann operator does not
make sense anymore [71, Annexe 1, Appendice]. This divergence led Landau [53]
to introduce in 1936 a “diffusive” version of the Boltzmann collision operator, the
Landau collision operator, defined by the bilinear form

(1.2) Q(g, f) = ∇v ·

(

∫

RN

Φ(|v − v∗|)

{

|v − v∗|
2 Id− (v − v∗)⊗ (v − v∗)

}(

(∇g)f∗ − (∇g)∗f

)

dv∗

)

leading to the polar form

Q(f, f) = ∇v ·

(

∫

RN

Φ(|v − v∗|)

{

|v − v∗|
2 Id− (v − v∗)⊗ (v − v∗)

}(

∇f

f
−

∇f∗
f∗

)

f f∗ dv∗

)

.

Here Φ(|v−v∗|) = |v−v∗|
−3 and the dimension is d = 3. As in [36, 37] we can consider

any dimension d ≥ 2 and more general functions Φ, say Φ(|v − v∗|) = |v − v∗|
γ,

γ ≥ −d.
A mathematical way to derive the operator (1.2) is to apply the grazing collision

limit to the Boltzmann collision operator with collision kernel B = Φ(|v− v∗|) b(θ),
that is, to concentrate on deviation angles θ ≃ 0 [7, 31, 33, 69, 4]. The case γ = −3,
d = 3 considered by Landau in dimension d = 3 will be called “Landau-Coulomb”
for the sake of classification.

1.3. Conserved quantities and entropy structure. Boltzmann’s and Landau’s
collision operators have the fundamental properties of conserving mass, momentum
and energy

∫

Rd

Q(f, f)(v)φ(v) dv = 0, φ(v) = 1, v, |v|2/2
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and satisfying (the first part of) Boltzmann’s H theorem, which can be formally
written as

D(f) := −
d

dt

∫

Rd

f log f dv = −

∫

Rd

Q(f, f) log f dv ≥ 0.

Boltzmann’s so-called “H functional”

H(f) =

∫

f log f dv

is the opposite of the entropy of the gas.
The second part of Boltzmann’sH theorem states that under appropriate boundary

conditions, any equilibrium distribution function (that is, such that v · ∇xf =
Q(f, f)) satisfies D(f) = 0, or equivalently Q(f, f) = 0, and takes the form of
a Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

(

−
|v − u|2

2T

)

.

The parameters ρ = 0, u ∈ Rd and T ≥ 0 are interpreted as respectively the density,
mean velocity and temperature of the gas:

ρ =

∫

Rd

f(v) dv, u =
1

ρ

∫

Rd

v f(v) dv, T =
1

dρ

∫

Rd

|v − u|2 f(v) dv.

As a result of the process of entropy production pushing towards local equilibrium
combined with the constraints of conservation laws, solutions of the Boltzmann
equation are expected to converge to a unique Maxwellian equilibrium (This is the
Krasovskii–Lasalle principle in the context of the Boltzmann equation).

Assuming that ρ and T are positive, we may rescale f := f(v) into v 7→ a f(λ (v−
b)), in such a way that the new density, velocity and temperature are ρ = 1, u = 0

and T = 1. So we set M(v) = (2π)−d/2 e−|v|2/2 as the Maxwellian equilibrium in the
sequel.

1.4. The linearized collision operators. Let us first consider the Boltzmann
collision operator. We introduce the fluctuation around the Maxwellian equilibrium
M computed above:

f = M +Mh, v 7→ h(v) ∈ L2(M)

where L2(M) denotes the Lebesgue space L2 on Rd with reference measure M(v) dv.
Then the linearized collision operator writes

Lh = M−1 [Q(Mh,M) +Q(M,Mh)] ,
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or

(1.3) Lh =
1

4

∫

Rd×Rd×Sd−1

[

h′ + h′
∗ − h− h∗

]

BM∗ dv∗ dσ

for the same collision kernel B as in Q.
It is easy to check that L is symmetric in the Hilbert space L2(M) and that it

is non-positive in this space (this is the linearized form of the H theorem). The
dissipation of squared L2 norm, that is the opposite of the Dirichlet form associated
with L, is

D(h) = −〈h, Lh〉L2(M) =
1

4

∫

Rd×Rd×Sd−1

∣

∣

∣
h′ + h′

∗ − h− h∗

∣

∣

∣

2

BM M∗ dv dv∗ dσ ≥ 0.

