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A Review of Adaptive Image Representations
Gabriel Peyré

Abstract—Improving the modeling of natural im-

ages is important to go beyond the state of the art for

many image processing tasks such as compression,

denoising, inverse problems and texture synthesis.

Natural images are composed of intricate patterns

such as regular areas, edges, junctions, oriented os-

cillations and textures. Processing efficiently such a

wide range of regularities requires methods that are

adaptive to the geometry of the image. This adap-

tivity can be achieved using sparse representations

in a redundant dictionary. The geometric adaptivity

is important to search for efficient representations

in a structured dictionary. Another way to capture

this geometry is through non-local interactions be-

tween patches in the image. The resulting non-local

energies can be used to perform an adaptive im-

age restoration. This paper reviews these emerging

technics and shows the interplay between sparse and

non-local regularizations.

Index Terms—Adaptivity, sparse regularization,

non-local regularization, best basis, triangulations,

dictionary learning, approximation, denoising, in-

verse problems, texture synthesis.

Finding efficient representations for natural im-

ages is relevant for many image processing tasks.

Sparse and non-local regularizations have recently

emerged as unifying concepts to formalize this no-

tion of geometric representations. These methods

have been proved useful to perform compression,

denoising, inversion of linear operators and texture

synthesis. This paper reviews these technics and

shows that the concepts of sparsity and variational

minimization are at the heart of the success of

these methods.

I. INTRODUCTION

A large class of image processing problems can

be formalized as recovering a high resolution im-

age f⋆ ∈ R
N of N pixels from noisy observations
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y ∈ R
Q, where Q 6 N . The forward model as-

sumes that y is a degraded version of an unknown

high resolution image f0, where y = Φf0 + w.

The linear operator Φ : R
N → R

Q models the

acquisition process.

If Φ = Id, the recovery of a good approximation

of f0 corresponds to removing noise. When Φ is

ill-posed, the inverse problem of recovering a high

resolution image is more difficult. Typical inverse

problems are super-resolution, inpainting (see for

instance [64], [5])and compressed sensing [11],

[33].

Non-adaptive regularization. Classical regular-

ization theory makes use of a prior J(f) ∈ R

that is intended to be low for the images one is

interested in. Priors based on derivatives of the

image impose some smoothness on the recovered

image. The simplest prior is the ℓ2 norm of the

gradient J(f) =
∑

x ||∇f(x)||2, where ∇f is

a finite difference approximation of the gradi-

ent. This corresponds to a Sobolev prior that fa-

vors uniformly smooth images. The total variation

prior, introduced for denoising by Rudin, Osher

and Fatemi [84], reads J(f) =
∑

x ||∇f(x)||. It

allows one to take into account discontinuous im-

ages, and favors objects in the image with a small

perimeter. Other classes of priors include sparsity

in orthogonal or redundant representations, which

are discussed in Section II.

A prior is taken into account during the in-

version of y = Φf0 + w using a variational

minimization

f⋆ ∈ argmin
f∈RN

1

2
||y − Φf ||2 + µJ(f), (1)

where µ weights the fidelity to the observations y
versus the regularity of the solution, and should be

adapted to the noise level.

Adaptive regularization. In this paper, the adap-

tation to the structures of the image is performed

through the optimization of some geometric pa-

rameter λ. This parameter takes different forms,

such as a quadtree in Section III, an association

field in Section IV-B, a triangulation in Section
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IV-C or a weighted graph in Section V. This

parameter always caries some geometrical infor-

mation about the location of edges or the direction

of textures.

This geometry λ parameterizes a family of prior

Jλ(f) that favors images that are smooth accord-

ing to the estimated geometry. The non-adaptive

regularization (1) is turned into an adaptive recov-

ery by minimizing

(f⋆, λ⋆) ∈ argmin
f∈RN ,λ

E(f, λ) where (2)

E(f, λ) =
1

2
||y − Φf ||2 + µJλ(f) + E(λ).

The additional term E(λ) allows one to introduce

constraints on the set of admissible geometries.

For a fixed λ, the energy E(f, λ) is usually

convex, butE is non-convex jointly on (f, λ). One

thus has to resort to iterative schemes that progres-

sively estimate both the image and the geometry,

and converge to a stationary point (f⋆, λ⋆) of E.

The following sections describe several in-

stances of this adaptive regularization framework

(2), each time using a different parameterization

of the prior Jλ adapted to several kinds of edge or

texture features.

II. SPARSE AND ADAPTIVE REPRESENTATIONS

Computing a sparse decomposition corresponds

to approximating an image f0 ∈ R
N of N pixels

as fM =
∑P−1

m=0 a
⋆
mψm using a small number

M = ||a⋆||0 = | {m \ a⋆m 6= 0} | of atoms chosen

in a dictionary D = {ψm}m ⊂ R
N of P > N

atoms.

A. Non-linear Approximation

Best approximation and thresholding. A sparse

approximation is efficient if the error ||f0 − fM || is

small. The best approximation fM with M non-

zero coefficient in the dictionary D = {ψm}m
can be found by solving a variational minimization

fM =
∑P−1

m=0 a
⋆
mψm where

a⋆ ∈ argmin
a∈RP

||f0 −

P−1
∑

m=0

amψm||
2 + T 2||a||0 (3)

In the case where D = B = {ψm}m is an

orthogonal basis of P = N atoms, the problem

(3) is re-written as

fM ∈ argmin
f∈RN

||f0 − f ||2 + T 2J(f) (4)

where J(f) = | {m \ 〈f, ψm〉 6= 0} |

for a value of T adapted so that J(f) = M . This

is the variational regularization (1) for the identity

operator Φ = Id, no noise w = 0, 2µ = T 2,

and the ℓ0 prior J . Although this prior J is non-

convex, a global minimizer fM is found using a

hard thresholding that selects the inner products

with largest amplitudes, see for instance [61]

fM = HT (f0,B) =
∑

|〈f0, ψm〉|>T

〈f0, ψm〉ψm,

(5)

and M = |
{

m \ |〈f0, ψm〉| > T
}

|

Computing sparse approximations fM in or-

thogonal bases is at the heart of many efficient

compression algorithms. For instance JPEG-2000

uses a nearly orthogonal wavelet basis and is a

state of the art coding scheme, see [61].

Decay of approximation error. For several

classes of images, one can prove the asymptotic

optimality of such a non-linear approximation

scheme (5) in well chosen ortho-bases. Uniformly

Cα images enjoy an optimal asymptotic approxi-

mation error decay ||f0 − fM ||2 = O(M−α) in a

Fourier basis. Discontinuous images with bounded

variations, that have edges of finite total perimeter,

enjoy an optimal asymptotic decay ||f0 − fM ||2 =
O(M−1) in a wavelet basis. Figure 1 shows some

examples of smooth and discontinuous images.

