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Abstract. Biological processes measured repeatedly among a series of individuals are stan-
dardly analyzed by mixed models. These biological processes can be adequately modeled by
parametric Stochastic Differential Equations (SDEs). We focus on the parametric maximum
likelihood estimation of this mixed-effects model defined by SDE. As the likelihood is not ex-
plicit, we propose a stochastic version of the Expectation-Maximization algorithm combined
with the Particle Markov Chain Monte Carlo method. When the transition density of the SDE
is explicit, we prove the convergence of the SAEM-PMCMC algorithm towards the maximum
likelihood estimator. Two simulated examples are considered: an Ornstein-Uhlenbeck pro-
cess with two random parameters and a time-inhomogeneous SDE (Gompertz SDE) with a
stochastic volatility error model and three random parameters. When the transition density is
unknown, we prove the convergence of a different version of the algorithm based on the Euler
approximation of the SDE towards the maximum likelihood estimator.

Keywords. Mixed models, Stochastic Differential Equations, SAEM algorithm, Particle
Filter, PMCMC, Stochastic volatility, Time-inhomogeneous SDE

1. Introduction

Biological processes are usually measured repeatedly among a collection of individuals or
experimental animals. The parametric statistical approach commonly used to discriminate
between the inter-subjects variability (the variance of the individual regression parameters)
and the residual variability (measurement noise) is the mixed-effects model methodology
(Pinheiro and Bates, 2000). The choice of the regression function depends on the context.
Dynamical processes are frequently described by deterministic models defined as ordinary
differential equations. However, these functions may not capture the exact process, since
responses for some individuals may display local "random" fluctuations. These phenomena
are not due to error measurements but are induced by an underlying biological process
that is still unknown or unexplained today. The perturbation of deterministic models by
a random component leads to the class of stochastic differential equations (SDEs). In this
paper we develop a parametric estimation method for mixed model defined by an SDE
process, called SDE mixed model. Note that SDE mixed models can be viewed as an
extension of state space models with random parameters.
Except in the linear case, the likelihood of standard mixed models is intractable in a closed
form, making the estimation a hard task. Davidian and Giltinan (1995), Wolfinger (1993),
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Pinheiro and Bates (2000) and Kuhn and Lavielle (2005) develop various methods for de-
terminitic regression function.
When the regression term is the realization of a diffusion process, the estimation is made
more complicated by the difficulties deriving from the SDEs. Parametric estimation of
SDE with random parameters (without measurement noise) has been studied by Ditlevsen
and De Gaetano (2005), Picchini et al. (2010) or Oravecz et al. (2009) in a Bayesian con-
text. SDE mixed model estimation, including measurement noise modeling, is more com-
plex and has received little attention. Overgaard et al. (2005) and Tornøe et al. (2005)
build estimators based on an extended Kalman filter but without proving the convergence
of the algorithm. Donnet and Samson (2008) propose to use a stochastic version of the
Expectation-Maximisation algorithm. However, the method involves Markov Chain Monte
Carlo (MCMC) samplers which have proved their slow mixing properties in the context of
state space models with random parameters.
For state space models with fixed known parameters, the Sequential Monte Carlo (SMC)
algorithms have demonstrated their efficiency. However, these techniques are difficult to
extent to the case of unknown parameters (Casarin and Marin, 2009). Recently, Andrieu
et al. (2010) developed a powerful algorithm combining MCMC and SMC, namely the
Particle Markov Chain Monte Carlo (PMCMC), taking the advantage of the strength of
its two components. Besides, its convergence toward the exact distribution of interest is
established.
To our knowledge, PMCMC methods have been used for parameter estimation only in a
Bayesian context and for models without random individual parameters. We propose to
focus on maximum likelihood estimation for SDE mixed models by combining a PMCMC
algorithm with the SAEM algorithm. When the transition density of the SDE is explicit,
we prove the convergence of the SAEM-PMCMC algorithm towards the maximum like-
lihood estimator. Two simulated examples are considered, an Ornstein-Uhlenbeck mixed
SDE model observed with additive noise and a stochastic volatility mixed model with a
time-inhomogeneous SDE, showing the increase in accuracy for the SAEM-PMCMC esti-
mates compared with the SAEM-MCMC algorithm (Donnet and Samson, 2008). When
the transition density is unknown, we prove the convergence of a different version of the
algorithm towards the maximum likelihood estimator.
The paper is organized as follows. In Section 2, we present the SDE mixed model. In
Section 3, an estimation method is proposed when the transition density of the SDE is
explicit. Section 4 shows numerical results based on simulated data in this case. In Section
5, we extend the approach to general SDEs and prove the convergence of the proposed
algorithm. In Section 6 we conclude and discuss the advantages and limitations of our
approach.

2. Mixed model defined by stochastic differential equation

2.1. Model and notations
Let y = (yij)1≤i≤n,0≤j≤Ji denote the data, where yij is the noisy measurement of the
observed process for individual i at time tij ≥ ti0, for i = 1, . . . , n, j = 0, . . . , Ji. Let
yi,0:Ji = (yi0, . . . , yiJi) denote the data vector of subject i. We consider that the yij ’s are
governed by a mixed-effects model based on a stochastic differential equation defined as
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follows:

yij = g(Xij , εij), εij ∼i.i.d. N (0,σ2), (1)
dXit = a(Xit, t,φi)dt + b(Xit, t,φi, γ)dBit, Xiti0 |φi ∼ π0(·|φi) (2)
φi ∼i.i.d. p(φ;β). (3)

In equation (1), (εij)i,j are i.i.d Gaussian random variables of variance σ2 representing the
measurement errors and g is the known error model function. The function g(x, ε) = x + ε
leads to an additive error model. Multiplicative error models or stochastic volatility models
can be considered with g(x, ε) = x(1 + ε) or g(x, ε) = f(x) exp(ε) with a known function f .
For each individual i, (Xij)0≤j≤Ji are the values at discrete times (tij)0≤j≤Ji of the con-
tinuous process (Xit)t≥ti0 = (Xit(φi))t≥ti0 defined by equation (2). This process is proper
to each individual through the individual parameters φi ∈ Rp involved in the drift and
volatility functions a and b and an individual Brownian motion (Bit)t≥ti0 . Functions a and
b – which may be functions of time, leading to time-inhomogeneous SDEs – are common to
the n subjects. They are assumed to be sufficiently regular (with linear growth) to ensure
a unique strong solution (Oksendal, 2007). Besides, b depends on an unknown additional
volatility parameter γ. The (Bit) and φk are assumed to be mutually independent for all
1 ≤ i, k ≤ n. The initial condition Xi0 of process (Xit)t≥ti0 , conditionally to the individual
parameter φi is random with distribution π0(·|φi). In the following, Xi,0:Ji = (Xi0, . . . , XiJi)
denotes the vector of the i-th process realization at observation times (tij) for i = 1, . . . , n
and X = (X1, . . . , Xn) denotes the whole vector of processes at observation times, for all
individuals. The individual parameters φi are assumed to be distributed with a density
p(φ;β) depending on parameter β. We denote Φ = (φ1, . . . ,φn) the vector of all individual
parameter vectors.
For simplicity purpose, we restrict to a same number of observations per subject: Ji = J
for all i. The extension to the general case is straightforward.

2.2. Likelihood function
Let θ = (β, γ,σ) be the parameter vector of interest which belongs to some open subset Θ
of the Euclidean space Rq with q the number of unknown parameters. Our objective is to
propose a maximum likelihood estimation of θ. The likelihood function is well-defined under
the assumption of existence of a strong solution to (2). We denote x %→ p(x, t−s, s|xs,φi; θ)
the density of Xit given φi and Xis = xs, s < t with respect to the Lebesgue measure. This
allows us to write the likelihood of model (1-3) as

p(y; θ) =
n∏

i=1

∫
p(yi,0:J |Xi,0:J ;σ)p(Xi,0:J |φi; γ)p(φi;β)dφidXi,0:J , (4)

where p(y|x;σ), p(x|φ; γ) and p(φ;β) are density functions of the observations given the
diffusion process, the diffusion process given the individual parameters and the individ-
ual parameters, respectively. By independence of the measurement errors (εij), we have
p(yi,0:J |Xi,0:J ;σ) =

∏J
j=0 p(yij |Xij ;σ) where p(yij |Xij ;σ) is the density function associated

to the error model (1). The Markovian property of the diffusion process (Xit) implies

p(Xi,0:J |φi; θ) = π0(Xi0|φi)
J∏

j=1

p(Xij , ∆ij , tij−1|Xi j−1,φi; γ),
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where ∆ij = tij − tij−1. Except for a mixed Wiener process with drift and additive noise,
the integral (4) has no-closed form.