It is straightforward from this formula that the null space of L has dimension d+2,
and is spanned by the so-called collisional invariants 1, v1, . . . , vd, |v|

2.
In the case of the Landau operator, a similar line of arguments leads to

Lh(v) = M−1 ∇v ·

(

∫

Rd

a(v − v∗)
[

(∇h)− (∇h)∗

]

M M∗ dv∗

)

,

with

a(z) = |z|2Φ(z) Πz⊥ , (Πz⊥)i,j = δi,j −
zizj
|z|2

,

and the corresponding negative Dirichlet form is

(1.4) D(h) = −〈h, Lh〉L2(M)

=
1

2

∫

Rd×Rd

|v − v∗|
2 Φ (v − v∗)

∣

∣

∣
Π(v−v∗)⊥

(

(∇h)− (∇h)∗

)
∣

∣

∣

2

M M∗ dv dv∗ ≥ 0.

1.5. Comparison with usual differential operators and classification. The
Boltzmann and Landau collision operators are a priori extremely intricate, partly
due to their integral or integro-differential nature (and partly of course due to their
nonlinear nature!). Therefore it is useful, in order to grab an intuition of these op-
erators, to draw a parallel with usual differential operators which are more familiar.

For the Boltzmann collision operators, say with collision kernel of the form B =
Φ(|v−v∗|) b(|θ|), the most important two “parameters” interplaying and determining
its behavior are (1) the growth or decay of Φ, and (2) the singularity of b at grazing
collisions θ ∼ 0. To be more precise, let us consider the model case Φ(z) = zγ ,
γ ∈ (−d,+∞) and b(|θ|) ∼ θ−(d−1)−ν , ν ∈ (−∞, 2) as θ ∼ 0, for the Boltzmann
collision operator. Then the order of singularity (2) plays the role of the order
(highest number of derivatives) in a differential operator. For instance ν < 0 in the
model means a zero order operator, whereas ν ∈ (0, 2) means a fractional differential
operator with order ν. And the growth or decay of Φ (1) plays the role of the
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growth or decay of the coefficients in a differential operator. Therefore γ = 0
(the so-called Maxwell or pseudo-Maxwell molecules cases) would correspond to a
constant coefficients differential operator, and γ = 1 (similar to hard spheres) would
correspond to unbounded polynomially growing coefficients.

From this comparison it becomes natural to consider the Landau collision operator
with Φ(z) = zγ formally as the limit case ν = 2 in the above classification. This
unified picture of this family of integro-differential operators is summarized in figure
1 below.

b

b

ν

γ

2

−d

0

1

long-range

short-range

hard spheres

Landau-Coulomb
Landau

Boltzmann

Figure 1. Classification of the Boltzmann and Landau operators

2. Cercignani’s conjecture

2.1. Constructive quantitative estimates for the large time behavior. The
relaxation to equilibrium has been studied since the works of Boltzmann and it is
at the core of kinetic theory. The motivation is to provide an analytic basis for the
second principle of thermodynamics for a statistical physics model of a gas out of
equilibrium. Indeed, Boltzmann’s famous H theorem gives an analytic meaning to
the entropy production process and identifies possible equilibrium states. In this
context, proving convergence towards equilibrium is a fundamental step to justify
Boltzmann model, but cannot be fully satisfactory as long as it remains based on
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non-constructive arguments. Indeed, as suggested implicitly by Boltzmann when
answering critics of his theory based on Poincaré’s recurrence Theorem, the validity
of the Boltzmann equation breaks for very large time (see [72, Chapter 1, Section 2.5]
for a discussion). It is therefore crucial to obtain constructive quantitative informa-
tions on the time scale of the convergence, in order to show that this time scale is
much smaller than the time scale of validity of the model. Cercignani’s conjecture
is an attempt to provide such constructive quantitative estimates. In the words of
Cercignani: “The present contribution is intended as a step toward the solution of
the first main problem of kinetic theory, as defined by Truesdell and Muncaster, i.e.
“to discover and specify the circumstances that give rise to solutions which persist
forever”.” It is inspired by the entropy - entropy production method, that we now
briefly describe.

2.2. The entropy - entropy production method. This method was first used
in kinetic theory for the Fokker-Planck equation (Cf. [8, 66])

∂tf = ∇v · (∇f + v f), v ∈ R
d,

∫

Rd

f(w) dw = 1.

In that case, the equilibrium M is given by the formula

M(v) = (2π)−d/2 e−|v|2/2

and the entropy production is

DFP (f) =

∫

Rd

f(v)

∣

∣

∣

∣

∇ log
f

M

∣

∣

∣

∣

2

dv.

The exponential convergence is then obtained thanks to the logarithmic Sobolev
inequality (cf. [44]), which exactly means in this setting

DFP (f) ≥ 2

[

H(f)−H(M)

]

.