Wavelets are however not optimal for piecewise

regular images whose edges are regular. The error

for such a cartoon image decays as O(M−1). The

square support of wavelet atoms forbid them to

capture the directionality of regular edges. The

curvelet frame of Candès and Donoho [10] enjoys

an error decay of O(log(M)3M−2) for images

that are C2 outside C2 edges, thus enhancing over

the wavelet approximation. A discrete implemen-

tation of the curvelet transform corresponds to

the projection of the image f ∈ R
N on a tight

frame [12]. This curvelets approximation has also

been used for inverse problems regularization [13].

For smoothly varying textures, a fixed waveatom

frame [28]provides a small approximation error.

To approximate efficiently images with compli-

cated edges and textures, more redundant dictio-

naries are needed. To keep the computation of the

approximation tractable, it is however important to

use a structured dictionary. Structuring the dictio-

nary is also important for compression in order to

reduce the coding cost.
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Regular Bounded variation

Cartoon Natural

Fig. 1. Examples of images within several complexity

classes.

B. Sparse Approximation over Redundant Dictio-

naries

For an arbitrary redundant dictionary, comput-

ing the best M -term approximation (3) is however

NP-hard [27], and one thus needs to resort to

greedy schemes [63]or ℓ1 minimization.

ℓ1 sparse approximation. A sparse approxima-

tion is obtained by convexifying the ℓ0 pseudo

norm in (3), and solving the following basis

pursuit denoising convex problem [15], f⋆ =
∑P−1

m=0 a
⋆
mψm where

a⋆ ∈ argmin
a∈RP

1

2
||f0 −

P−1
∑

m=0

amψm|| + µ||a||1, (6)

where µ > 0 is adapted so that ||a⋆||0 = M
and where the ℓ1 norm is defined as ||a||1 =
∑P−1

m=0 |am|. Many algorithms have proposed to

solve the convex problem (6), for instance iterative

thresholding methods [25], [24]. Sparse coding in

redundant dictionaries finds application to com-

pression of sounds [51] and images [45].

Such ℓ1 sparse approximation can be shown

to be close to optimal for a restricted class of

dictionaries, see for instance [92]. Most image

processing dictionaries are however too redundant

to fit within this theoritical analysis. Furthermore,

for highly redundant dictionaries, solving (6) is

computationally demanding.

Redundant and structured dictionaries. To

avoid these pitfalls, one needs to use structured

dictionaries which enable a theoritical analysis

of the approximation performance for restricted

class of images, and also enable a fast search for

nearly optimal approximations. Sections III and

IV detail several structured dictionaries, together

with adaptive strategies to perform this search.

C. Sparse Approximation for Processing

Building ortho-bases or frames for which the

approximation error decays fast is important for

many applications. One can show that for several

image processing problems, the efficiency of the

processing is related to the non-linear approxima-

tion error. This section only sketches the main re-

sults for compression, denoising, and inverse prob-

lem regularization. It gives informal statements

that require additional technical hypotheses to be

mathematically rigorous.

Compression. Efficient image compression

schemes perform a binary coding of quantized

coefficients 〈f0, ψm〉 where {ψm}m is an

orthogonal basis. An image f0 ∈ R
N is coded

with R bits, and the decoder computes an

approximation fR of f0.

Original f0 Zoom

Wavelet support Compressed fR

Fig. 2. Image compression using wavelet support codding.

To exploit the sparsity of the decomposition

of the image, a support coding scheme codes in-
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dependently the locations of the non-zero coeffi-

cients, and their amplitudes. Figure 2 shows an

example of compression using this simple coding

scheme.

Under some conditions on the basis, which are

satisfied by many classical ortho-bases such as

wavelets, one can shows that if the sorted mag-

nitudes |〈f0, ψm〉| decay like m−α−1

2 , then the

coding-decoding error satisfies

||f0 − fR||
2 = O(R−α logα(R)), (7)

see [61]. Note that this decay of the coefficients

implies ||f0 − fM ||2 = O(M−α). This shows that

a basis that is efficient to perform non-linear image

approximation is able to efficiently perform image

compression by support coding. State of the art

coders such as JPEG-2000 [61] use advanced con-

ditional coding schemes that exploit statistical re-

dundancies among the coefficients. This improves

the decay of the distortion ||f0 − fR|| with respect

to a naive support coder.

This result does not extend to an arbitrary dic-

tionary, since it might be too costly to code the

coefficients. It extends to dictionaries of ortho-

bases detailed in Section (III), if the number of

atoms within the dictionary is not too large.

Denoising. Denoising corresponds to estimating

an image from a noisy observation y = f0 + w,

where f0 ∈ R
N is a deterministic, unknown,

clean image. A standard assumption is that w is

a Gaussian white noise of variance σ2.

A popular non-linear denoising method is the

hard thresholding f⋆ = HT (y,B) over an orthog-

onal basis B, where HT is defined in (5). This

corresponds to the minimization of (1) for Φ = Id
and J the ℓ0 prior. It was introduced by Donoho

and Johnstone [35], and uses a well chosen T
proportional to the noise level σ. In an orthogonal

basis B, the decay ||f0−fM ||2 = O(M−α) implies

Ew(||f0 −HT (y,B)||2) = O(σ
2α

α+1 ), (8)

if one uses the universal threshold T =
σ
√

2 log(N), see [35]. Here Ew denotes the ex-

pectation with respect to the noise random variable

w, and fM is the best M terms approximation of

f0 in B. This shows that the average denoising

error decays fast to zero with σ if B is able to

efficiently approximate f0.

Denoising by thresholding is extended to re-

dundant frames, where f⋆ is reconstructed using

the dual frame. Denoising artifacts are reduced by

using a translation invariant redundant frame [23].

Denoising of images is also enhanced by using

statistical models that take into account the non-

independence of coefficients of natural images, see

for instance [83].

Inverse problems. For inverse problems, one

measures y = Φf0 + w, where w is an addi-

tive noise, and where Φ : R
N → R

Q is ill-

conditionned. To recover an approximation f⋆ of

f0 from y, one replaces the sparse approximation

by a ℓ1 regularization f⋆ =
∑P−1

m=0 a
⋆
mψm where

a⋆ ∈ argmin
a∈RP

1

2
||y−Φ

P−1
∑

m=0

amψm||
2 +µ

P−1
∑

m=0

|am|.

(9)

This is equivalent to computing a sparse decom-

position of y in the redundant dictionary ΦD =
{Φψm}

P−1
m=0 of R

Q using basis pursuit denoising

(6).

In the special case where D = B is an orthogo-

nal basis, the minimization (9) can be re-written

as the variational problem (1) using an ℓ1 prior

J(f) =
∑

m |〈f, ψm〉|.
A few theoritical results exist, but they are re-

stricted to the case where ΦD is a well conditioned

frame [92], or for compressed sensing [11], [33]

when Φ is random. These results roughly show

that in these restricted cases, ||f⋆ − f0||2 = O(σ2)
where σ2 is the variance of the noise, if ||f0 −fM ||
decays fast and if µ is well chosen. This means

that the noise is kept under control during the

inversion.