Maximizing (4) with respect to θ yields the corresponding Maximum Likelihood Estimate
(MLE) θ̂ of the SDE mixed model (1-3). As the likelihood (4) is not explicit, it has to be
numerically evaluated or maximized. This requires eitheir to know the transition densities
explicitely (see Section 3) or to approximate it by an Euler scheme (see Section 5).

3. SDE with explicit transition density: estimation method

In this section, we assume that:

(M0) the SDE defined by (2) has an explicit transition density p(x, t − s, s|xs,φi; θ).

Even with this assumption, the estimation is complex because the n random parameters φi

and random trajectories (Xi,0:J) are unobserved. This statistical problem can be viewed as
an incomplete data model. The observable vector y is thus considered as part of a so-called
complete vector (y,X,Φ).

3.1. Estimation algorithm (SAEM algorithm)
The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is useful in situa-
tions where the direct maximization of the marginal likelihood θ → p(y; θ) is more complex
than the maximization of the conditional expectation of the complete likelihood

Q(θ|θ′) = E [log p(y,X,Φ; θ)|y; θ′] ,

where p(y,X,Φ; θ) is the likelihood of the complete data (y,X,Φ). The EM algorithm is an
iterative procedure: at the m-th iteration, given the current value θ̂m−1 of the parameters,
the E-step is the evaluation of Qm(θ) = Q(θ | θ̂m−1) while the M-step updates θ̂m−1 by max-
imizing Qm(θ). For cases where the E-step has no closed form, Delyon et al. (1999) propose
the Stochastic Approximation EM algorithm (SAEM) and replace the E-step by a stochas-
tic approximation of Qm(θ). The E-step is thus divided into a simulation step (S-step) of
the non-observed data (X(m),Φ(m)) with the conditional distribution p(X,Φ |y; θ̂m−1) and
a stochastic approximation step (SA-step):

Qm(θ) = Qm−1(θ) + αm

[
log p

(
y,X(m),Φ(m); θ

)
− Qm−1(θ)

]
,

where (αm)m∈N is a sequence of positive numbers decreasing to zero.
To fulfill the convergence conditions of the SAEM algorithm (Delyon et al., 1999), we
consider the exponential case. More precisely, we assume:

(M1) The parameter space Θ is an open subset included in a compact set of Rq. The
complete likelihood p(y,X,Φ) belongs to the exponential family i.e.

log p(y,X,Φ; θ) = −ψ(θ) + 〈S(y,X,Φ), ν(θ)〉 ,

where ψ and ν are two functions of θ, S(y,X,Φ) is known as the minimal sufficient
statistics of the complete model, taking its value in a subset S of Rd and 〈·, ·〉 is the
scalar product on Rd.
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In this case, the SA-step of the SAEM algorithm reduces to the approximation of E[S(y,X,

Φ)|y; θ′]. At step S, a simulation under the conditional distribution p(X,Φ|y; θ̂m−1) is
required. However, this distribution is likely to be a complex distribution, resulting in the
impossibility of a direct simulation of the non-observed data (X,Φ). Kuhn and Lavielle
(2005) suggest to realize the simulation step via a Markov Chain Monte Carlo (MCMC)
scheme, resulting in the SAEM-MCMC algorithm. The S-step consists in constructing a
Markov chain with p(X,Φ|y; θ̂m−1) as ergodic distribution at the m-th iteration. This
S-step by a Markov kernel is detailed in the following subsection.

3.2. Simulation of the latent variables (X,Φ) given y
We know deal with the construction of a Markov Chain with ergodic distribution p(X,Φ|y;
θ̂m−1). First note that conditionally to the observations y, the individuals are independent.
As a consequence, the simulation of each (Xi,0:J ,φi) conditionally to y0:J can be performed
separately. To ease the reading, in this subsection, we focus on the simulation of the non
observed variables (Xi,0:J ,φi) of a single individual. Therefore, we omit the index i in the
following. Moreover, we denote θ = (β, γ,σ) the current values of the parameters and omit
the index m of the SAEM algorithm iteration.
Standard version of the MCMC alternately simulates X0:J under the distribution p(X0:J |y0:J ,
φ; γ,σ) and φ under the distribution p(φ|y0:J , X0:J ; γ,σ). If the conditional distributions
p(X0:J |y0:J ,φ; γ,σ) and p(φ|y0:J , X0:J ; γ,σ) cannot be simulated easily, we resort to Metropo-
lis Hastings algorithms for each component of φ and each time component of X0:J (Donnet
and Samson, 2008). However, standard MCMC algorithms have reached their limits in
high dimensional context: they do not exploit the Markovian structure of the data and
have proved slow mixing properties. We propose to replace them by the Particle Markov
Chain Monte Carlo (PMCMC) algorithm proposed by Andrieu et al. (2010). The idea of
the PMCMC algorithm has been first proposed by Beaumont (2003), formalized by Andrieu
and Roberts (2009) and developped in the context of state-space models by Andrieu et al.
(2010).
Let us consider an ideal Metropolis-Hastings algorithm updating conjointly φ and X0:J

conditionally to y0:J . A new candidate (Xc
0:J ,φc) would be generated with a proposal

distribution:
q(Xc

0:J ,φc|X0:J ,φ; θ) = q(φc|φ)p(Xc
0:J |y0:J ,φc; γ,σ).

and accepted with probability:

ρ(Xc
0:J ,φc|X0:J ,φ) = min

{
1,

q(φ|φc)
q(φc|φ)

p(y0:J |φc; γ,σ)p(φc;β)
p(y0:J |φ; γ,σ)p(φ;β)

}
,

However, because of the complexity of the model, we are not able to simulate exactly under
the conditional distribution p(X0:J |y0:J ,φ; γ,σ) and the marginal likelihood p(y0:J |φ; γ,σ)
has no closed form. These two points can be tackled by an approximation through a particle
filter, also called Sequential Monte Carlo (SMC) algorithm. The SMC algorithm produces
a set of K particles (X(k)

0:J )k=1...K and respective weights (W (k)
0:J )k=1...K approximating the

conditional distribution p(X0:J |y0:J ,φ; γ,σ) by an empirical measure

ΨK
J =

K∑

k=1

W (k)
0:J δX(k)

0:J

where δ0 is any probability measure on RJ+1.
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Algorithm 1 (SMC algorithm).

• Time j = 0: sample X(k)
0 ∼ π0(·|φ) ∀ k = 1, . . . , K and compute the weights:

w0

(
X(k)

0

)
= p

(
y0, X

(k)
0 |φ; γ,σ

)
, W0

(
X(k)

0

)
=

w0

(
X(k)

0

)

∑K
k=1 w0

(
X(k)

0

)

• Time j = 1, . . . , J : sample K iid variables X
′(k)
0:j−1 according to the distribution

ΨK
j−1 =

∑K
k=1 W (k)

0:j−1δX(k)
0:j−1

. Then for each k = 1, . . . , K, sample X(k)
j ∼ q

(
·|yj, X

′(k)
0:j−1,φ; γ,σ

)

and set X(k)
0:j = (X

′(k)
0:j−1, X

(k)
j ). Finally compute and normalize the weights:

wj

“
X(k)

0:j

”
=

p
“
yj , X

(k)
j |y0:j−1, X

′(k)
0:j−1φ; γ, σ

”

q
“
X(k)

j |yj , X
′(k)
0:j−1, φ; γ, σ

” , Wj(X
(k)
0:j ) =

wj

“
X(k)

0:j

”

PK
k=1 wj

“
X(k)

0:j

”

The simulation of one trajectory X0:J (called a "run of SMC algorithm" ) under the approx-
imation of p(X0:J |y0:J ,φ; γ,σ) is directly achieved by randomly choosing one particle among
the K particles with weights (W (k)

0:J )k=1...K . Besides, the marginal distribution p(y0:J |φ; γ,σ)
can be estimated through the weights

p̂K(y0:J |φ; γ,σ) =
1
K

K∑

k=1

w0

(
X(k)

0

) J∏

j=1

(
1
K

K∑

k=1

wj

(
X(k)

0:j

))
. (5)

As a consequence, Andrieu et al. (2010) propose the PMCMC algorithm:

Algorithm 2 (PMCMC algorithm).