Consider the more general case of an equation for which a Lyapunov functional
H∗ exists, that is

D∗(f(t)) := −
d

dt
H∗(f(t)) ≥ 0

and assume that the entropy −H∗ is maximal for a unique function M∗ (among
the functions belonging to a space depending on the conserved quantities in the
equation). As seen in the previous section, this structure is provided by the H the-
orem for Boltzmann and Landau equations. The entropy - entropy production
method consists in looking for (functional) estimates like

D∗(f) ≥ Θ
(

H∗(f)−H∗(M∗)
)

,
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where Θ : R+ → R+ is a function such that

Θ(x) = 0 ⇐⇒ x = 0.

The stronger Θ increases near 0 the better the rate of relaxation to equilibrium,
since the differential inequality

d

dt

(

H∗(f)−H∗(M∗)
)

≤ −Θ
(

H∗(f)−H∗(M∗)
)

leads to
H∗(f(t))−H∗(M∗) ≤ R(t),

where R is the reciprocal of a primitive of −1/Θ. Then, if the relative entropy
H∗(f)−H∗(M∗) is coercive in the sense that it controls from below some distance or
some norm (denoted by ‖ ‖∗) between f and its associated equilibrium distribution
M∗ (for the Boltzmann entropy this is precisely provided by the so-called Czizsar-
Kullback-Pinsker inequality, see [29, 52]), we obtain

‖f(t)−M∗‖∗ ≤ S(t),

where (generically)

S(t) = C R(t)1/2.

In the particular case Φ(x) = C x (like in the case of the Fokker-Planck equation),
one gets

R(t) ≤ C e−C′ t,

i.e., exponential convergence towards equilibrium (with explicit rate). In the
slightly worse case Φ(x) = Cε x

1+ε for some (or all) ε > 0 we can deduce

R(t) ≤ C ′
ε t

−1/ε,

and we thus get algebraic convergence towards equilibrium (with explicit
rate). When ε > 0 can be taken as small as one wishes, we speak of almost
exponential convergence.

2.3. Cercignani’s conjecture. The original Cercignani’s conjecture [28] is written
in the following form: for any f and its associated maxwellian state M with same
mass, momentum and temperature

D(f) ≥ λ ρ

[

H(f)−H(M)

]

,

where ρ is the density (mass of f) and λ > 0 is a “suitable constant”.
We shall now develop this very general statement into a layer of more specified

conjectures. Let us fix ρ = 1 without loss of generality.
In the case when the constant λ only depends on the collision kernel B, the

temperature of M (or f), and some bound on the entropy of f (i.e., only the
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basic physical a priori estimates), we shall call this inequality the strong form of
Cercignani’s conjecture.

In the case when the constant λ also depends on some additional bounds on f
(typically of smoothness, moments and lower bounds), we shall call such an inequal-
ity the weak form of Cercignani’s conjecture. Let us point out that it is of
crucial importance to know whether the bounds used can be shown to be propa-
gated by the Boltzmann equation, in order to be able to “apply” the weak form
of Cercignani’s conjecture to the relaxation to equilibrium of its solutions. This of
course guides which bounds are natural or not.

In the slightly different case when the following inequality holds

D(f) ≥ λε

[

H(f)−H(M)
]1+ε

, ε > 0

we shall speak of the ε-polynomial Cercignani’s conjecture and it can be divided
again into weak and strong versions according to how much the constant λε depends
on f .

Finally a strictly similar hierarchy of conjectures can be formulated on the Landau
entropy production functional, and we shall call it Cercignani’s conjecture for
the Landau equation.

2.4. A linearized counterpart to the conjecture. A natural linearized coun-
terpart of Cercignani’s conjecture for the Boltzmann or Landau equation consists
in replacing the entropy production functional and the Boltzmann entropy by their
linearized approximation, i.e., respectively the Dirichlet form of the collision opera-
tors discussed above and the L2(M) norm. This spectral gap question was already
well-known for a long time and used by Cercignani as an inspiration and supportive
argument for his conjecture in [28]. So let us call this the linearized Cercignani’s
conjecture:

D(h) ≥ λ ‖h−Π(h)‖2L2(M),

where Π denotes the orthogonal projector in L2(M) onto the null space of the
linearized collision operator, and λ only depends on the collision kernel B and the
temperature of M .

Note that due the linear homogeneity of this relation, no weak version (with
constant depending on the function h) would make sense.

Again obviously the same question can be asked on the Dirichlet form of the
Landau collision operators and leads to the linearized Cercignani’s conjecture
for the Landau equation.

2.5. Comparison with differential operators. In the light of the comparison we
have made with usual differential operators, a functional inequality interpretation of
Cercignani’s conjecture is the following. Its nonlinear form is an intricate (because of
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strong nonlinearity and average over additional angular variables) amplified version
of a logarithmic Sobolev inequality. Its linearized form is an intricate (because
again of average over additional angular variables) amplified version of a Poincaré
inequality.