III. TREE-STRUCTURED REPRESENTATIONS

To improve the representation of geometrical

images, one can use a family of bases instead of

a fixed basis. A dictionary of orthogonal bases

is a set DΛ = {Bλ}λ∈Λ of orthogonal bases

Bλ = {ψλm}m of R
N , where N is the number of

pixels in the image. Instead of using an a priori

fixed basis such as the wavelet basis, one chooses

a parameter λ⋆ ∈ Λ adapted to the structures of

the image to process and then uses the optimized

basis Bλ
⋆

.

A. Quadtree-based Dictionaries

To enable the fast optimization of a parameter

λ⋆ adapted to a given image f0 to process, each

λ ∈ Λ is constrained to be a quadtree. The

quadtree λ that parametrizes a basis Bλ defines

a dyadic segmentation [0, 1]2 =
⋃

(j,i)∈L(λ) Sj,i
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where each Sj,i is a square of size 2−j × 2−j .
Figure 3 shows an example of such a dyadic

subdivision. This segmentation is used to partition

either the spacial domain (local cosine packets

and bandlets) or the frequency domain (wavelet

packets).

Fig. 3. Left: example of dyadic subdivision of [0, 1]2 in

squares Sj,i ; right: corresponding quad-tree λ.

The full tree Λ indexes sub-spaces Vj,i of R
N

for scales 0 6 j 6 J and position 0 6 i <
22j , that obey a refinement relationship Vj,i =
⊕3
η=0Vj+1,4i+η, the sum being orthogonal.

To enrich the representation parameterized by a

quadtree, a token ℓj,i ∈ Ω is attached to each leave

(j, i) ∈ L(λ) of the tree. We call such a tree with

its token a tagged quadtree, and use the notation

λ ∈ Λ to refer to both the quadtree and its tokens.

Each sub-space Vj,i has dimension N/22j and

is equipped with one or several orthogonal bases

indexed by a token ℓ ∈ Ω,

Bℓj,i =
{

ψℓj,i,s \ ∀ 0 6 s < N/22j
}

.

Having multiple bases at each node increases the

expressiveness of the dictionary, and is required

to perform directional approximation of geometric

images.

A basis Bλ is obtained by aggregating bases Bℓj,i
for (j, i) that are leaves of λ, and for a specific

choice ℓ = ℓj,i ∈ Ω of token at each node of the

tree

Bλ =
⋃

(j,i)∈L(λ)

B
ℓj,i

j,i

When one does not care about the location of the

basis elements in the tree, the basis is written as

Bλ = {ψλm}m where the index is m = (j, i, s, ℓj,i)
with (j, i) ∈ L(λ) and 0 6 s < N/22j .

This dictionary DΛ defines a highly redundant

set of atoms D =
{

ψλm \ λ ∈ Λ,m
}

. One could

use directly D to compute a sparse approximation

using for instance ℓ1 minimization (6). This is

however numerically expensive for large images.

Restricting the sparsity to orthogonal bases leads

to fast algorithms for structured dictionaries.

B. Best Basis Selection

Generalizing (4) to an adaptive setting, the ap-

proximation in a best basis is defined as (f⋆, λ⋆)
being a solution of

min
f∈RN ,λ∈Λ

E(f, λ) = ||f0 − f ||2 + T 2Jλ(f) (10)

where Jλ(f) = |
{

m \ 〈f, ψλm〉 6= 0
}

|,

Note that this minimization fits into the general

framework (2) with Φ = Id, w = 0, E = 0 and

2µ = T 2. Note also that f⋆ is the best M terms

approximation of f0 with any basis in DΛ, where

M is the number of non-zero coefficients of f⋆ in

Bλ
⋆

.

According to (5), for each λ, the optimal im-

age that minimizes E(f, λ) is HT (f0,Bλ). The

minimization (10) can thus be simplified as f⋆ =
HT (f0,Bλ

⋆

) where

λ⋆ ∈ argmin
λ∈Λ

LT (f0,Bλ) =
∑

m

γT (〈f0, ψλm〉)

(11)

where γT (a) = max(a2, T 2). This kind of La-

grangian is efficiently optimized using a dynamic

search algorithm, originally presented by Coifman

et al. [20]. It is a particular instance of the Classi-

fication and Regression Tree (CART) algorithm of

Breidman et al. [7] as explained by Donoho [34].

The complexity of the algorithm is proportional

to the complexity of computing the whole set

of inner products
{

〈f0, ψλm〉 \ λ ∈ Λ,m
}

in the

dictionary. For several dictionaries, such as those

considered in this section, a fast algorithm per-

forms this computation in O(P ) operations where

P is the total number of atoms in DΛ. For tree

structured dictionaries, this complexity is thus

O(|Ω|N log2(N)), where |Ω| is the number of

tokens associated to each leaf of the tree. This is

much smaller than the total number of bases Bλ in

DΛ, which grows exponentially with N .

C. Spacial and Frequency Adaptive Dictionaries

Local cosine and wavelet packets bases Bλ are

parameterized by a quadtree tree λ ∈ Λ that

segments respectively the image plane and the

frequency plane [22], [61], [20].
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The wavelet packet construction is generalized

by considering non stationary (NS) wavelet pack-

ets [18], that apply different quadrature mirror fil-

ters at each scale of the tree. A NS wavelet packet

basis Bλ is parameterized by a tagged quadtree λ
where each node is tagged by a filter. The selection

of a best NS wavelet packet basis is obtained by a

dynamic programming algorithm detailed in [71]

that generalizes the best basis algorithm.

D. Geometry Adaptive Dictionaries

Geometric images with regular edges are diffi-

cult to approximate using a wavelet basis. Wed-

glets approximations and bandlets bases compute

a quadtree segmentation λ⋆ of the image together

with a local estimate of the orientation of the

edges, that is encoded in the tokens ℓj,i ∈ Ω.

Adaptive wedgelets approximation. A geometric

approximation is obtained by considering for each

node (j, i) a collection of discontinuous approxi-

mation spaces for the square Sj,i of the segmenta-

tion. The wedgelets [32] uses a piecewise constant

approximation on each side of a straight edge that

follows the direction indexed by ℓj,i ∈ Ω.

The best wedgelets algorithm optimizes the La-

grangian (11) over all possible wedgelets seg-

mentation λ ∈ Λ where the thresholding ap-

proximation is replaced by a piecewise constant

approximation. This scheme is efficient to ap-

proximate a piecewise constant image f0 whose

edges are C2 curves. For such a cartoon image,

the approximation error with M wedgelets decays

like ||f0 − fM ||2 = O(M−2), see [47]. It is

also possible to consider approximation spaces

with higher order polynomials to capture arbitrary

cartoon images [88]. The computation of the low-

dimensional projection can be significantly accel-

erated, see [46].