• Initialization : starting from φ(0), generate X0:J(0) by a run of SMC algorithm –
with K particles– targeting p(X0:J |y0:J ,φ(0); γ,σ) and estimate p(y0:J |φ(0); γ,σ) by
p̂K(y0:J |φ(0); γ,σ)

• At iteration - = 1, . . . , N

(a) Sample a candidate φc ∼ q(·|φ(-− 1))
(b) By a run of SMC algorithm with K particles, generate Xc

0:J targeting p(·|y0:J ,φc; γ,σ)
and compute p̂K(y0:J |φc; γ,σ) estimating p(y0:J |φc; γ,σ)

(c) Set (X0:J(-),φ(-)) = (Xc
0:J ,φc) and p̂K(y0:J |φ(-); γ,σ) = p̂K(y0:J |φc; γ,σ) with

probability

bρK(Xc
0:J , φc|X0:J (%−1),φ(%−1)) = min


1,

q(φ(% − 1)|φc)
q(φc|φ(% − 1))

bpK(y0:J |φc; γ, σ)p(φc; β)
bpK(y0:J |φ(% − 1); γ, σ)p(φ(% − 1); β)

ff

If the candidate is not accepted, then set (X0:J(-),φ(-)) = (X0:J(-− 1),φ(-− 1))
and p̂K(y0:J |φ(-); γ,σ) = p̂K(y0:J |φ(-− 1); γ,σ)
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Remark 1. The proposal distributions q(φc|φ(-)) and q(Xj |yj, Xj−1,φc; γ,σ) used in the
SMC algorithm play a crucial role to ensure good mixing properties of the PMCMC algo-
rithm. They are discussed with more details for the two simulated examples (Section 4).

The most remarkable property of PMCMC is that the distribution of interest p(X0:J ,φ|y0:J ;
γ,σ) is left invariant by the transition kernel, whatever the number of particles K, the er-
godicity being reached under weak assumptions. More precisely, let Λ denote the auxiliary
variables generated by the SMC algorithm, including the set of generated trajectories, the
resampling indices and the indice of the particle randomly picked to obtain "a run of SMC
algorithm". Andrieu and Roberts (2009) prove that PMCMC is an exact MCMC algorithm
on (X0:J ,φ). Under general assumptions, the stationary distribution π̃K(Λ,φ) of the PM-
CMC algorithm is such that its marginalized distribution over the auxiliary variables Λ is
exactly the distribution p(X0:J ,φ|y0:J ; γ,σ), independently on K: the PMCMC algorithm
generates a sequence (X0:J(-),φ(-)) whose marginal distribution LK(X0:J(-),φ(-)|y0:J ; θ)
is such that for all θ ∈ Θ and for all K > 0,

||LK(X0:J (-),φ(-)|y0:J ; θ) − p(X0:J ,φ|y0:J ; θ)||TV −−−→
!→∞

0.

where || · ||TV is the total variation distance (Andrieu et al., 2010).

3.3. SAEM-PMCMC algorithm and convergence
We now combine algorithms PMCMC and SAEM:

Algorithm 3 (SAEM-PMCMC algorithm).

• Iteration 0: initialization of θ̂0 and s0 = E
[
S(y,X,Φ)|y; θ̂0

]
.

• Iteration m = 1, . . . , M :

S-Step: ∗ For each individual i,
· Initialize the PMCMC algorithm by setting φi(0) as the expectation of

p(φ, β̂m−1)
· Run N iterations of the PMCMC algorithm with K particles at each

iteration, targeting p(Xi,0:J ,φi|yi,0:J ; θ̂m−1)

∗ Set X(m) = (X(m)
1,0:J , . . . , X(m)

n,0:J) and Φ(m) = (φ(m)
1 , . . . , φ(m)

n ) the simulated
non observed variables

SA-Step: update of sm−1 using the stochastic approximation scheme:

sm = sm−1 + αm

[
S(y,X(m),Φ(m)) − sm−1

]
(6)

M-Step: update of θ̂m−1 by θ̂m = argmax
θ

(−ψ(θ) + 〈sm, ν(θ)〉) .

As the PMCMC algorithm can be viewed as a standard MCMC algorithm, the convergence
of SAEM-PMCMC can be proved using Kuhn and Lavielle (2005) result. We recall the
assumptions of Kuhn and Lavielle (2005).
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(M2) The functions ψ(θ) and ν(θ) are twice continuously differentiable on Θ.

(M3) The function s̄ : Θ −→ S defined as s̄(θ) =
∫

S(y,X,Φ)p(X,Φ|y; θ)dXdΦ is contin-
uously differentiable on Θ.

(M4) The function -(θ) = log p(y, θ) is continuously differentiable on Θ and

∂θ

∫
p(y,X,Φ; θ)dXdΦ =

∫
∂θp(y,X,Φ; θ)dXdΦ.

(M5) Define L : S × Θ −→ R as L(s, θ) = −ψ(θ) + 〈s, ν(θ)〉. There exists a function
θ̂ : S −→ Θ such that

∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ).

(SAEM1) The positive decreasing sequence of the stochastic approximation (αm)m≥0 is such
that

∑
m αm = ∞ and

∑
m α2

m < ∞.

(SAEM2) - : Θ → R and θ̂ : S → Θ are d times differentiable, where d is the dimension of
S(y,X,Φ).

(SAEM3) For all θ ∈ Θ,
∫
||S(y,X,Φ)||2 p(X,Φ|y; θ)dXdΦ < ∞ and the function Γ(θ) =

Covθ(S(X,Φ)) is continuous.

(SAEM4) S is a bounded function.

(SAEM5) The transition probability Πθ of the PMCMC algorithm is Lipschitz in θ and generates
a uniformly ergodic chain. The Markov chain (X(m),Φ(m))m≥0 takes its values in a
compact subset.

We comment the different assumptions.
Assumption (M0) is a strong hypothesis, which is partially relaxed in Section 5.
Assumptions (M1-M5), (SAEM1-SAEM3) are standard and not restrictive.
Assumption (SAEM4) and the compacity assumption of (SAEM5) are the most restrictive
and not really realistic. They could be relaxed using a principle of random boundaries
presented in Allassonnière et al. (2009).
Assumption (SAEM5) is verified by the PMCMC algorithm depending on the proposal
distributions. Indeed, the Lispchitz property holds if the complete likelihood is continuously
derivable which is the case under (M2-M3) and if θ remains in a compact set, which is
realistic in practice. About the uniform ergodicity, Andrieu et al. (2010) prove that if the
noise density p(y|X ;σ) is bounded above

sup
y,X

p(y|X ;σ) < Mσ, (7)

PMCMC inherits the convergence properties of the corresponding ideal MCMC algorithm.
For instance, if q(φc|φ) = p(φc;β) then the kernel of the ideal MCMC q(Xc

0:J ,φc) =
p(φc;β)p(Xc

0:J |y0:J ,φc; γ,σ) is independent. For this kernel, the ratio p(X0:J ,φ|y0:J)
q(X0:J ,φ) is bounded

if (7) holds, ensuring the uniform ergodicity (Tierney, 1994).
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Theorem 1. Assume that (M0-5), (SAEM1-5) hold. Under the assumption that {sm}m≥0

takes its values in a compact subset, the sequence θ̂m supplied by the SAEM-PMCMC algo-
rithm converges a.s. towards a (local) maximum of the log-likelihood -(θ) = log p(y; θ).

Remark that despite the SMC approximation in the PMCMC algorithm, the fact that the
marginal stationary distribution of MCMC is the exact conditional distribution p(X, Φ|y; θ)
is sufficient to prove the convergence of SAEM-PMCMC.

4. SDE with explicit transition density: simulation study

The respective performances of the SAEM implemented with a standard MCMC and of the
SAEM combined with the PMCMC are compared to two models of various complexity: the
Ornstein-Uhlenbeck process and the time-inhomogeneous Gompertz process.
In order to validate our results, we perform a large scale simulation study with various
sets of parameters and designs (n, J). Moreover, we study the influence of the number of
particles and of the proposals involved the SMC algorithm.
We compare the results using a biais and RMSE criteria. More precisely, for each condition
(parameters, design, number of iterations) 100 datasets are generated. The corresponding
estimate is obtained on each data set using both the SAEM-PMCMC algorithm and the
SAEM-MCMC algorithm. Let θ̂r denote the estimate of θ obtained on the r-th simulated
dataset, for r = 1, . . . , 100 by the corresponding algorithm. The relative bias 1

100

∑
r(θ̂r −

θ)/θ and relative root mean square error (RMSE)
√

1
100

∑
r(θ̂r − θ)2/θ2 for each component

of θ are computed for both algorithms.
The SAEM algorithm requires initial value θ0 and the choice of the sequence (αm)m≥0.
The initial values are chosen arbitrarily as the convergence of the SAEM algorithm little
depends on the initialization. The step of the stochastic approximation scheme is chosen as
recommended by Kuhn and Lavielle (2005): αm = 1 during the first iterations 1 ≤ m ≤ M1,
and αm = 1

(m−M1)0.8 during the subsequent ones. Indeed, the initial guess θ0 might be
far from the maximum likelihood value and the first iterations with αm = 1 allow the
sequence of estimates to converge to a neighborhood of the maximum likelihood estimate.
Subsequently, smaller step sizes during M − M1 additional iterations ensure the almost
sure convergence of the algorithm to the maximum likelihood estimate. We implement the
SAEM algorithm with M1 = 60 and M = 100 iterations.