2.6. Use of the collision kernel, weighted forms of the conjecture. A natural
generalization of the conjecture is to know whether an inequality of the form

D(f) ≥ λ

[

Hw(f)−Hw(M)

]

holds, where

Hw(f) :=

∫

f log f w(v) dv

for some weight function w > 0. This requires the additional moment normalization
∫

f w |v|2 dv =

∫

M w |v|2 dv

in order for the relative entropy to satisfy

Hw(f)−Hw(M) ≥ 0.

We shall call such an inequality a weighted Cercignani’s conjecture.
In the linearized case, a natural conjecture is similarly

D(h) ≥ λ ‖(h− Π(h))w‖2L2(M),

for some weight function w, and we shall call such an inequality a linearized
weighted Cercignani’s conjecture.

2.7. Semigroup form of the conjecture. Another natural related question is
the following. Cercignani’s conjecture at the end of the day is a purely functional
inequality, and has nothing to do with the solutions of the Boltzmann equation.
However the main application of this conjecture is of course the rate of convergence
to equilibrium for the Boltzmann equation. Hence a natural question is whether

∀ t ≥ 0, D(ft) ≥ λ

[

H(ft)−H(M)

]

for any solution (ft)t≥0, or for a subset of solutions to the spatially homogeneous
Boltzmann equation. We shall call this the strong semigroup Cercignani con-
jecture.

This conjecture is of course related to the weak functional form of the conjecture
in the sense that if appropriate conditions are found on f for which the latter holds,
and these conditions are shown to be propagated by the solutions to the Boltzmann
equation, then this strong semigroup form of the conjecture will hold. However it
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is possible to imagine weird conditions created by the semigroup that cannot be
simply identified at the purely functional level.

Let us first remark that Cercignani’s conjecture does not exhaust the issue of
the rate of relaxation towards equilibrium, since it is possible that an exponential
convergence occurs for the semigroup even without any functional inequality1. Hence
it is natural to weaken again the semigroup conjecture in the following form. The
weak form of the semigroup Cercignani conjecture is the following: is it true
that

∀ t ≥ 0,
∣

∣H(ft)−H(M)
∣

∣ ≤ C e−C′ t

for some positive constants C,C ′ > 0, and any solutions (ft)t≥0, or for a subset of
solutions to the spatially homogeneous Boltzmann equation.

Let us add as a final remark that obvious extension to these semigroup forms of
the conjecture can be drawn for the spatially homogeneous Landau equation.

2.8. Relation with mean-field limit. Let us mention the different but closely
related question raised by Kac [50]. In this paper Kac introduced a many-particle
jump process whose mean-field limit is the spatially homogeneous Boltzmann equa-
tion (he also introduced the mathematical formalization of the by-now well-known
notion of propagation of chaos for a many-particles system). One of the goals of
such a derivation was the understanding of the asymptotic behavior of the nonlinear
Boltzmann equation through the linear many-particles system. Hence it is natural
to search for a Cercignani’s conjecture at the level of the many-particles jump
process. Even if this process is linear the conjecture can be searched in nonlinear
form or linear form, the difference being the kind of functional which is used for
measuring the spectral gap (the Boltzmann entropy or an L2 norm). The specific
new difficulty is to track the dependency of the estimates in terms of the number of
particles (since the final goal is originally to pass to the limit). For recent results in
the “linear” case (spectral gap in L2) see for instance [40, 49, 22, 55] which solves
the problem (note however that since the L2 norm does not “tensorize” correctly in
high dimension, it is not possible to pass to the limit in these estimates), and see
[73, 21, 57] for some progress in the “nonlinear” case.

3. Negative results at the functional level

3.1. Counterexample in the Maxwell molecules case with only mass, en-
ergy and entropy bounds. The explicit solutions constructed by Bobylev [10, 11]
show in particular that the exponential rate of relaxation can be arbitrarily slow if

1Think for instance of the trivial example of a nonsymmetric matrix A with only negative
eigenvalues: its Dirichlet form will not control anything from below since it has no sign, although
the semigroup etA will obviously relax exponentially fast towards zero.
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one assumes only finite mass, energy and entropy (in the cutoff Maxwell molecules
case B = 1). The question was then: would the conjecture be true with better
growth of the collision kernel than B = 1, for instance in the important physical
case of hard spheres B = |v − v∗|?

3.2. Counterexample in the hard spheres case with higher moment bounds.
Then Wennberg [77] proved in 1997 that the conjecture was false also in the case
of hard spheres. However the counterexample of Wennberg does not have infinitely
many moments. And since it was known since [34] that hard potentials with cutoff
(γ > 0 and no angular singularity) would produce such higher moments at every
order for any positive time, the next natural question was whether such counterex-
amples would hold with infinitely many moments.