Adaptive spatial Bandlet approximation. The

bandlet bases dictionary was introduced by

Le Pennec and Mallat [55], [56]. Bandlets perform

an efficient adaptive approximation of images with

geometric singularities. This transform has been

refined by Mallat and Peyré [62], [79] to obtain

a dictionary of regular and orthogonal basis func-

tions.

A directional orthogonal basis Bℓj,i of elongated

directional wavelets is defined over each square

Sj,i. Keeping only a few bandlet coefficients and

setting the others to zero performs an approxima-

tion of the original image that follows the local di-

rection indexed by ℓj,i. The optimal segmentation

and tokens are those that minimize the Lagrangian

(11). Figure 4 shows an example of such a seg-

mentation adapted to a geometric image.

Fig. 4. Example of subdivision λ⋆ adapted to a cartoon

image f0. The basis Bλ⋆

minimizes LT (f0,Bλ).

Adaptive approximation over the wavelet do-

main. Applying such an adaptive geometric ap-

proximation directly on the image leads to un-

pleasant visual artifacts. To overcome this is-

sue, one applies a tree structured approximation

on the discrete set of wavelet coefficients. The

wedgeprints of Wakin et al. [93] use a vector

quantization to extend the wedgelet scheme to

the wavelet domain. The orthogonal bandlets of

Peyré and Mallat [62] use an adaptive bandlet

basis for each scale of the wavelet transform.

The orthogonal bases are computed using discrete

oriented orthogonal bases. If f0 is a function that

is Cα outside a set of Cα-regular edge curves,

the approximation in the best bandlet basis Bλ
⋆

minimizing (11) satisfies ||f0 − fM ||2 = O(M−α)
where M is the number of bandlets composing

fM = HT (f0,Bλ
⋆

). Such an orthogonal bandlet

transform finds applications to image [62] and sur-

face [79] compression and image denoising [80].

E. Adaptive Tree-structured Processing

The processing scenarios described in Section

II-C extend to the best basis setting. While com-

pression and denoising only require the estimation

of a best basis parameter λ⋆ as a pre-processing,

solving inverse problems requires a more compli-

cated iterative scheme.

Adaptive tree-structured compression. For

compression applications, one computes the best

basis Bλ
⋆

adapted to the image f0 to compress by

minimizing the corresponding Lagrangian (11),

and then binary codes the quantized coefficients
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〈f0, ψλm〉 together with the parameter λ of the

best basis, see [61].

The coding error decay (7)extends to a dictio-

nary of orthognonal basis if |D| = P = O(Nβ)
for some β > 0, see [61]. The total number of bits

R is reduced by splitting it asR = Rc+Rλ⋆ where

Rc is the number of bits to code the M non-zero

coefficients among N coefficients, and Rλ⋆ is the

number of bits to code the quadtree λ⋆.

For compressing C2 cartoon images, the best

wedgelet sub-space provides a distortion rate

||f0 − fR||
2 = O(R−2 log2(R)). The best bandlet

basis further improve this rate to ||f0 − fR||
2 =

O(R−α logα(R)) for cartoon images that are Cα

outside Cα edges.

Adaptive tree-structured denoising. To perform

denoising, the best basis Bλ
⋆

is computed from the

noisy observations y = f0 + w by minimizing

an empirical Lagrangian LT (y,Bλ), see [61], [54].

The denoised image is defined by thresholding the

noisy observations f⋆ = HT (y,Bλ
⋆

). The asymp-

totic optimality result (8) extends to a dictionary

of orthogonal bases containing |D| = P atoms by

selecting T = σ
√

2 log(P ), [61].

best sub-space was originally designed to per-

form denoising.

For piecewise constant function with C2 edges,

Wedgelets leads to an optimal decay of the es-

timation error of Ew(||f0 − f⋆||)2 = O(σ4/3),
up to logarithmic factor, where σ2 is the vari-

ance of the noise [32], [30]. The best bandlet

basis thresholding extends this result to a decay

of Ew(||f0 − f⋆||)2 = O(σ
2α

α+1 ) for Cα cartoon

images, see [80].

Adaptive Tree-structured Regularization of In-

verse Problems The ℓ1 resolution (9) of the in-

verse problem y = Φf0 + w is extended to a best

basis recovery by solving over both the image and

the quadtree

min
f∈RN ,λ∈Λ

E(f, λ) =
1

2
||y−Φf ||2 +µJλ(f) (12)

where Jλ(f) =

N−1
∑

m=0

|〈f, ψλm〉|,

which corresponds to the general framework intro-

duced in (2)with E = 0.

Peyré proposes in [75] an iterative algorithm to

compute a stationary point of E. Starting from

some initial f (0), at a step k, the estimate f (k) is

modified as

f̃ (k) = f (k) + τΦ∗(y − Φf (k)).

The best basis parameter is then updated

λ(k+1) = argmin
λ∈Λ

N−1
∑

m=0

γ1
µ(〈f̃

(k), ψλm〉)

where γ1
µ(a) =

{

a2/2 if |a| 6 µ,
µ|a| − µ2/2 otherwise.

Note that this is a Lagrangian optimization similar

to (11), which can be solved efficiently using the

same dynamic programming algorithm [20]. The

next iterate is defined using a soft thresholding

f (k+1) =
∑

m

sτµ(〈f, ψ
λ
m〉)ψ

λ
m

where sτµ(x) = max(1 − τµ/|x|, 0)x.

If τ < 1/||Φ∗Φ||, one can show that E(f (k), λ(k))
is decaying through the iterations, and thus con-

verging, see [75].

Figure 5 shows an example of application of this

algorithm to the recovery from compressed sens-

ing measurements [11], [33] using a dictionary of

bandlet basis. The operator Φ projects an image of

N pixels on P = N/6 random vectors.

IV. SEMI-STRUCTURED REPRESENTATIONS

A. Lifting Based Dictionaries

To enhance the wavelet representation, it is

possible to adapt the wavelet filters to the image

content, using spatially adaptive filters to avoid

creating large wavelet coefficients near edges. The

lifting scheme, introduced by Sweldens [90], is an

unifying framework to design adaptive biorthogo-

nal wavelets, through the use of spatially varying

local interpolations.

Lifting scheme. The lifting scheme has been in-

troduced by Sweldens [90], and uses a polyphase

decomposition of the wavelet filtering to decom-

pose it into elementary lifting steps. This allows

one to define wavelets on non-translation invariant

grids using spatially varying filters. It can thus be

used to define wavelets on surfaces [86], [57] and

on complicated planar triangulations, see Section

IV-C.

The initial sampling grid VJ for some J > 0
is recursively split, for each j < J as a disjoint

union Vj+1 = Vj ∪ Cj , where Vj is a coarser grid,

and Cj is a detail grid intended to store wavelet
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(a) (b) (c)

(a’) (b’) (c’)

Fig. 5. (a,a’) original image ; (b,b’) compressed sensing reconstruction using a translation invariant wavelet frame

(PSNR=37.1dB and 22.1dB) ; (c,c’) reconstruction using iteration in a best bandlet basis (PSNR=39.3dB and 23.9dB).

coefficients. On an image, one can use a tradi-

tional dyadic refinement so that |Vj | = |Vj+1|/4,

or to build non-tensor product wavelets, one can

use quincunx sub-sampling [44] where |Vj | =
|Vj+1|/2. But this splitting scheme is general and

holds for instance in the case of triangulation

refinement, see Section IV-C.