4.1. Example 1: Ornstein-Uhlenbeck process
4.1.1. Ornstein-Uhlenbeck mixed model
The Ornstein-Uhlenbeck process has been widely used in neuronal modeling, biology, and
finance (see e.g. Kloeden and Platen, 1992). Consider an SDE mixed model driven by the
Ornstein-Uhlenbeck process and an additive error model

yij = Xij + εij , εij ∼ N (0,σ2),

dXit = −
(

Xit

τi
− κi

)
dt + γdBit, X0 = 0

where κi ∈ R, τi > 0. We set φi = (log(τi),κi) the vector of individual random parameters.
We assume that log(τi) ∼i.i.d. N (log(τ),ω2

τ ), κi ∼i.i.d. N (κ,ω2
κ). The parameter vector is
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θ = (log τ,κ,ωτ ,ωκ, γ,σ). This model can be easily discretized, resulting in a state-space
model with random individual parameters:

yij = Xij + εij , εij ∼ N (0,σ2),
Xij = X i

ij−1e
−∆ijτi − κiτi(1 − e−∆ijτi) + ηij ,

ηij ∼ N
(
0, γ2τi(1 − e−∆ijτi)

)
.

The vector Xi = (xi1, . . . , xiJ ) conditional on φi is Gaussian with mean vector miX and
covariance matrix GiX equal to

miX =
(
τiκi

(
1 − e−

ti1
τi

)
, . . . , τiκi

(
1 − e−

tiJ
τi

))′
,

GiX =
(

τiγ
2

2

(
1 − e−

2min(tij ,tik)
τi

)
e−

|tij−tik|
τi

)

1≤j,k≤J

,
(8)

where ′ is the transposed vector. Altough this SDE is linear, the Gaussian transition density
p(Xij , ∆ij , tij−1|Xij−1,φi; θ) is a nonlinear function of φi. Thus, the likelihood has no closed
form and the exact estimator of θ is unavailable.
This example is a toy example. First, we compare the performances of the SAEM algo-
rithm implemented with a simple MCMC to those of the SAEM-PMCMC algorithm. Next,
we compare the influence of the number of particles K and the choice of the proposal
distribution q(Xtij | Xij−1, yij ,φi; θ) in the SAEM-PMCMC.

4.1.2. Simulation step of the SAEM algorithm
Whereas the conditional distribution p(Xi,1:J |, yi,0:J ,φi; θ) is Gaussian, the joint distribution
p(Xi,1:J ,φi|, yi,0:J ,φi; θ) is not explicitly and we have to resort to a approximate simulation
at the S-step.
A first solution is to implement a standard MCMC algorithm, alternatively simulating
under the distributions p(Xi,1:J |, yi,0:J ,φi; θ) and p(φi|, yi,0:J , Xi,1:J ; θ) for each subject.
The posterior distribution p(Xi,1:J |, yi,0:J , φi; θ) is Gaussian with easily computable mean
vector and variance matrix derived from (8). Similarly, the posterior distribution of κi is
Gaussian with explicit mean and variance. On the other hand, the posterior distribution of
τi is not explicit and we use a Metropolis-Hastings step with a random walk proposal.
If we consider implementing a PMCMC kernel at the S-step, we have to choose two pro-
posals q(Xtij | Xij−1, yij ,φi; θ) and q(·|φi). In this particular linear example, the proposal
q(Xij | Xij−1, yij ,φi; θ) can be the optimal proposal, the exact posterior density p(Xij |Xij−1,
yij ,φi; θ), which minimizes the variance of the particle weights. Indeed, this distribution
is explicit for the Ornstein-Uhlenbeck, Gaussian with conditional mean and variance easily
computable.
As an alternative, we also consider the transition density p(Xij |Xij−1,φi; θ) as proposal.
The proposal q(·|φ) for the individual parameters φ within the PMCMC algorithm is a
classical random walk on each component of vector φ.

4.1.3. Maximization step of the SAEM algorithm
The SAEM algorithm is based on the computation of the sufficient statistics for the maxi-
mization step. The statistics for the parameters µ = (log τ,κ), Ω = diag(ω2

τ ,ω2
κ) and σ are
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the three classic ones for mixed models (see e.g. Samson et al., 2007):

S1(y, X,Φ) =
n∑

i=1

φi, S2(y, X,Φ) =
n∑

i=1

φiφ
′
i,

S3(y, X,Φ) =
n∑

i=1

(yi − Xi)′(yi − Xi).

Let s1m, s2m, s3m denote the corresponding stochastic approximated conditional expecta-
tions at iteration m of SAEM. The M step for these parameters reduces to

µ̂(m) =
1
n

s1m Ω̂(m) =
1
n

s2m − 1
n2

s1ms′1m σ̂(m) =
√

1
n

s3m

The sufficient statistic corresponding to the parameter γ depends on the SDE. For the
Ornstein-Uhlenbeck, we have

S4(y, X,Φ) =
n∑

i=1

J∑

j=1

(
X i

itij
− X i

itij−1
e−∆ijτi − κiτi(1 − e−∆ijτi)

)2
.

The M step is thus γ̂(m) =
√

1
nJ s4m.

Convergence assumptions (M0-5), (SAEM1-2) are easily checked on this example. (SAEM3)
is implied by (SAEM4). (SAEM4) is not theoretically verified even if in practice, this is not
a problem. Finally, given our choice of proposals for PMCMC, (SAEM5) also holds, the
compacity being verified in practice.

4.1.4. Simulation design and results
Two different designs are used for the simulations with equally spaced observation times:
n = 20, J = 40, ∆ =0 .5 and n = 40, J = 20, ∆ = 1, t0 = 0. Two sets of parameter values
are used. The first set is log(τ) = 0.6, κ = 1, ωτ = 0.1, ωκ = 0.1, γ = 0.05, σ = 0.05.
The second set uses greater variances and is log(τ) = log(10), κ = 1, ωτ = 0.1, ωκ = 0.1,
γ = 1, σ = 1. For each design and each set of parameter values, one hundred datasets are
simulated.
The SAEM-PMCMC and SAEM-MCMC algorithms are initialized. For the first set of
parameters, we set l̂og(τ)0 = 1.1, κ̂0 = 1.5, ω̂τ 0 = 0.5, ω̂κ0 = 0.5, γ̂0 = 0.25 and σ̂0 = 0.25,
i.e. the initial standard deviations are 5 times greater than the true standard deviations.
For the second set of parameters, we set l̂og(τ)0 = log(10) + 0.5, κ̂0 = 1.5, ω̂τ 0 = 0.5,
ω̂κ0 = 0.5, γ̂0 = 5 and σ̂0 = 5. The SAEM-MCMC algorithm is implemented with N = 100
MCMC iterations. Several values of N and K are used in the SAEM-PMCMC algorithm.
Figure 1 presents the convergence of the SAEM-PMCMC algorithm for one dataset sim-
ulated with the second set of parameters, n = 40 and J = 20. This illustrates the low
dependence of the initialization of SAEM and the quick convergence in a small neighbor-
hood of the maximum likelihood.
Table 1 presents the bias and RMSE (%) of the SAEM-PMCMC and SAEM-MCMC al-
gorithms obtained for the two designs and two sets of parameters. The results are almost
identical for both algorithms and very satisfactory (bias less than 3% and RMSE less than
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Figure 1. Convergence of the SAEM-PMCMC estimates l̂og(τ )m, bκm, cωτ m, cωκm, bγm and bσm along
the SAEM iterations for one dataset simulated with the Ornstein-Uhlenbeck mixed model, with the
second set of parameters, n = 40 and J = 20. Horizontal lines represent the true values.

10%). Figure 2 shows the density of the estimators obtained by both algorithms with
n = 40, J = 20 and the second set of parameters. The SAEM-PMCMC algorithm has
slightly greater bias than SAEM-MCMC for the standard deviations of the random effects
(ωτ and ωκ). On the contrary, the bias for γ and σ are always lower with SAEM-PMCMC
than with SAEM-MCMC.
In this particular linear model, the standard MCMC on (X,Φ) is "ideal" as the distribution
p(Xi,0:J |yi,0:J ,φi) can be sampled exactly. As a consequence, the SAEM-PMCMC can not
be hopped to perform better. However, results show that the use of a particle approximation
of p(Xi,0:J |yi,0:J ,φi) does not deteriorate the quality of estimation.
Besides, note that the design (n, J) of the study affects very little the estimation quality
when γ and σ are small (first set of parameters). When γ and σ are larger (second set of
parameters), the RMSE are greater with fewer measures per subject (n = 40, J = 20) than
with more (n = 20, J = 40).
In a second part, we study the influence of the particles number K in the SMC algo-
rithm. Table 2 presents the bias and RMSE obtained on the 100 datasets simulated with
the first set of parameters, n = 40, J = 20 and different implementations of the SAEM-
PMCMC algorithm. We successively use K = 25, K = 50 and K = 100 particles and
either N = 50, N = 100 or N = 200 PMCMC iterations, using the exact posterior dis-
tribution q(Xij |Xij−1, yij ,φi; θ) = p(Xij |Xij−1, yij ,φi; θ). The results are almost identi-
cal. On the contrary, the choice of the proposal q(Xij |yij , Xij−1,φ; γ,σ) in the SMC algo-
rithm may affect the result. Table 2 presents results obtained with the transition density
p(Xij |Xij−1,φ; γ,σ) as proposal q. The algorithm fails to converge due to the degeneracy of
the particles. We present the results obtained by increasing significantly the number of par-
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Table 1. Ornstein-Uhlenbeck mixed model: biais and RMSE (%) for bθ ob-
tained by the SAEM-PMCMC and SAEM-MCMC algorithms on 100 simulated
datasets with two designs (n = 20, J = 40 and n = 40, J = 20) and two sets
of parameters. PMCMC is implemented with K = 50 particles and the exact
posterior proposal q(Xtij |Xtij−1 , yij , φi; θ) = p(Xtij |Xtij−1 , yij , φi; θ).

