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Summary. This chapter concerns the design of a remote control loop constituted by a Slave
system (with computing and energy limitations) and a Master computer, communicating via an
Internet connection. In such a situation, the communication cost is reduced but the Quality of
Service of the Internet connection is not guaranteed. In particular, when the Slave dynamics are
expected to be fast enough, the network induces perturbations (delays, jitters, packet dropouts
and sampling) that may damage the performance. Here, the proposed solution relies on a
delay-dependent, state-feedback control, computed by the Master on the basis of an observer.
This last estimates the present Slave’s state from its past sampled outputs, despite the various
delays. Then, the computing task is concentrated in the Master. The theoretical results are
based on the Lyapunov-Krasovskii functional and the approach of LMI, which guarantee the
stabilization performance with respect to the expected maximum delay of the connection.
Two strategies are applied: one is a constant controller/observer gain strategy, which takes
into account a fixed upperbound for the communication delay. The second strategy aims at
improving the performance by adapting the gains to the available network QoS (here, with
two possible upperbounds).

Key words: Remote control, Switching signal, Exponential stability, Linear time-
delay system, LMIs, Internet, UDP, Robot.

1 Introduction

Networked Control System (NCS) is a type of closed-loop control system with
real-time communication networks imported into the control channel and feedback
channel. The control and feedback signals in a NCS exchanged among the system’s
components are in the form of information packets through a network. The network-
induced delay is brought into the control systems, which may create unstable behav-
iors.
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Network induced delays vary depending on the network hardware, on the differ-
ent protocols, on the traffic load. . . In some cases, such as in token ring local area
network, the time-delay is bounded; for other networks like Ethernet and Internet,
the time-delay is unbounded and varying.

As Internet and Ethernet are well developed, remote control system has been
widely used in industrial, communicational, medical systems, to cite a few. How-
ever, alongside the advantage of low costs, the Internet inevitably brings problems to
the closed-loop controlled system, such as delay variation, data-packets loss [1] and
disorder, which can cause poor performance, instability or danger(see for instance
chapiter 5 of [2],[3] and the references herein).

How to diminish the effect of time delay in the remote system is critical in the
system design. The main solution can split into two (combinable) strategies [2, 4]:
1) Increase the network performances (QoS) or 2) design an adapted control that can
compensate the network influence. In this chapter, we consider this last approach for
the network controlled system via Internet or Ethernet. The experiments we propose
in the last part are using Internet, but the control strategy holds for both network
standards.

A variety of stability and control techniques have been developed for general
time delay systems [5, 6, 7, 8]. Applications of these techniques to Networked Con-
trol Systems were also derived [9, 10, 11, 12, 1, 13, 14]. But some of these results are
based on simplifying assumptions (for instance, the delays are constant) or lead to
technical solutions that decrease the performances (for instance, a “buffer strategy"
allows to make the communication delays become constant by waiting enough after
the data are received). In fact, to consider the time delay as constant [10, 15, 16, 17] is
actually unrealistic due to the dynamic character of the network. A delay maximizing
strategy [8, 11] (“virtual delay”, “buffer”, or “waiting” strategy) can be carried out
so to make the delay constant and known. This requires the knowledge of the max-
imum delay values hm. However, it is obvious that maximizing the delay up to its
largest value decreases the speed performance of the remote system. Several results
are limited to time-delay whose value is less than the sensor and controller sampling
periods [18]. In the Internet case, this constraint leads to increase the sampling peri-
ods up to the maximal network delay, which may be constraining for high dynamic
applications.

Note that, in the Internet case, the network delays cannot be modeled nor pre-
dicted. Moreover, the (variable) transmission delays are asymmetric, which means
that the delay h1(t) from Master to Slave (shortly, M-to-S), and the return one (S-to-
M) h2(t) normally satisfy h1(t) 6= h2(t). Because of this lack of knowledge, predictor-
based control laws [12] cannot be applied.

Our aim is to ensure suitable stabilization and speed performances, i.e. exponen-
tial stabilization, despite the dynamic variations of the network.