3.3. Counterexample with infinitely many moment bounds. It was finally
shown by Bobylev and Cercignani in [13] that, for hard potentials with angular
cutoff and with γ < 2, the estimate

D(f) ≥ C(f)
[

H(f)−H(M)
]

does not hold uniformly over any class of distributions f which have fixed mass,
momentum and energy, are bounded below by a uniform Maxwellian distribution,
and satisfy

‖f‖Hk ≤ Sk, ‖f‖L1(1+|v|s) ≤ Ms

for some given sequences Ms > 0, s ∈ N and Sk > 0, k ∈ N. This is still true if an
arbitrary number of the constants Ms and Sk are chosen arbitrarily close to their
equilibrium value (i.e., the value of the corresponding moment or Sobolev norm for
the Maxwellian distribution associated with f).

4. Positive results at the functional level

4.1. Early attempts. A first result was proved in 1979 by Aizenmann and Bak
in [1] on a nonlinear model bearing some reminiscence with the Boltzmann opera-
tor, namely a coagulation-fragmentation kernel with constant rate. The proof uses
two very cleverly devised convexity inequalities and this is probably the first exam-
ple of a linear relation between entropy and entropy production for a non-diffusive
Boltzmann-like equation.

For the Boltzmann and Landau equations, an inequality linking the entropy dis-
sipation towards an L1-type distance to the space of Maxwellian (instead of the
entropy!) was established by the first author in [32], for densities bounded below by
a Maxwellian.

A decisive improvement was the obtention of a link between the entropy and the
entropy dissipation of the Boltzmann equation, due to Carlen and Carvalho in the
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beginning of the 90s (Cf. [17, 18]): this link was however still far from linear, the
relation was of the form

D(f) ≥ Θ
(

H(f)−H(M)
)

,

for some nonlinear function Θ, but no information was given on the behavior of
the function Θ at zero, and it turns out that its behavior was much worse than
linear. The inequality was proved in the case of pseudo-Maxwell molecules and its
proof made crucial use of the theory of Wild sums. As an elaborated consequence
of this breakthrough let us also mention the paper [24] where the authors give (for
a constant collision kernel) the first proof of the convergence of the entropy towards
its equilibrium value with minimal assumptions on the initial datum (finite mass,
energy and entropy).

4.2. Landau equation with (over)-Maxwellian molecules. The first positive
result obtained with a linear dependence between entropy and entropy dissipation
(for Landau or Boltzmann operators) is due to the first and third author of this
paper, and concerns Landau’s operator in the case when Φ(|v − v∗|) ≥ CΦ > 0
(sometimes called “over-Maxwellian”):

D(f) ≥ λ
[

H(f)−H(M)
]

,

with λ > 0 depending on CΦ and the dimension d only (for all f with fixed mass,
momentum, energy and upper bound on the entropy). In other words, the strong
conjecture holds for Landau equation with over-Maxwellian molecules.

This result is obtained by observing that (for some λ′ > 0)

D(f) ≥ λ′ DFP (f),

and then by using the logarithmic Sobolev inequality.
The relationship between D(f) and DFP (f) can be obtained (Cf. [37]) either

thanks to an almost explicit computation in which spherical coordinates are used,
or thanks to a variant of the estimates of [32] (in which differential operators have
been replaced by integral operators).

4.3. Boltzmann equation: “almost linear” relation. Successive results by
Toscani and the third author of this survey (Cf. [67, 68, 73]) then led to a re-
sult valid for the Boltzmann equation with any reasonable collision kernel. That
is, when B ≥ Cmin{|v − v∗|

γ, |v − v∗|
−β} > 0, with β, γ ≥ 0 (with or without

cutoff, that is for any ν ∈ (−∞, 2)) the following “almost linear link” exists between
entropy and entropy production:

D(f) ≥ λε(f)
[

H(f)−H(M)
]1+ε

,
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where λε(f) (possibly going to 0 as ε → 0) depends on β, γ, C, ‖f‖Hs(ε), ‖f(1 +
|v|)k(ε)‖L1 for some s(ε) and k(ε) depending on ε (and blowing up as ε → 0), and
some Gaussian (or better) lower bounds. In other terms, the (weak) ε-polynomial
Cercignani’s conjecture holds for the Boltzmann operator with all reasonable colli-
sion kernels.

4.4. Boltzmann equation: linear relation. Finally, in the special (and unfor-
tunately non physical) case when Φ(|v − v∗|) ≥ CΦ (1 + |v − v∗|

2) > 0, the original
(strong) Cercignani’s conjecture was proved to hold by the third author of this paper
(Cf. [73]), that is:

D(f) ≥ λ
[

H(f)−H(M)
]

,

with λ > 0 only depending on CΦ and the energy and entropy of f .