Parameters log(τ ) κ ωτ ωκ γ σ
True value 0.62 1.00 0.10 0.10 0.05 0.05

n = 20, J = 40
SAEM-PMCMC Bias 0.38 0.05 -2.55 -3.29 -0.84 0.07

RMSE 0.48 0.30 1.22 1.34 0.93 0.44
SAEM-MCMC Bias -0.02 0.29 -0.60 -2.38 3.34 -1.43

RMSE 0.49 0.30 1.23 1.29 0.96 0.45
n = 40, J = 20
SAEM-PMCMC Bias 0.11 0.01 -2.75 -1.59 -0.73 0.50

RMSE 0.33 0.20 0.82 0.99 0.94 0.52
SAEM-MCMC Bias -0.24 0.22 -1.46 -1.12 2.96 -1.37

RMSE 0.34 0.21 0.81 1.02 0.96 0.55
True value 2.30 1.00 0.10 0.10 1.00 1.00

n = 20, J = 40
SAEM-PMCMC Bias 0.55 -0.63 -1.49 -1.92 0.15 -1.33

RMSE 0.42 0.97 0.51 0.55 0.64 0.81
SAEM-MCMC Bias -0.41 1.24 -0.62 -1.25 0.44 -1.61

RMSE 0.35 0.84 0.52 0.54 0.56 0.72
n = 40, J = 20
SAEM-PMCMC Bias 0.28 -0.18 -0.73 -1.04 -0.47 -0.03

RMSE 3.19 7.03 3.91 4.38 5.45 9.81
SAEM-MCMC Bias 0.26 -0.19 -0.99 -1.17 -1.59 2.64

RMSE 2.32 5.39 3.89 4.05 4.96 9.42

ticles (K = 1000), but we observe the degeneracy of the algorithm on 90% of the simulated
datasets. Morevoer, the bias and RMSE are greater than with the posterior conditional
distribution p(Xij |yij , Xij−1,φ; γ,σ).

In conclusion, although the proposal q seems to be crucial in these simulations, the number
of particles K has less influence on the convergence of the estimation algorithm. This is in
concordance with the theoretical results proved by Andrieu et al. (2010).

However, as emphasized by Andrieu et al. (2010), increasing K can make arbitrarily small
the probability of visiting unfavourable states by the Markov chain, which correspond to
large values of the ratio target density to proposal density. But our simulations show that
when choosing the "optimal" proposal density q, namely the exact posterior distribution,
the ratio of the target density to the proposal density seems to have no larges values and
thus the number of particles K has a very low influence. This low influence of K can also
be explained by the fact that the SAEM only requires few iterations of PMCMC, without
convergence of the Markov chain to the stationary distribution. The convergence is made
over the iterations of SAEM.
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Table 2. Ornstein-Uhlenbeck mixed model, n = 20, J = 40: biais and
RMSE (%) for bθ obtained by the SAEM-PMCMC algorithm on 100 simu-
lated datasets. The PMCMC algorithm is successively implemented with
posterior proposal q(Xtij |Xtij−1 , yij , φi; θ) = p(Xtij |Xtij−1 , yij , φi; θ)
and K = 25, K = 50 or K = 100 particles, N = 50, N = 100 or N =
200 PMCMC iterations and prior proposal q(X tij |Xtij−1 , yij , φi; θ) =
p(Xtij |Xtij−1 , φi; θ), K = 1000 particles and N = 100 iterations.
Parameters log(τ ) κ ωτ ωκ γ σ
True value 0.62 1.00 0.10 0.10 0.05 0.05
SAEM-PMCMC with posterior proposal, K = 25, N = 100

Bias 0.26 0.11 0.32 -4.84 0.64 -0.41
RMSE 0.49 0.30 1.28 1.30 1.04 0.45

SAEM-PMCMC with posterior proposal, K = 50, N = 100
Bias 0.38 0.05 -2.55 -3.29 -0.84 0.07

RMSE 0.48 0.30 1.22 1.34 0.93 0.44
SAEM-PMCMC with posterior proposal, K = 100, N = 100

Bias 0.04 0.24 -0.97 -4.11 6.86 -2.68
RMSE 0.48 0.29 1.24 1.29 1.15 0.51

SAEM-PMCMC with posterior proposal, K = 50, N = 50
Bias 0.28 0.04 4.07 -11.61 10.06 -3.32

RMSE 0.49 0.30 1.40 1.55 1.38 0.55
SAEM-PMCMC with posterior proposal, K = 50, N = 200

Bias -0.06 0.31 -1.27 -2.68 6.10 -2.36
RMSE 0.48 0.30 1.16 1.30 1.15 0.49

SAEM-PMCMC with prior proposal, K = 1000, N = 100
Bias -0.63 0.66 -2.78 -4.73 15.42 -5.44

RMSE 0.53 0.34 1.43 1.77 2.17 0.83
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Figure 2. Ornstein-Uhlenbeck mixed model, n = 40, J = 20 and second set of parameters. Densi-
ties of the estimators bθ obtained with the SAEM-PMCMC (plain line) and SAEM-MCMC algorithms
(dashed line) on 100 simulated datasets, for each component of (log τ, κ, ω τ , ωκ, γ, σ). The true
parameter value is the vertical line.

4.2. Example 2: stochastic volatility Gompertz model
4.2.1. Stochastic volatility Gompertz mixed model
The Gompertz model is a well-known growth model (see e.g. Jaffrézic and Foulley, 2006).
Recently, Donnet et al. (2010) proposed a stochastic version of this model to take into
account random fluctuations in growth process. The stochastic volatility Gompertz mixed
model is the following one:

yij = Xij(1 + εij), εij ∼ N (0,σ2),
dXit = BiCie

−CitXitdt + γXitdBit, Xi0 = Aie
−Bi (9)

where Ai > 0, Bi > 0, Ci > 0. We set φi = (log Ai, log Bi, log Ci) the vector of individual
random parameters. The initial conditional is a function of the random individual parame-
ters φi. We assume that log Ai ∼i.i.d. N (log A,ω2

A), log Bi ∼i.i.d. N (log B,ωB), log Ci ∼i.i.d.

N (log C,ω2
C) and the parameter of interest is θ = (log A, log B, log C,ωA,ωB,ωC , γ,σ). By

the Itô formula, the conditional expectation and variance of log(Xit)|φi, for t ≥ 0, are

E(log Xit|φi) = log Ai − Bie
−Cit − 1

2
γ2t, Var(log Xit|φi) = γ2t.

The transition density of (log(Xt)) is explicit, Gaussian and equals to

log p(log Xij , ∆ij , tij−1| log Xij−1,φi; θ) = − 1
2 log(2πγ2∆ij)

− 1
2
(log Xij−log Xij−1+Bie

−Ctij−1 (e−Ci∆ij−1)− 1
2γ2∆ij)2

γ2∆ij
.
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which is a nonlinear function of φi. As a consequence, the likelihood has no closed form
and the exact estimator of θ is unavailable.

4.2.2. Simulation step of the SAEM algorithm
First, the S step of the SAEM algorithm is tackled with a standard MCMC algorithm. Due
to the multiplicative structure of the observation noise, the distribution p(Xi,0:J |yi,0:J ,φi, θ)
is no more explicit and we have to resort to a random walk proposal to simulate the trajec-
tories Xi,0:J conditionally to the observations yi,0:J . The components of Xi,0:J are updated
time by time using a random walk proposal. A random walk proposal is also used to simulate
the individual parameters φi from the conditional distribution.
Secondly, we implement the SAEM-PMCMC algorithm and the proposal q(Xij |Xij−1, yij ,
φi; θ) has to be chosen. We propose to approximate the ideal proposal p(Xij |Xij−1, yij ,φi; θ)
by a Gaussian distribution with mean and variance deduced from the true ones. More
precisely, we consider the following proposal on log Xtij

q(log Xtij | log Xij−1, yij ,φi; θ) = N (mXij ,post, ΓXij ,post),

with

ΓXij ,post =
(
σ−2 + (γ2∆ij)−1

)−1
,

mXij ,post = ΓXij ,post µXij ,post,

µXij ,post =
(

log yij

σ2
+

1
γ2∆ij

(
log Xij−1 − Bie

−Citij−1 (e−Ci∆ij − 1) − γ2∆ij

2

))
.

and then take the exponential to obtain a candidate for Xtij . The proposal q(·|φ) for the
individual parameters φ within the PMCMC algorithms is a classical random walk on each
component of the vector φ.