Our solution relies on the theoretical results of [19] (exponential stabilization
of systems with unknown, varying delays), as well as [13] (networked control), the
main lines of which will be shortly recalled in the next section. It allows for applying
a waiting strategy only to the M-to-S communication, whereas the S-to-M commu-
nication takes the sensor measurements into account as soon as received. In order
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to enhance the performance of the system, a gain scheduling strategy is adapted ac-
cording to the variable time-delay of the network involved. In our application, we use
Internet for a long distance remote control. The Master-Slave system is based on the
UDP protocol and involves lists as buffers. The choice of UDP is preferred to TCP
because in our NCS (Networked Control System) situation, packets re-emitting is
not needed and setting up the TCP connection between two PCs is time-consuming.

2 Exponential stability of a remote system controlled through
Internet

We consider the remote system based on the Master-Slave structure. For energy
saving reasons, the work of the Slave PC is simplified, while the control and obser-
vation complexity is concentrated on the Master. The main features of the system
refer to Fig.1.

Fig. 1. Structure of general M/S based remote system

2.1 The three delay sources

In such a situation, the variable delays come from: 1) the communication through
the Internet; 2) the data-sampling; and 3) the possible packet losses. In the sequel,
h1(t) and h2(t) denote the communication delays and τ1(t) and τ2(t) include the
sampling delays and possible packet losses. The total delay δi(t) between Master
and Slave results from the addition of hi(t) and τi(t) for i ∈ {1,2}.

1) Both computers dates are automatically synchronized in the system. The strat-
egy of NTP (Network Time Protocol)[20] is used in the program to calculate the
time clock difference between the two sides. By this way, whenever the Master or
the Slave receives the data including the time stamp, it knows the instant tk of data
sending out and the resulting transmission delay hi(tk), i = 1,2.

2) The real remote system, including Master, Slave and network, must involve
some data sampling. However, following [21, 22], this phenomenon is equivalent
to a time-varying, discontinuous delay τi(t) (to be defined in (1)), which allows for
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keeping a continuous-time model. If the packets exchange between the Master and
the Slave is of high speed, then τi(t) constitutes a disturbance that should be con-
sidered in the stabilization design [1]. τi(t) is variable but it is supposed there is a
known T (maximum sampling period) so that τi(t)≤ T .

3) If some packet ptk containing the sample at tk is lost, or arrives later than the
packet ptk+1 , then the Master only considers the most recent data (i.e., those from
ptk+1). If it is assumed that the maximum number of successive packets that can be
lost is N, then the maximum resulting delay is NT . The same lines also holds for the
control packets.

From 2) and 3), the delay δi(t) has a known maximum δ m
i (t) = (N + 1)T + hm

and the delay variation satisfies δ̇i(t) ≤ 1. In order to keep simple expressions, the
notation T will be kept preferably to T ′ = (N +1)T .

Summarizing, given a signal g(t) and the global delay δ (t) which represents
the combination of the sampling and packet delay h(tk) that the transmission line
subjects to the packet containing the kth sample at time tk, g(t) can be written as:

g(tk−h(tk)) = g(t−h(tk)− (t− tk)),
= g(t−δ (t)),

tk ≤ t < tk+1, δ (t) , h(tk)+ τk(t),
τk(t) = t− tk.

(1)

2.2 Transmission and receipt of the control data

Fig. 2. Control data processing

The kth data sent by the Master to Slave includes the control u(t1,k) together with
the time stamp when the packet is sent out. At time tr

1,k, when the Slave receives the
data it can calculate the time delay because of the time stamp. If the delay equals
h1m, the Slave should apply immediately the command.

The control u, sent out by the Master at time t1,k, is received by the Slave at time
tr
1,k > t1,k. It will be injected in the Slave input only at the pre-defined “target time"
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ttarget
1,k = t1,k + h1m. The corresponding waiting time t1,k + h1m − tr

1,k is depicted on
Fig. 2. This is realistic because the transmission delay is bounded by a known value
h1m. By this way, the Master knows the time t1,k +h1m when this control u(t1,k) will
be injected at the Slave input.

2.3 Problem formulation and preliminaries

Consider the Slave as a linear system. It is described as following form, in which
(A,B,C) is controllable and observable.

{
ẋ(t) = Ax(t)+Bu(t−δ1(t)),
y(t) = Cx(t), (2)

where δ1(t) = δ1 +η1(t),‖ η1(t) ‖≤ µ1.
In order to guarantee the closed-loop stability whatever the delay variation, the

exponential stability with the rate α must be achieved. In other words, there must
be a real κ ≥ 1 so that the solution x(t; t0,φ) starting at any time t0 from any initial
function φ satisfies:‖x(t; t0,φ)‖ ≤ κ‖φ‖e−α(t−t0). In this paper, it is achieved using
a state observer and a state feedback.