4.5. Spectral gaps of linearized operators. The origin of the study of the spec-
tral properties of the linearized Boltzmann collision operator can be traced back all
the way to Hilbert [48] in his work on the integral operators. The integral collision
operator of Boltzmann was a key example and motivation from physics there, and
Hilbert introduced (in the case of hard spheres, i.e., γ = 1 and ν < 0 in dimension
d = 3) the splitting between the local and non-local parts of the linearized oper-
ator, and proved the “complete continuity” (compactness in today’s words) of its
non-local part. This result was important in the construction, together with the
Fredholm theory, of what is now called the “Hilbert expansions”.

The second key step is due to Carleman [16]. In this book he introduced (still
in the hard spheres case) the use of Weyl’s theorem (stating that under certain
assumptions, the essential spectrum is unchanged by a compact perturbation of the
operator), in order to prove the existence of a spectral gap of the linearized collision
operator. Grad [42] then generalized this result to a broader class of collision kernels
(the so-called hard potentials with cutoff, γ ∈ (0, 1], ν < 0). Further generalizations
of this non constructive approach were provided by Caflisch [15] and Golse and
Poupaud [41] who proved that in the case of soft potentials with angular cutoff
(γ ∈ (−d, 0) and ν < 0) there is no spectral gap but still a weighted form of the
conjecture holds (in weaker norms than the ambiant norm).

Another direction of research was investigated by Wang-Chang and Uhlenbeck
[75] and Bobylev [11], who obtained a complete diagonalization of the linearized
collision operator in the Maxwell molecules case (γ = 0).

In the paper [9], by Baranger and the second author of this survey, the first
constructive estimates were given for the spectral gap of the hard spheres model,
by introducing a geometric method and the idea of using “intermediate” collisions
in the regions where the collision kernel vanishes, and then rely on the explicit
diagonalization of the Maxwell case above (for a constant collision kernel). The
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paper [59] then developed a whole series of constructive coercivity estimates, most
of them sharp, and gives a full answer to the linearized Cercignani’s conjecture in
the cutoff case (and some ellipticity estimate in the non-cutoff case, see below).

The interested reader can find more details in the review paper [61].

4.6. Elliptic estimates in the long-range case. A different but related subject
is the issue of proving ellipticity estimate on the entropy production functional in
the long-range case ν ∈ (0, 2). The first results are due to Lions [54] and then to the
first and third authors of this paper, together with Alexandre and Wennberg ([70]
and [2]) and can be roughly stated as the following inequality

D(f) ≥ C
(

‖f‖
H

ν/2
loc

− ‖f(1 + |v|s)‖L1

)

for some s ∈ N and some constant C > 0, and where the exponent ν/2 of regulariza-
tion is related to the singularity of the collision kernel. These regularity estimates
were used in a crucial way in the papers [3, 4] by Alexandre and the third author
of this survey in the Cauchy theory of the long-ranged Boltzmann equation and its
grazing collision limit towards the Landau equation. Earlier an estimate based on
the entropy production had already been used in a crucial way in the paper [69] in
the Cauchy theory of the spatially homogeneous long-ranged Boltzmann with soft
potentials.

The corresponding (and sharper) regularity estimates for the Landau equation
were derived in the papers [36, 37] by the first and third authors of this survey.

Now if we consider the linearized case, the first related result for the Boltzmann
collision operator is due to Pao [65] who proved the compactness of the resolvent in
the case of inverse power-law interaction force F (z) = z−s with s > 3 in dimension
d = 3 (this paper was hard to read because of the use of pseudo-differential calculus,
and slightly controversed, see [51]). However, some more general and constructive
versions of these results were recovered by the new estimates proven by Strain and
the second author of this paper in [64], confirming that the latter paper was fully
correct. In short the paper [64] proves that a “gain” of ν polynomial weight occurs
in the long-ranged case due to the ellipticity of the operator: roughly speaking the
local regularization improves the behavior for large velocities. The recent work by
Gressman and Strain [43] finally gives a sharp (although intricate) characterization
of the elliptic norm associated with the Dirichlet form, and answers a conjecture
raised in [64] about the spectral gap in the non-cutoff case (see below).

For the linearized Landau operator, the non-constructive approach based on
Weyl’s theorem was used successfully by Degond and Lemou [30] to prove an el-
liptic coercivity estimate. The sharp (non-isotropic) norm was then devised by Guo
in [46] and some constructive versions of this coercivity result were given in [64] (see
also [47] for related sharp hypoellipticity results).
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5. Results on the semigroup Cercignani conjecture

Since up to this date no results are known on the strong semigroup Cercignani’s
conjecture, we shall review the results on the weak semigroup conjecture (about the
rate of decay of the semigroup).