4.2.3. Maximization step of the SAEM algorithm
Within the SAEM algorithm, for parameters µ = (log A, log B, log C), Ω = diag(ω2

A,ω2
B,ω2

C)
and σ, the sufficient statistics and the M step are the same as in Example 1. As the pa-
rameter γ appears both in the expectation and the variance of log(Xt)|φ, its estimator is
not the same as in Example 1. The sufficient statistic corresponding to γ is

S4(y, log X, Φ) =
n∑

i=1

J∑

i=1

∆ij

(
log Xitij − log Xitij−1 + Bie

−Citij−1 (e−Ci∆ij − 1)
)2

.

Let s4m denote the stochastic approximation of this sufficient statistic at iteration m of the
SAEM algorithm. For the sake of simplicity, we assume that the step size ∆ij is a constant
∆. The estimator γ̂m at iteration m is deduced by maximizing the complete likelihood:

γ̂m =

√
2
∆

(
−1 +

√
1 +

s4m

nJ

)

When ∆ij is not a constant, the estimator is more complex but also explicit.
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Table 3. Stochastic volatility Gompertz mixed model: bias and RMSE (%) of bθ obtained by the
SAEM-PMCMC and SAEM-MCMC algorithms, on the 100 datasets with two designs (n = 20,
J = 40 and n = 40, J = 20) and two sets of parameters.

Parameters log A log B log C ωA ωB ωC γ σ
True value 8.01 1.61 2.64 0.10 0.10 0.10 0.40 0.22

n = 20, J = 40
SAEM-PMCMC Bias 0.01 -0.07 0.03 -0.69 -2.31 -1.79 2.77 -0.04

RMSE 0.61 1.16 0.91 2.90 9.71 5.98 11.15 3.15
SAEM-MCMC Bias 2.04 1.713 -1.99 -8.00 -5.00 -7.55 61.93 -2.56

RMSE 2.16 2.07 2.19 8.15 10.87 9.14 63.78 4.30
n = 40, J = 20

SAEM-PMCMC Bias 0.05 -0.30 0.12 -1.92 -2.38 -1.41 6.79 -0.81
RMSE 0.797 1.64 1.36 4.53 14.88 9.10 18.54 3.31

SAEM-MCMC Bias 2.37 1.90 -1.98 -6.76 -4.58 -8.17 77.66 -2.00
RMSE 2.52 2.43 2.33 7.20 14.80 10.73 79.74 4.01

True value 8.01 1.61 2.64 0.10 0.10 0.10 0.80 0.26
n = 20, J = 40

SAEM-PMCMC Bias 0.56 0.72 -0.44 -1.11 -6.56 -1.97 1.67 -0.15
RMSE 1.47 1.90 1.67 3.90 13.10 6.33 11.20 3.20

SAEM-MCMC Bias 4.76 4.64 -3.67 -7.58 -11.92 -11.49 62.90 -2.60
RMSE 4.92 4.95 4.01 7.83 16.55 12.08 75.11 4.84

n = 40, J = 20
SAEM-PMCMC Bias 0.36 0.38 -0.47 -0.70 -2.16 -1.31 0.37 0.82

RMSE 1.07 1.41 1.43 2.21 8.84 4.64 9.55 3.57
SAEM-MCMC Biais 4.37 4.11 -3.60 -8.15 -8.05 -10.05 49.70 -4.33

RMSE 4.46 4.31 3.81 8.26 11.38 10.55 52.36 5.64

4.2.4. Simulation results
We propose to simulate two experimental designs with the same observation times for all
individuals: n = 20, J = 40, ∆ = 0.01 and n = 40, J = 20, ∆ = 0.02 (t0 = 0), respectively.
As in Donnet et al. (2010), we use the following population parameters: log A = log(3000),
log B = log(5), log C = log(14), ωA = 0.1, ωB = 0.1, ωC = 0.1. Two levels of variability
γ and σ are taken respectively equal to

(
0.4, 1/

√
20

)
and

(
0.8, 1/

√
15

)
and referred to as

first and second set of parameters thereafter. For each design and each set of parameters,
100 datasets are simulated and θ is estimated with the two algorithms (SAEM-PMCMC
and SAEM-MCMC). The SAEM algorithm is initialized with l̂og A0 = 8.21, l̂og B0 = 1.81,
l̂og C0 = 2.84, ω̂A0 = 0.5, ω̂B0 = 0.5, ω̂C0 = 0.5, γ̂0 = 1.2, σ̂0 = 0.66. The PMCMC is
implemented with N = 100 iterations and K = 50 particles. The MCMC is implemented
with N = 100 iterations.
Bias and RMSE (%) are presented in Table 3. Both algorithms give satisfactory results
overall (bias and RSME ≤ 20% except for γ). Nevertheless, we clearly see that the SAEM-
PMCMC algorithm performs better than the SAEM-MCMC algorithm. Indeed, for the
population means (log A, log B, log C), the population standard deviations (ωA,ωB,ωC) and
σ, the bias and RMSE are smaller for SAEM-PMCMC even if SAEM-MCMC results are
already small. The difference is obvious for γ, which is estimated with a large bias by
SAEM-MCMC (up to a bias of 77%) while this is not the case for SAEM-PMCMC (bias
< 7%). This phenomenon is accentuated when the variabilities γ and σ increase (second
set of parameters). The better performances of SAEM-PMCMC versus SAEM-MCMC can
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Figure 3. Stochastic volatility Gompertz mixed model, n = 20, J = 40 and second set
of parameters. Densities of the estimators bθ obtained with the SAEM-PMCMC (plain line)
and SAEM-MCMC algorithms (dashed line) on 100 simulated datasets, for each component of
(log A, log B, log C, ωA, ωB , ωC , γ, σ). The true parameter value is th vertical line.

also be observed in Figure 3 where we plot the densities of the parameters θ̂ among the 100
simulated datasets for the second set of parameters with n = 20 and J = 40.
The improved quality of estimation has a computational cost since it takes less than 8
minutes for the SAEM-MCMC and nearly 23 minutes for the SAEM-PMCMC algorithm
to supply results. However, estimating precisely the population parameters is a key issue
in population studies (such a genetic specification) and a bias can have real consequences
on the conclusions.

5. Theoretical results for general SDE requiring Euler approximation

The class of SDEs considered under assumption (M0) is limited. For a general SDE, we
propose to approach the process by an Euler-Maruyama scheme, leading to an approximate
model with an explicit (Gaussian) transition density.

5.1. Euler approximation
For the sake of simplicity, we now consider that ∀i = 1 . . . n, ∀j = 0 . . . J , tij = j and that the
observations times are regularly spaced with interval ∆. Let r be an integer ≥ 1. On each
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interval time [tj , tj+1[, we define an approximate diffusion by the recursive Euler-Maruyama
scheme of step size 1/r by : Xi0(r) ∼ π0(·|φi) and

Xij(0) = Xij−1(r),

Xij(u + 1) = Xij(u) +
1
r

a(Xij(u), tj−1 + u/r,φi) (10)

+
√

1
r

b(Xij(u), tj−1 + u/r,φi, γ)Uu

where the variables Uu are iid unit centered Gaussian. Then Xij(r) is a realization of the
approximate diffusion at time tj . We consider the error model

yij = g(Xij(r), εij) (11)

Equations (10), (11) and (3) define the so-called approximate mixed model. Under this
model, the likelihood of the observations y is :

p(r)(y; θ) =
n∏

i=1

∫
p(yi,0:J |Xi,0:J (r);σ)p(r)(Xi,0:J(r)|φi; γ)p(φi;β)dφidXi,0:J(r),

where p(r)(Xi,0:J(r)|φi; θ) is the density of the Euler approximation Xij(r) given φi.

5.2. SAEM-PMCMC on the approximate Euler model
A first approach to estimate θ is to use the algorithm SAEM-PMCMC presented in Section
3 on the approximate model. In that case, Theorem 1 implies the following corollary:

Corollary 1. Assume that (M1-5), (SAEM1-5) hold for the approximate model. Under
the assumption that {sm}m≥0 takes its values in a compact subset, the sequence {θ̂m}m≥0

generated by the algorithm SAEM-PMCMC on the approximate Euler model converges to a
(local) maximum of the likelihood p(r)(y; θ) of the approximate model.