A biorthogonal wavelet basis Bλ =
{ψλj,n}j,n∈Cj

is implicitly defined through

lifting by computing the wavelet coefficients

dλj [n] = 〈f0, ψλj,n〉 for n ∈ Cj . though the

application of elementary lifting steps. The lifting

algorithm also maintains temporary variables,

which are inner products with scaling functions

aλj [p] = 〈f0, ϕλj,p〉 for p ∈ Vj . At the finest scale

j = J , the scaling coefficients are initialized

using the data aJ = f . Then, for each j < J , it

successively applies a local predictor to compute

the wavelet coefficients, for all n ∈ Cj ,

dλj [n] = aλj+1[n] −
∑

p∈Vj ,p∈λj [n]

wj [n, p]a
λ
j+1[p],

(13)

and an update operator to maintain stability of the

transform, for all p ∈ Vj ,

aλj [p] = aλj+1[p] +
∑

n∈Cj ,p∈λj [n]

w̃j [n, p]d
λ
j [n]. (14)

The association field λj connects each point

n ∈ Cj of the detail grid to a set of points

λj [n] ⊂ Vj on the coarse grid. This association

field is the only degree of freedom of the scheme,

since the weights wj [n, p] are usually computed

as a polynomial interpolation on the set of points

selected by the field, while w̃j [n, p] is obtained

by solving a linear system to impose that aλj has

the same mean and higher order moments as aλj+1.

The lifting wavelet transform is easily inverted by

successively inverting steps (14) and (13).

One can chain more than one predict and one

update operators, to construct arbitrary biorthog-

onal wavelets on uniform 1-D grid [26]. Unfor-

tunately, on non-uniform grids, it is impossible

to control properties such as vanishing moments,

orthogonality and stability of more than one step

of predict and update.

Lifting processing. A non-linear approximation is

obtained by thresholding the lifted wavelet coef-

ficients dλj [n] before reconstruction. This can be

used to perform compression and denoising fol-

lowing the schemes detailed in Section II-C. Note

however that for arbitrary association fields {λj}j
the lifted wavelets can be unstable and far from

orthogonality. This results in a loss of performance

for compression and denoising using thresholding.

Adaptive predictions. One can adaptively de-

sign the association fields λj used during the

lifting pyramid. One can compute these associ-

ations to reduce the length of the wavelet filter

near edges [17]. For compression applications,

this estimation is performed from already coded

coefficients, so that the fields λj do not need to
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be transmitted to the decoder. Such a filter adap-

tation is however no sufficient to capture fully the

geometric information. Such schemes are related

to adapted subdivision [65].

To further reduce the distortion of geometric im-

ages, the orientation of the association fields {λj}j
can be optimized though the scales. Because of the

lack of structure of the set of bases Bλ, computing

the fields λ⋆ that minimizes (10) is intractable.

The lifting operators are thus usually computed

using heuristics to detect the local orientation of

edges. The association fields λj are obtained by

minimizing the amplitude of wavelet coefficients,

see for instance [49], [14] or using local gradient

information [52]. These adaptive lifting schemes

can be extended to perform adaptive video trans-

form [87] where the lifting operates through in

time by following the optical flow.

B. Grouplets

A difficulty with lifted transforms is that they

do not guarantee the orthogonality of the resulting

wavelet frame. The stability of the transform thus

tends to degrade for highly adaptive association

fields, where some singular point p ∈ Vj might

belong to many different fields λj [n] for various

n ∈ Cj .

Grouplets over the image. The grouplet trans-

form also makes use of an association field, but

it replaces the lifting computation of wavelet co-

efficients by an extended Haar transform, where

points in Cj are processed in sequential order to

maintain orthogonality.

A grouplet family Bλ is an orthogonal basis, or a

redundant tight frame adapted to the processing of

geometric images or regularly oscillating textures,

introduced by Mallat [60]. It has been used to per-

form image denoising and super-resolution [60] as

well as texture inpainting and synthesis [76]. The

geometric parameter λ = {λj}j is a multiscale

association field, where each λj is a vector field

that follows the geometry of the image at a scale

2j .
For each scale j, the flow λj links the point x

to λj(x), where ||x − λj(x)|| ≈ 2j . A modified

Haar transform progressively extract grouplets de-

tail coefficients along this flow. This corresponds

to the projection of the image on a orthogonal or

redundant tight frame Bλ = {ψj,n}j,n of R
N . The

grouplets atoms at scale j have a width of 1 pixel

and follow the geometric flow on a width of ∼ 2j

pixels. Image 6 shows examples of grouplets at

several scales.

j = 2 j = 3

j = 4 j = 5

Fig. 6. Examples of grouplet vectors ψj,n for several

positions n and scale j.

The selection of an optimal grouplet flow λ⋆

adapted to an image f0 by minimizing a La-

grangian such as (11) is intractable, because the

grouplet dictionary does not have a tree structure.

One thus uses a greedy scheme that performs

block matching to select the patch around λj(x)
that is the closest to the patch around x. Alternative

methods compute λj by integrating a texture flow

along a distance of 2j , see [76].

The grouplet transform is related to the curved

wavelet transform [94] and the easy path [81]. A

distinctive features of grouplets is that the fields

λ can converge to a singular point, which means

λj(x) = λj(x
′) for x 6= x′. This is useful

to represent turbulent textures with complicated

singularities.

Grouplets over wavelets. To process image with

both oriented texture and edges, this grouplet

transform can also be applied over a wavelet

transform, so that the wavelet coefficients at each

wavelet scale are projected on a grouplet frame

Bλ. This corresponds to the projection of f0 on a

multiscale grouplet frame composed of atoms with

varying widths and lengths.

This grouplet transform has been applied to

texture synthesis [76], see Figure 7. The synthe-
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sis is obtained by sampling grouplet coefficients

with the same distribution as the coefficient of an

exemplar, and by randomizing the geometry of the

flow λ.

Exemplar Wavelet [82]

Patches [38] Grouplets [76]

Fig. 7. Example of texture synthesis by statistical modeling

of grouplet coefficients.

Sparse grouplet regularization can be used to

perform geometric inpainting of large missing

regions by minimizing (12) over the image f0

while adapting progressively the association field

λ, see [76]. Figure 8 shows an example of iter-

ations of the grouplet inpainting algorithm, that

performs iteratively a soft thresholding and an

estimation of an adapted grouplet flow λ.