The first paper which tackled the issue of exponential relaxation to equilibrium
for data not necessarily close to equilibrium is [6] where a non constructive result
is given by Arkeryd, Esposito and Pulvirenti in the hard spheres case for general
solutions in weighted L∞ spaces in the spatially homogeneous case, or solutions
weakly inhomogeneous (close to the latter setting). This approach was generalized
to an Lp setting in [76] by Wennberg.

In the papers [26, 23], Carlen, Carvalho and Lu give sharp lower (and upper)
bounds on the rate of relaxation to equilibrium for the semigroup of the spatially
homogeneous Boltzmann equation in the case of Maxwell molecules and soft po-
tentials. Let us also mention the related important works by Carlen, Carvalho and
Gabetta [19, 20], more focused on the specific issue of the Wild sums.

The paper [25] by Carlen, Gabetta and Toscani then gave a proof of exponential
convergence towards equilibrium in the particular case of Maxwell molecules with
cutoff, assuming moments and regularity bounds on the initial datum.

In the Maxwell molecules case with angular cutoff (γ = 0, ν < 0 in the classifica-
tion above), Carlen and Lu proved in [26] that when only 2 moments are assumed
on the initial datum, then a rate of convergence algebraic and as slow as wanted
can be explicitely obtained, and it depends very precisely on the integrability of the
initial datum, in the sense that it depends on the function ϕ = ϕ(v) > 0 (going to
infinity as v goes to infinity) such that

∫

fin (1 + |v|2)ϕdv < +∞.

This was the first example of a solution to the Boltzmann equation that actually
relaxes slower than exponentially towards equilibrium.

In the soft potential case with or without angular cutoff (γ ∈ (−d, 0) and ν < 2),
Carlen, Carvalho and Lu [23] proved (among other things) that for solutions with
only 2 + |γ| moments then again the convergence (in L1) can be algebraic and
arbitrarily slow.

More recently a whole program of research has been carried out by the first and
third author in order to develop a theory of relaxation to equilibrium in the large for
inhomogeneous kinetic equations, and in particular for the full Boltzmann equation
in confined domain under a priori smoothness and moments assumptions (see in
particular the papers [38, 39]). The rate is not exponential, but still almost expo-
nential (in the sense of a polynomial convergence for any polynomial). These works
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have provided new insights on how transport effects combined with the termaliza-
tion process in velocity can yield convergence towards the global equilibrium and
they have given birth to the new hypocoercivity theory.

Finally the last episode in this long research line on the rate of decay in the
Boltzmann H theorem is the development of new tools in spectral theory for non-
symmetric operators in order to systematically enlarge the functional space of the
decay on a linearized semigroup (this is used for connecting the linearized theory
[9, 62] in small L2(M−1)-type spaces with the nonlinear theory [73, 39] in L1 type
spaces). A “final answer” (constructive exponential relaxation of the relative entropy
under reasonable a priori estimates) was given in [60] for hard spheres in the spatially
homogeneous case, and then in the preprint by Gualdani, Mischler and the second
author of this survey [45] for the inhomogeneous case (confined in the torus).

6. New conjectures about the conjecture

We shall now present a few conjectures related to the results presented in this
paper, some of them already formulated, some of them new. The work in progress
[35] aims at giving partial answers to some of these conjectures.

6.1. The use of grazing collisions. In [73] the following conjecture is formulated:

Conjecture 1 (Villani). For a collision kernel with growth of order γ ∈ (−d,+∞)
and singularity of order ν ∈ [0, 2] (where ν = 2 formally plays the role of the Landau
collision operator), the strong form of Cercignani’s conjecture is true if and only if
γ + ν ≥ 2.

This conjecture formally extends the result proved in [73] for “superquadratic”
collision kernels (formally ν = 0 and γ ≥ 2), as well as the result obtained in [37]
for the Landau collision operator with hard potential (formally ν = 2 and γ ≥ 0).

In [64] it is conjectured the following

Conjecture 2 (Mouhot-Strain). For a collision kernel with growth of order
γ ∈ (−d,+∞) and singularity of order ν ∈ [0, 2] (where ν = 2 formally plays the
role of the Landau collision operator), the strong form of linearized Cercignani’s
conjecture (existence of a spectral gap for the linearized operator) is true if and only
if γ + ν ≥ 0.