The main limit of this result is that the SAEM-PMCMC converges to the maximum of
the Euler approximate likelihood p(r)(y; θ) instead of the maximum of the exact likelihood
p(y; θ). Donnet and Samson (2008) prove that there exists a constant C such that the total
variation distance between p(r)(y; θ) and the exact likelihood p(y; θ) can be bounded by

||p(r)(y; θ) − p(y; θ)||TV ≤ C

r

This results says that the two likelihoods are close but this does not imply that the two
maxima are close.
A solution would be to consider r → ∞, so that the Euler approximation converges to the
exact diffusion. This requires r to increase along the iterations of the SAEM algorithm, also
implying the Euler approximate model and the likelihood to change with the iterations. The
concept of stationary distribution of PMCMC is no more valid in this context. We could
imagine a reversible jump approach for the simulation step of the SAEM algorithm. But
even in this case, as the approximate likelihood changes with the iterations, it is not possible
to prove the convergence of the SAEM algorithm.
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From a practical point of view, the choice of r is sensitive because it adds intermediate
latent variables to the model. A large value of r is prefered as the Euler approximate
likelihood is closer to the exact likelihood. However, it is well known that a large volume
of latent variables is difficult to handle within a MCMC or PMCMC approach. This has
been discussed by Roberts and Stramer (2001) in a general diffusion context and by Donnet
and Samson (2008) for SDE mixed models. Furthermore, as emphasized by Roberts and
Stramer (2001), when r → ∞, MCMC algorithms with r additional latent variables are
unable to correctly estimate γ. Indeed, in that case, the density p(r)(xj |xj−1,φ; γ) of the
Euler approximate diffusion converges to the likelihood of the continuous path (Xt)t∈[tj−1,tj]

given by the Girsanov formula. It is well-known that it is not possible to estimate the
volatility from this continuous path likelihood.

5.3. Exact theoretical convergence for a SAEM algorithm coupled with a SMC algorithm
To circumvent the problem of the estimation of γ, we restrict to the estimation of

θ = (β,σ)

with γ assumed to be known. To estimate θ, we propose a theoretical algorithm coupling
SAEM with a naive SMC. This algorithm is known to have bad numerical properties (this
is the reason why we do not implement it) but we prove that it supplies a sequence (θ̂m)m∈N
converging a.s. towards a local maximum of the exact likelihood log p(y; θ). This theoretical
result yields to a consequent improvement of Corollary 1.

Now, we present the SMC that we propose to use in the simulation step of the SAEM
algorithm. In the literature, SMC algorithms have originally a filtering purpose to approx-
imate the distribution p(X0:J |φ, y0:J ; θ). However, they have been rapidly extended to the
case where the parameters φ are also sampled. In the following, we present a naive SMC
extension targeting the distribution p(r)(X0:J ,φ|y0:J ; θ) of the approximate model.

Algorithm 4 (Naive SMC algorithm with parameters sampling).

• Time j = 0: ∀ k = 1, . . . , K, sample φ(k)
0 ∼ p(·;β) and X(k)

0 ∼ π0(·|φ(k)
0 ) and compute

the weights:
W0

(
φ(k)

0 , X(k)
0

)
∝ p(r)

(
y0, X

(k)
0 ,φ(k)

0 ; θ
)

• Time j = 1, . . . , J : sample K iid variables (φ
′(k)
j−1, X

′(k)
0:j−1) according to the law ΨK

j−1 =
∑K

k=1 W (k)
0:j−11φ

(k)
j−1,X

(k)
0:j−1

. Then for each k = 1, . . . , K, sample X(k)
j ∼ q(r)

(
·|yj , X

′(k)
0:j−1,

φ
′(k)
j−1; γ,σ

)
and set φ(k)

j = φ
′(k)
j−1 and X(k)

0:j = (X
′(k)
0:j−1, X

(k)
j ). Finally compute and nor-

malize the weights:

Wj

(
φ(k)

j , X(k)
0:j

)
∝

p(r)

(
yj, X

(k)
j |y0:j−1, X

′(k)
0:j−1φ

′(k)
j−1; γ,σ

)

q(r)

(
X(k)

j |yj , X
′(k)
0:j−1,φ

′(k)
j−1; γ,σ

) ,

We consider a SAEM algorithm in which the simulation step is performed by this naive
SMC sampler. To ensure the convergence of this estimation algorithm towards the exact
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maximum likelihood, we need the number of particles K and the step size 1/r of the Euler
approximation to vary along the iterations of the SAEM algorithm. Thus Km and rm

denote the number of particles and the step size of the Euler scheme at iteration m of
the SAEM algorithm. We denote by (θ̂m)m∈N the sequence of estimates supplied by this
algorithm. Technical assumptions (E1-4) are required to prove the convergence of the naive
SMC sampler and are presented in Appendix.

Theorem 2. Assume that there exists a constant c > 1 such that Km varies along the
iterations:

Km = O (log(m)c)

and that rm = min{r ∈ N | r ≥
√

Km}. Assume that (M1-5), (SAEM1-4), (E1-4) hold
for the exact model. Then, with probability 1, limm→∞ d(θ̂m,L) = 0 where L = {θ ∈
Θ, ∂θ-(θ) = 0} is the set of stationary points of the exact log-likelihood -(θ) = log p(y; θ).

Theorem 2 is proved in Appendix 7.2. This theoretical result is noteworthy. Indeed, even
if the SAEM-SMC algorithm is performed on the approximate Euler model, the algorithm
converges to the maximum of the exact likelihood. This is due to the convergence of the
Euler approximate SMC towards the exact filter distribution. This powerful result has first
been proved by Del Moral et al. (2001). We propose an extension of their results to our
SMC (see Lemma 1 in Appendix 7.1). Then, by generalizing the proof of convergence of the
SAEM algorithm to an approximate simulation step, we are able to deduce the convergence
of the estimates to the maximum of the exact likelihood.
The naive SMC algorithm 4 provides an asymptotically consistent estimate of the target
distribution p(r)(X0:J ,φ|y0:J ; θ) under very weak assumptions but has proved bad properties
in practice (in particular a degeneracy of the parameters due to the resampling step). It
can be improved by including a MCMC step on the parameters φ (Doucet et al., 2001).
Although these algorithms remains poorly efficient in practice (explaining the developement
of the PMCMC algorithm for instance), they allow to prove this theorem.

6. Discussion

The stochastic differential mixed-effects models are quite widespread in the applied statistics
field. However, in the absence of efficient and computationally reasonable estimation meth-
ods, a simplifying assumption is often made: either the observation noise or the volatility
term are standardly neglected.
In this paper we present an EM algorithm combined with a Particular Monte Carlo Markov
Chain method to estimate parameters in stochastic differential mixed-effects models includ-
ing observation noise. We prove the convergence of the algorithm towards the maximum
likelihood estimator when the transition density is explicit. This proof is classical as the
PMCMC acts as an exact marginal MCMC. On the contrary, when we consider SDE with
unexplicit transition density, we prove the convergence of the SAEM-PMCMC algorithm to
the maximum likelihood of an approximate model obtained by a Euler scheme. We are not
able to prove the convergence of this algorithm to the exact maximum likelihood. But we
propose the convergence of a SAEM-SMC algorithm to the exact maximum likelihood.
The suggested method supplies accurate parameter estimation in a really moderate com-
putational time on practical examples. Moreover, it is not restricted to homogeneous time
SDE. On various simulated datasets, we illustrate the superiority of this method over the
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SAEM algorithm combined with a standard MCMC algorithm. This efficiency is due to
the fact that the PMCMC algorithm takes advantage of the Markovian properties of the
non-observed process.
A major advantage of this methodology is its automatic implementation. Indeed the gen-
eration of the non-observed process does involves less tuning parameters than a standard
MCMC, such as the size of the random move in the random walk Metropolis-Hastings algo-
rithm. For example, the number of particles is not crucial, as illustrated in Example 1. In
this paper we present a PMCMC algorithm where all the particles are re-sampled at each
iteration. Many other resampling distributions have been proposed in the literature, trying
to achieve an optimal procedure. West (1993) developed an effective method of adaptive
importance sampling to address this issue. The procedure developed by Pitt and Shephard
(2001) is similar in spirit and has real computational advantages. A stratified resampling
is proposed in Kitawaga (1996). Each resampling distribution implies a specific update of
the weights.
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7. Appendix

7.1. Convergence of the Euler approximate naive SMC
Let us introduce some notations. For any bounded Borel function f taking real values, we
denote πjθf = E (f(X0:j,φ)|y0:j ; θ) the conditional expectation under the exact smoothing
distribution of the exact model p(X0:j,φ|y0:j ; θ) and Ψ(K)

J,θ f =
∑K

k=1 W (k)
0:J f(φ(k), X(k)

0:J ) the
conditional expectation under the naive SMC distribution of the approximate model with
K particles and a Euler step size r = min{r ∈ N | r ≥

√
K}.