C. Adaptive Triangulations

A finite elements approximation first builds a

segmentation of the image domain into elementary

cells, and then perform a low dimensional poly-

nomial approximation on each cell. The adaptivity

comes from the selection of this segmentation, that

should be adapted to the features of the image.

Image approximation by triangulations. The

parameters λ = (V,F) to adapt a triangulation

dictionary is a set of vertices V = {xm}
M−1
m=0 ⊂

[0, 1]2 and a set of connexions T ⊂ V3 that

prescribes the connectivity between the points.

Triangles are convex hulls of the elements of T ,

and they form a partition of the image domain

[0, 1]2.

Fig. 8. A few iterations of the grouplet inpainting algorithm

One performs approximation with continuous

piecewise affine function on the triangles, which

corresponds to using an adapted basis Bλ =
{ψm}xm∈V of the space Vλ of linear spline func-

tion (hat functions centered on the vertices xm ∈
V), which has dimension M .

The best approximation with M vertices of f0

is obtained by an orthogonal projection

fM = PVλ
f0 =

M−1
∑

m=0

a⋆mψm (15)

where a⋆ = argmin
a∈RM

||f0 −
∑

m

amψm||
2.

Since Bλ is not orthogonal, computing the coeffi-

cients a requires the resolution of a sparseM ×M
linear system.

Smooth image approximation with triangula-

tions. For C2 uniformly regular functions, one can

build isotropic triangulations that generate an error

||f0−fM ||2 = O(||Hf0 ||2L2M−2), whereHf0 is the

Hessian of the image f0.

For a C2 image, one should use anisotropic tri-

angles whose aspect ratio matches the anisotropy

of the image [4]. A triangle near a point x ∈ [0, 1]2

should be aligned with the principal eigenvector of

Hf0(x), and the aspect ratiowidth/length should

match the ratio of the eigenvalues of Hf0(x). The

approximation error with such adapted anisotropic

approximations of a C2 image satisfies ||f0 −
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fM ||2 = O(||
√

|det(Hf0)|||2L3/2M
−2), see for in-

stance [69]. This shows that anisotropic approxi-

mations have a better constant than isotropic for

the decay of the error ||f0 − fM ||2.

Cartoon image approximation with triangula-

tions. For a cartoon image, which is a C2 function

outside C2 contours, one can also diminish the

approximation error ||f0 − fM ||2 using anisotropic

triangles. Near edges, the anisotropic triangles

should obey the same parabolic scaling as curvelet

atoms, width = length2. Figure 9 shows an

example of such an adapted triangulation. Using

such anisotropic triangulations for a cartoon image

f0 leads to an error decay ||f0−fM ||2 = O(M−2),
see [61]. This improves significantly over the

wavelet approximation decay O(M−1).

Image f0 Triangulation (V,F)

M−1/2

M−1/2

Isotropic triangle Anisotropic triangle

Fig. 9. Adaptive triangulations for piecewise linear approx-

imations of a C2-cartoon image.

Heuristics and greedy algorithms. The issue is

that computing the best triangulation (V,F) that

minimizes ||f0 − fM || over a discretized domain is

NP-hard [1]. There is currently no algorithm that

guarantees the error decay ||f0−fM ||2 = O(M−2)
for an arbitrary cartoon image. One thus needs

to rely on sub-obtimal greedy schemes. These

schemes generate a sequence of embedded trian-

gulation {λj = (Vj ,Fj)}j by either refinement

(increasing j values) or coarsening.

A greedy refinement scheme starts by a simple

fixed triangulation λ0 of the squares [0, 1]2, and

iteratively add one or several vertices to Vj to

anisotropic JPEG-2000

Fig. 10. Comparison of the adapted triangulation scheme [6]

with JPEG-2000, for the same number of bits, M = 600
triangles.

obtain a triangulation λj+1 that minimizes the

error ||f0 − PVλj
f0||2. The faces Fj needs also to

be updated to obtain Fj+1.

Delaunay refinement introduced by

Ruppert [85] and Chew [16], proceeds by

inserting a single point, that is imposed to be a

circumcenter of one triangle, and also impose

that Fj is a Delaunay triangulation of Vj . This

constraint accelerates the search and also leads

to triangles with provably good isotropic aspect

ratio, which might be useful to compute the

approximation of the solution of an elliptic PDE

on the mesh grid. For image approximation,

one however needs to design aniosotropic

triangulations, which requires to modify the

notion of circumcenter using an anisotropic

metric [48], [6]. Figure 10 shows an example of

adaptive triangulation produced by the greedy

anisotropic refinement scheme of [6]. Other

refinement schemes are possible, such as for

instance edge bisection, for which the optimal

error decay is known to hold for smooth convex

functions [69].

Triangulation thinning algorithms start with a

fine scale triangulation λJ of [0, 1]2 and progres-

sively remove either a vertex, an edge or a face to

increase as slowly as possible the approximation

error ||f0 − PVλj
f0||2 until M vertices remain, see

for instance [36]. One can for instance remove a
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single vertex to go from Vj+1 to Vj , and impose

that Fj is the Delaunay triangulation of Vj . This

can be shown experimentally to produce highly

anisotropic meshes, which can be used to perform

compression, see Demaret et al. [29].

Multiscale approximations on triangulations.

Embedded triangulations λj = (Vj ,Fj) with an

increasing number of vertices satisfy Vλj
⊂ Vλj+1

.

This is achieved by imposing that Vj ⊂ Vj+1

and that each face of Fj is split into one of

more faces of Fj+1. The set of triangulation λ =
{λj}j defines a hierarchical segmentation of the

image that can be encoded using a tree, general-

izing the quadtree construction of Section III-A.

A biorthogonal wavelet basis Bλ = {ψj,n}n∈Cj
is

constructed using a basis {ψj,n}n∈Cj
of the detail

space Wλj
that satisfies Vλj+1

= Vλj
⊕ Wλj

.

The decomposition of an image on a biorthogonal

wavelet basis defined on embedded triangulations

can be computed using lifting steps, see [86], [57].

Regular splits of orthogonal triangles lead to

isotropic adaptive triangulations [31]. Splitting tri-

angles according to a well chosen median leads

to anisotropic triangulations that exhibit optimal

aspect ratio for smooth images, see [19].

V. PATCH-BASED REPRESENTATIONS

A new class of adaptive image processing have

emerged recently by considering non-local inter-

actions between patches in an image. These in-

teractions are used to perform non-local filtering,

sparse coding with dictionary learning, and non-

local regularization of inverse problems.

A. Manifold Geometry of Patches

Manifold of patches. A patch πx(f) of size τ × τ
is extracted around a pixel x in an image f ∈ R

N

by defining for all y ∈ {−τ/2 + 1, . . . , τ/2}2,

πx(f)(y) = f(x+ y). (16)

The set of patches {πx(f)}x extracted from nat-

ural images often depends on a small number of

hidden variables. This is for instance the case near

geometric edges or directional textures.