The direct implication in this conjecture was proved in [64], and recently the work
[43] (and the preprints related to this annoucement note) has solved this conjecture
by providing a sharp characterization of the norm associated with the Dirichlet
form of the operator. Let us also mention as an example of the fertility of Cercig-
nani’s conjecture that this conjecture also has inspired the work [63] about fractional
Poincaré inequalities.
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An interesting open question which now calls for further understanding is why
there is such a “gap” between the condition γ + ν ≥ 2 for a “nonlinear” spectral
gap, and the condition γ + ν ≥ 0 for a linearized spectral gap (this is somehow
reminiscent of the gap between the conditions for a logarithmic Sobolev inequality
to hold or a Poincaré inequality to hold).

6.2. Use of (general) collision kernels. In view of the preceding conjectures
about the influence of the parameters γ and ν (both at the nonlinear and linearized
levels), it now seems natural to conjecture the following generalized weighted form
of Cercignani’s conjecture:

Conjecture 3. For a collision kernel with growth of order γ ∈ (−d,+∞) and
singularity of order ν ∈ [0, 2] (where ν = 2 formally plays the role of the Landau
collision operator), one has

D(f) ≥ λ

∫

f log
f

M
(1 + |v|)γ+ν−2 dv

at the nonlinear level and

D(h) ≥ λ′ ‖(h− Πh)(1 + |v|)γ+ν‖L2(M)

at the linearized level (where h = (f−M)/M denotes the rescaled fluctuation around
the equilibrium M , and Π the L2(M)-orthogonal projection onto the collision invari-
ants 1, v1, . . . , vd, |v|

2).

6.3. Use of the tail of the distribution. In view of the condition for a measure
µ = e−V to satisfy a Poincaré inequality (essentially that V grows faster than linearly
at infinity) or a logarithmic Sobolev inequality (essentially that V grows faster than
quadratically at infinity), see for instance [74], it is natural to ask whether some
bounds on the tail of the distribution with faster decay than polynomial could
help in order to obtain Cercignani’s conjecture (this would be compatible with the
counterexamples of [13]):

Conjecture 4. For a collision kernel with growth of order γ ∈ (−d,+∞) and
singularity of order ν ∈ [0, 2] (where ν = 2 formally plays the role of the Landau
collision operator), and for a distribution f with exponential tail

f(v) ∼ C e−a|v|η , v ∼ ∞

for some constants a, C > 0 and η ∈ (0, 2], one has

D(f) ≥ λ

∫

f log
f

M
(1 + |v|)γ+ν+η−2 dv

at the nonlinear level.
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Hence if this conjecture were true (and taking for granted Villani’s conjecture),
it would mean that Cercignani’s conjecture would hold for hard spheres and inverse
power-laws interactions in dimension d = 3 for initial data with strong enough ex-
ponential tail (a Gaussian tail would always work). These Gaussian tails are known
to be propagated by the spatially homogeneous nonlinear Boltzmann equation for
hard spheres and hard potentials with cutoff for instance [12, 60].

Concerning general initial data, one has to turn to the theory of appearance of
exponential moments, as developed in [60, 58]. However it only provides at the
moment an appearance of an L1 decay of the form e−a|v|η with η = γ/2. Even with
the improvement to η = γ in the recent work in progress [5], note that the hard
spheres case (say γ = 0 and ν = 0) is exactly borderline for Cercignani’s conjecture,
and for inverse power-laws in dimension d = 3 where γ = (s − 5)/(s − 1) and
ν = 2/(s − 1), then 2γ + ν = 2 − 6/(s − 1) is always less than 2, and hence this
would not be sufficient for Cercignani’s conjecture.

Of course a natural further question would be to know whether the grazing colli-
sions ν > 0 can help for the appearance of exponential moments (for instance with
η = γ + ν instead of η = γ). . . As the reader sees, the story opened by Cercignani’s
conjecture is far from finished, and it is likely that many more nice surprises are to
come.

Acknowledgments: The authors wish to thank the ANR grant CBDif for support.
The second author wishes to thank the Award No. KUK-I1-007-43, funded by the
King Abdullah University of Science and Technology (KAUST) for the funding
provided for his repeated visits at Cambridge University during the autumn 2009
and the spring 2010.

References

[1] Aizenman, M., and Bak, T. Convergence to equilibrium in a system of reacting polymers.
Comm. Math. Phys. 65 (1979), 203–230.

[2] Alexandre, R., Desvillettes, L., Villani, C., and Wennberg, B. Entropy dissipation
and long-range interactions. Arch. Rational Mech. Anal. 152, 4 (2000), 327–355.

[3] Alexandre, R., and Villani, C. On the Boltzmann equation for long-range interactions.
Comm. Pure Appl. Math. 55, 1 (2002), 30–70.

[4] Alexandre, R., and Villani, C. On the Landau approximation in plasma physics. Ann.
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