Lemma 1. Assume that

E1. The functions a and b are two times differentiable with derivatives w.r.t x and φ all
orders up to 2 uniformly bounded w.r.t φ

E2. Θ is included in a compact set C. Besides, the functions θ %→ π(φ;β) and σ %→ p(y|x;σ)
are continuous on C.

E3. f is a function of (φ, X0:J ) taking its values into R, uniformly bounded
E4. There exist κ1 and κ2 independent of σ such that p(y|x,σ) ≤ κ1 and such that

p(r)

(
yj , X

(k)
j |y0:j−1, X

′(k)
0:j−1φ

′(k)
j−1; γ,σ

)

q
(
X(k)

j |yj , X
′(k)
0:j−1,φ

′(k)
j−1; γ,σ

) ≤ κ2

Then, for any ε > 0, for any j = 1, . . . , J , there exist constants C1 and C2 independent of
θ such that

P
(∣∣∣Ψ(K)

j,θ f − πj,θf
∣∣∣ ≥ δ

)
≤ C1 exp

(
−K

δ2

C2

)

Proof. Following Del Moral et al. (2001) proof, let us define the empirical measure Ψ
′(K)
j,θ f =

∑K
k=1 W (k)

0:j f(φ
′(k), X

′(k)
0:j ) where X

′(k)
0:j has been defined in algorithm 4. Set the σ-filed G

generated by the variables φ(k)
0 , X(k)

0 , . . . ,φ(k)
j , X(k)

0:j . We have

Ψ
′(K)
j,θ f − Ψ(K)

j,θ f =
1
K

K∑

k=1

ηk − E(ηk|G)

with ηk = f(φ
′(k)
j , X

′(k)
0:j ). By deviation inequalities, under assumption (E3), we obtain that

there exist two constants such that

P(|Ψ
′(K)
j,θ f − Ψ(K)

j,θ f | ≥ δ) ≤ A1 exp
(
−K

A2δ2

‖f‖2

)
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Next, we introduce the kernels Hj such that :

Hjf(φ, X0:j−1) =
∫

p(yj |xj)p(xj |X0:j−1,φ)p(φ)f(φ, X0:j−1, xj)dφdxj

Thus we have

πjf =
πj−1Hjf

πj−1Hj1

and the same definitions on the Euler approximate model, with kernels HK
j by

HK
j f(φ, X0:j−1) =

∫
p(yj |xj)p(r)(xj |X0:j−1,φ)p(φ)f(φ, X0:j−1, xj)dφdxj

such that πK
j f = Er(f(φ, X0:j−1)|y0:j ; θ) the conditional expectation under the approximate

model is

πK
j f =

πK
j−1H

K
j f

πK
j−1H

K
j 1

Then, considering the σ-filed G generated by the variables φ
′(k)
0 , X

′(k)
0 , . . . ,φ

′(k)
j−1, X

′(k)
0:j−1 we

can write

W (k)
0:j f − Ψ

′K
j Hjf =

1
K

K∑

k=1

ηk − E(ηk|G)

with ηk = f(φ(k)
j , X(k)

0:j )
p(r)

“
yj ,X(k)

j |y0:j−1,X
′(k)
0:j−1φ

′(k)
j−1;γ,σ

”

q
“

X
(k)
j |yj,X

′(k)
0:j−1,φ

′(k)
j−1;γ,σ

” . We have to bound |ηk| and E(|ηk|2|G).

Assumption (E4) implies that there exist two constants C1, C2 such that

|ηk| ≤ C1||f ||, E(|ηk|2|G) ≤ C2||f ||2

Deviation inequalities imply that there exists a constant C such that

P
(∣∣∣W (k)

0:j f − Ψ
′K
j Hjf

∣∣∣ ≥ δ
)
≤ 2e

−K δ2

C||f||2

With similar arguments than Del Moral et al. (2001) and assumptions (E1-2), we prove by
induction that there exist two constants A1 and A2 such that

P(|πjθf − Ψ(K)
j,θ f | ≥ δ) ≤ A1 exp

(
−K

δ2

A2‖f‖2

)

where A1 = 3j+2, A2 = C(8ρ)j+1 with C = 2 + 2α and ρ = 2κJ+1/εJ+1, where α is
the constant quantifying the error induced by the Euler scheme and εJ+1 = HJ . . .H11.
With regularities assumptions and assumptions (E1-2), we can prove that the constants are
independent of θ.
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7.2. Proof of Theorem 2
Proof. At iteration m, the simulation step provides (X(m),Φ(m)) simulated with an ap-
proximate distribution Ψ(Km)

J,θ̂m
= ⊗n

i=1Ψ(Km)

i,J,θ̂m
where Ψ(Km)

i,J,θ̂m
is the empirical measure ob-

tained by the naive SMC for individual i. The stochastic approximation step of the SAEM-
SMC algorithm can be decomposed into:

sm+1 = sm + αm(S(y,X(m),Φ(m)) − sm)
= sm + αmh(sm) + αmem + αmRm

with
h(sm) = E(S(y,X,Φ)|y, θ̂(sm)) − sm

em = S(y,X(m),Φ(m)) − Ψ(Km)

J,θ̂(sm)
S(y,X,Φ)

Rm = Ψ(Km)

J,θ̂(sm)
S(y,X,Φ) − E(S(y,X,Φ)|y, θ̂(sm))

Following Theorem 2 of Delyon et al. (1999) on the convergence of Robbins-Monro scheme,
the convergence of SAEM-SMC to the set of stationary points of the exact log-likelihood
-(θ) is ensured if we prove the following assertions:

(a) The function V (s) = −-(θ̂(s)) is such that for all s ∈ S, F (s) = 〈∂sV (s), h(s)〉 ≤ 0
and such that the set V ({s, F (s) = 0}) is of zero measure.

(b) limm→∞
∑m

k=1 αkek exists and is finite with probability 1.
(c) limm→∞ Rm = 0 with probability 1.

• To prove assertion 1, we first remark that, as γ is known and θ = (β,σ), we have

∂θ log p(y,X,Φ; θ) = ∂θ log p(r)(y,X,Φ; θ)
∂θ log p(y; θ) = ∂θ log p(r)(y; θ)

Thus under (M1-M5), (SAEM2), the functions h(s) = s̄(θ̂(s))−s and V (s) = −-(θ̂(s))
verify

〈∂sV (s), h(s)〉 = −〈∂s-(θ̂(s)), h(s)〉 ≤ 0

With similar arguments than Lemma 2 of Delyon et al. (1999), we can also prove that
the set V ({s, F (s) = 0}) is of zero measure.

• Assertion 2 is proved following Theorem 5 of Delyon et al. (1999). Note F = {Fm}m≥0

the increasing family of σ-algebra generated by all the random variables used by the
SMC algorithm until the mth iteration. By construction of the simulation step, the
simulated variables (X(1),Φ(1)), . . . , (X(m),Φ(m)) given θ̂0, . . . , θ̂m are independent.
Consequently, we have that for any positive Borel function f ,

E(f(X(m+1),Φ(m+1))|Fm) = Ψ(Km)
J,θ f

We can then prove that
∑m

k=1 αkek is a martingale, bounded in L2 under assumptions
(M5) and (SAEM1-4).

• We now prove the almost sure convergence of Rm (assertion 3). The term Rm is
of dimension d. It converges a.s. i.f.f. each of its component converges a.s. As a
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consequence, for the sake of simplicity, we suppose that d equals 1. Applying Borel-
Cantelli lemma, it is sufficient to prove that

∑
m≥0 P (|Rm| ≥ ε) < ∞ for all ε > 0.

We have
Rm = Ψ(Km)

J,θ̂(sm)
S − πJ,θ̂(sm)S

where πJ,θS = E(S(X,Φ)|y; θ) First, by independence of the individual i = 1 . . . n,
we can decompose S into a sum of n terms S(X,Φ) =

∑n
i=1 Si(Xi,0:J ,φi). and write:

P
(∣∣∣Ψ(Km)

J,θ̂(sm)
S − πJ,θ̂(sm)S

∣∣∣ ≥ δ
)

=

P
(∣∣∣∣∣

n∑

i=1

Ψ(K)

J,θ̂(sm)
Si −

n∑

i=1

E(Si(Xi,0:J ,φi)|yi,0:J ; θ̂(sm))

∣∣∣∣∣ ≥ δ

)

≤
n∑

i=1

P
(∣∣∣Ψ(K)

J,θ̂(sm)
Si − πi,J,θ̂(sm)Si

∣∣∣ ≥
δ

n

)

with πi,J,θ̂(sm)Si = E(Si(Xi,0:J ,φi)|yi,0:J ; θ). Now, we bound each term of the sum by
Lemma 1 and under assumptions (SAEM4), (E1-E2). This implies the almost sure
convergence of (Rm) towards 0.