For some simple classes of geometric images

and textures, this set of patches can be shown to be

close to a low dimensional smooth manifold λ ⊂
R
τ2

of dimension R ≪ τ2. This is for instance

the case for binary cartoon images, where edge

patches can be parameterized by the orientation

of the closest edge, and the distance to this edge.

The resulting manifold λ has the topology of a

cylinder, as shown in Figure 11. Similar manifolds

can be use to model more general cartoon images

and oriented textures, see [73].

Image f Set of patches {πx(f)}x

Fig. 11. Display of the patch manifold that has the topology

of a cylinder for binary edges.

Manifold regularization. The manifold model

assumes that the patches πx(f) are close to the

manifold λ, and a variational energy quantifies the

deviation from this model

Jλ(f) =
1

2

∑

x

d(πx(f), λ)2 where

∀ p ∈ R
τ2

, d(p, λ)2 = min
q∈λ

||p− q||2.

For simple geometric images and textures,

where λ is explicitly known, the energy Jλ is

a fixed, non adaptive prior. It can be used to

regularize an inverse problem y = Φf0 + w by

minimizing

min
f∈RN

E(f, λ) =
1

2
||y − Φf ||2 + µJλ(f) (17)

= min
f∈RN ,{πx}x∈λN

||y−Φf ||2+µ
∑

x

||πx(f)−πx||
2.

A stationary point of this non-convex energy E
is computed using an alternative minimization on

f and on the patch {πx}x ∈ λN of the man-

ifold, see [73]. Figure 12 shows an example of

compressed sensing reconstruction using a regu-

larization with a manifold of edges. If the manifold

λ is also optimized in (17), it corresponds to an

adaptive regularization that fits into the framework

(2).

Geometric texture regularization. Separating a

texture content f1 from the cartoon content f2 of a

noisy image y = f1 +f2 +w has been emphasized
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Image f TI wavelets Manifold

Fig. 12. Example of recovery from P = N/6 compressed

sensing measurements, using sparsity in a translation invari-

ant wavelet frame, and using (17) for the manifold of edges.

by Yves Meyer [67] that introduces several norms

for oscillating patterns. Several numerical algo-

rithms have proposed to perform this separation,

see for instance [3].

Locally parallel textures are oscillating in a

direction indicated at a point x by a smooth vector

field λ(x). An adaptive texture norm makes use

of the regularity of the patterns and enhances the

separation with respect to non-adaptive norms that

favor arbitrary oscillations. Figure 13 shows the

local Fourier expansion of an image f mixing

edges and textures. This local analysis is obtained

by projecting f on a local Fourier frame {ψp,k}p,k.

Each atom ψp,k is localized in a patch πxk
around

a point xk and has a frequency ξk.

xp′

xp

{〈f, ψp′,k〉}k {〈f, ψp,k〉}k

Fig. 13. Local Fourier analysis of an image containing edges

and textures.

Following Maurel et al. [66], an adaptive texture

energy Jλ(f) is defined as a weighted quadratic

sum of the local Fourier coefficients

1

2

∑

p,k

γ(||ξk−λ(xp)||)γ(||ξk +λ(xp)||)|〈f, ψp,k〉|
2

where γ(r) is a weighing function that is close

to zero when r ≈ 0 and is rapidly increasing

with r. This weighting function forces the local

frequencies of the texture to be non-zero around xp

only for frequencies close to ±λ(xp). This prior is

well suited to model locally parallel textures.

The energy Jλ captures the oscillating content

of the image. The cartoon content of the image can

be captured using the total variation JTV (f) =
∑

x ||∇f(x)||, where ∇f(x) ∈ R
2 is a finite dif-

ference approximation of the gradient of f at x.

The cartoon and the texture priors are integrated

into a variational energy minimization to perform

a separation f⋆1 + f⋆2 from noisy low dimensional

measurement y = Φf0 + w

(f⋆1 , f
⋆
2 , λ

⋆) ∈ argmin
f1,f2,λ

E(f1, f2, λ) (18)

=
1

2
||y−Φ(f1+f2)||

2+µJλ(f2)+νJTV (f1)+E(λ),

where µ, ν should be adapted to the noise level

and where E can be used to encode constraints

on the frequency localization of the texture. This

separation problem requires the computation of

both the components and the adapted geometric

flow λ. It generalizes the adaptive regularization

(2) to the case where several priors are used.

An iterative minimization algorithm computes a

stationary point of E, see [66]. Figure 14 shows

an example of decomposition obtained by solving

(18), using Φ = Id the identity operator.

Observations y Cartoon f1

Texture f2 Frequency field λ(x)

Fig. 14. Variational separation using an energy adapted to

locally parallel textures.
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B. Dictionary Learning

Dictionary learning for patch approximation.

Sparse modeling of the patches {πx}x requires the

design of a dictionary D = {ψm}
P−1
m=0 adapted to

the local geometry of the images to process. The

dictionary D can be learned from a large set of

Q ≫ P patches {πk}06k<Q. As first proposed by

Olshausen and Field [70], D is optimized to maxi-

mize the sparsity of these exemplars, see also [42],

[2] and references therein.

The optimal dictionary minimizes the average

approximation error using the basis pursuit sparse

coding (6)

min
D={ψm}m,{ak}k

Q−1
∑

k=0

||πk −

P−1
∑

m=0

ak,mψm||
2 (19)

+µ

Q−1
∑

k=0

P−1
∑

m=0

|ak,m| + E(D)

and where the constraint on the dictionary is de-

fined as

E(D) =

{

0 if ∀m, ||ψm|| 6 1,
+∞ otherwise.

(20)

This problem is convex over the dictionary (under

convex constraints) and on the coefficients, but not

jointly convex. One can use an iterative coordinate

descent that converges to a stationary point of

this minimization, see for instance [78]. When the

dictionary {ψm}m is fixed, one perform a sparse

coding to find the coefficients that solve, for each

k the basis pursuit denoising (6)

min
ak∈RP

||πk−

P−1
∑

m=0

ak,mψm||
2 +µ

P−1
∑

m=0

|ak,m|. (21)

When the coefficients {ak,m}k,m are fixed, the

dictionary is the solution of

min
{ψm}m,||ψm||61

Q−1
∑

k=0

||πk −
∑

m

ak,mψm||
2

which is the minimization of a quadratic con-

vex functional under quadratic convex constraints,

and can be solved using a projected gradient de-

scent [78].

Figure 15 shows an example of dictionary

learned with this algorithm. The exemplars {πk}k
are patches of 16 × 16 pixels extracted from a

library of natural images, and the redundancy of

the dictionary is set to P/N = 2.

Fig. 15. Some vectors ψm of a dictionary D learned from a

set of patches extracted from natural images.

Application to denoising and inverse problems.

This learning can be performed jointly with the

resolution of an inverse problem y = Φf0 + w
by minimizing

min
f∈RN ,D={ψm}m

1

2
||y − Φf ||2 + µJD(f) + E(D),

(22)

where E is defined in (20). The prior JD enforces

the sparsity in D of each patch πxk
(f) extracted at

some location xk as defined in (16)

JD(f) =

Q−1
∑

k=0

min
ak∈RP

1

2
||πxk

(f) −

P−1
∑

m=0

ak,mψm||
2

(23)

+η

P−1
∑

m=0

|ak,m|.

Note that this corresponds to the adaptive regular-

ization framework (2) with the replacement of the

geometry λ by a patch dictionary D.

The resolution of (22) requires the minimization

of a non-convex energy over both the image to

recover and the dictionary to learn. This min-

imization can be performed alternatively on f ,

the coefficients ak involved in (23), and {ψm}m,

which are all convex problems. One can show the

convergence of this scheme toward a stationary

point of the energy, see [78].

An indepth review of the applications of dictio-

nary learning to image processing can be found in

[40]. For Φ = Id, the minimization (22)performs

state of the art denoising [39]. When Φ is a

masking operator, the minimization (22)performs

inpainting [59], in which case the dictionary can be

learned from exemplar images, and also updated
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at each step of the minimization. One can also

use several dictionaries and perform a joint image

separation and regularization. This separation pro-

cess extends the original morphological compo-

nent analysis to an adaptive setting [78]. Figure 16

shows the enhancement of the inpainting obtained

using a learned dictionary instead of a fixed local

cosine dictionary.

Original Image f0 Observations y

MCA, SNR=15.8dB Adaptive MCA, SNR=18.8dB

Fig. 16. Comparison of inpainting using sparsity in a fixed

dictionary of wavelets and local DCT (MCA), and using a

wavelet basis and a learned dictionary (adaptive MCA).

Application to computer graphics and vision.

Texture synthesis is performed by computing a

random synthesized image f whose patches are

sparse in a given dictionary D, see [74]. This

dictionary D is learned from patches extracted

from an exemplar f0. The synthesis is obtained

by initializing f to be a Gaussian white noise, and

then iterating between the sparse patch coding (21)

in D using πk = πxk
(f) and averaging of the

reconstructed patches

f(x) =
1

Nx

∑

k

πk(x− xk), πk =

P−1
∑

m=0

ak,mψm.

where Nx is the number of patches πk that overlap

at a point xk.

Dictionary learning over sparse patches also

allows to perform texture classification and seg-

mentation [89], [74]. A dictionary is learned for

each texture class, and a pixel is assigned to the

class that performs the best sparse approximation

around this pixel. A similar idea is applied to

perform image recognition [58], where the dic-

tionary is trained by enforcing both sparsity and

discrimination of the classes. See [96] for a re-

view of the application of dictionary learning to

computer vision, including its application to face

recognition.

C. Non-local Methods

Non-local Filtering. Non-local filtering have been

introduced by Buades et al. [8] as an efficient de-

noising method. A spatially varying filter param-

eterized by λ computes Gλf(x) =
∑

y λx,yf(y)
where λx,y > 0 characterizes the interaction be-

tween the features around point x and around point

y.

An adaptive non-local filtering computes the

weights λ = λ(f) from the image f to process

λx,y(f) =
λ̃x,y
Zλ̃(x)

where (24)

{

Zλ̃(x) =
∑

y λ̃x,y,

λ̃x,y = exp
(

− ||πx(f)−πy(f)||α

s

)

where α > 0 and s > 0 controls the shape of the

weights.

As s tends to zero, the filtering becomes re-

lated to texture synthesis method [37], [95], see

Figure 7, third image from the left. Indeed, given

an input image f , and starting from a random

noise image f (0), applying the recursive scheme

f (k+1) = Gλ(f)f
(k) for a small s produces a

random image visually similar to f .

Non-local Spectral bases. This adaptive filtering

is connected to adapted decomposition by intro-

ducing an adaptive non-local spectral basis [91],

[72]. It is defined as the orthogonal eigenvectors

basis Bλ = {ψλm}
N−1
m=0 of the filtering operator

G∗
λGλ

ψλm = µmG
∗
λGλψ

λ
m

and where µm > 0 is the corresponding eigen-

value, assumed to be sorted in increasing or-

der. The eigenvectors are a generalization of

Fourier atoms to a spatially adaptive setting. Fig-

ure 17 shows examples of non-local spectral atoms

adapted to the geometry of a cartoon image. They

are oscillating near the boundary of the shape, to

allow a better reconstruction of this singularity.
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Image f m = 3

m = 5 m = 10

Fig. 17. Example of non-local spectral vectors ψλ
m for

several value of m.

An adaptive denoising of a noisy observations

y = f0+w is obtained by computing the non-local

graph λ(y) and then thresholding the coefficients

in this basis HT (y,Bλ(y)), see [72].

Non-local Regularization. The non-local filtering

Gλf is related to the minimization of a non-

local energy
∑

x,y λx,y|f(x) − f(y)|α, see for in-

stance [50], [41], [21]. To tackle the regularization

of an inverse problem y = Φf0 +w, this energy is

replaced by

Jλ(f) =
∑

x,y

λx,y||πx(f) − πy(f)||α, (25)

see [43], [77]. For α = 2, it is a generalization

of the Sobolev prior to the non-local setting. For

α = 1, it extends the total variation.

For some inverse problems y = Φf0+w such as

deblurring [68], [53] or inpainting small holes [9],

it is possible to estimate the graph from the obser-

vations λ = λ(y). For generic inverse problems,

the graphs λ needs to be optimized in parallel to

the reconstruction. In this setting, the weights λ
are constrained to be a probability distribution, so

that
∑

y λx,y = 1 for each x. Following [43],the

spread of the weights is controlled using a nega-

tive entropy E(λ) = s
∑

x,y wx,y log(wx,y) with

weight s > 0.

Recovery from the noisy measurements y =

Φf0 + w is obtained by minimizing

min
f∈RN ,λ

E(f, λ) =
1

2µ
||y−Φf ||2 + Jλ(f) + E(λ),

(26)

as introduced in [43]for inpainting and in [77]for

generic inverse problems. Note that this fits into

the general adaptive framework (2).

The minimization of the non-convex problem

(26) is performed by iteratively minimizing with

respect to λ and to f . For a fixed f , the optimal

weights minimizing (26) are defined as in (24).

For a fixed λ, the optimal image is computed by

minimizing a convex problem. One can shows that

for α > 1, this scheme converges to a stationary

point of E defined in (26), see [77].

Figure (18) shows a comparison between this

approach and total variation and wavelet sparsity

for the recovery from missing random pixels.

CONCLUSION

This paper has reviewed several adaptive image

representations, with an emphasis toward sparsity

and non-local processing. The adaptivity to the

geometry of edges and textures allows one to

better represent these features. This geometry can

be estimated directly from a clean or a noisy im-

age to perform compression or denoising. Iterative

algorithms are able to tackle more difficult in-

verse problems through the minimization of a non-

convex energy. The resulting iterative estimation

process progressively recovers both the geometric

parameters and the image content.
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