To ensure this exponential global stabilization, one can use the results of [13]
which considers a Lyapunov-Krasovskii functional with descriptor representation:

V (t) = x̄T
α(t)EPx̄α(t)+

∫ 0
−δ1

∫ t
t+θ ẋT

α(s)Rẋα(s)dsdθ+∫ t
t−δ xT

α(s)Sxα(s)ds+
∫ µ1−µ1

∫ t
t+θ−δ1

ẋT
α(s)Raẋα(s)dsdθ ,

(3)

where x̄α(t) = col{xα(t), ẋα(t)} , xα(t) = x(t)eαt and E = diag{I,0(2×2)}.
Because of the separation principle, one can divide the analysis of the global sta-

bilization into two smaller problems: the observer design and the controller design.
The result are recalled hereinafter using an observer/controller.

2.4 Observer design

For a given k and for any t ∈ [t1,k +h1m , t1,k+1 +h1m[, there exists a k′ such that
the proposed observer is of the form:

{ ˙̂x(t) = Ax̂(t)+Bu(t1,k)−L(y(t2,k′)− ŷ(t2,k′)),
ŷ(t) = Cx̂(t). (4)

The index k′ corresponds to the most recent output information that the Master has
received. Note that the Master knows the time t1,k and the control u(t1,k) (see Section
3.3), which makes this observer realizable.

Using the delay (1) re-writing , one obtains:
{ ˙̂x(t) = Ax̂(t)+Bu(t−δ1(t))−L(y(t−δ2(t))− ŷ(t−δ2(t))),

ŷ(t) = Cx̂(t). (5)
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with δ1(t) , t − t1,k and δ2(t) , t− t2,k′ . In other words, the observer is realizable
because the times t1,k and t2,k′ defining the observer delays are known thanks to the
time stamps. The system features lead to δ1(t)≤ h1m +T and δ2(t)≤ h2m +T .

We define the error vector between the estimated state x̂(t) and the present system
state x(t) as e(t) = x(t)− x̂(t). From (2) and (5), this error is ruled by:

ė(t) = Ae(t)−LCe(t−δ2(t)). (6)

Theorem 1. [13] Suppose that, for some positive scalars α and ε , there exists n×n
matrices 0 < P1, P, S, Y1, Y2, Z1, Z2, Z3, R, Ra and a matrix W with appropriate
dimensions such that the following LMI conditions are satisfied for j = 1,2:

[
Ψ2

[
β2 jWC−Y1

εβ2 jWC−Y2

]
µ2β2 j

[
WC
εWC

]

∗ −S 0
∗ ∗ −µ2Ra

]
< 0,

[
R Y
∗ Z

]
≥ 0,

where β2 j are defined by:

β11 = eα(δ1−µ1), β12 = eα(δ1+µ1),

β21 = eα(δ2−µ2), β22 = eα(δ2+µ2),
(7)

and the matrices Y , Z and Ψ2 are given by:

Y = [Y1 Y2], Z =
[

Z1 Z2
∗ Z3

]
, (8)

Ψ 11
2 = PT (A0 +αI)+(A0 +αI)T P+S

+δ2Z1 +Y1 +Y T
1 ,

Ψ 12
2 = P1−P+ εPT (A0 +αI)T +δ2Z2 +Y2,

Ψ 22
2 = −ε(P+PT )+δ2Z3 +2µ2Ra +δ2R.

Then, the gain:
L = (PT )−1W, (9)

makes the error (6) of observer (5) exponentially converge to the solution e(t) = 0,
with a decay rate α .

In the following, the solution of the LMI problem corresponding this theorem is
written:

L = LMIobs(µ2,δ2,α) (10)

2.5 Control design

We first consider a controller u = Kx, i = 1,2, i.e. the ideal situation e(t) = 0,
x(t) = x̂(t) and:

ẋ(t) = Ax(t)+BKx(t−δ1(t)). (11)
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Theorem 2. [13] Suppose that, for some positive numbers α and ε , there exists a
positive definite matrix P̄1, matrices of size n×n: P̄, Ū , Z̄1, Z̄2, Z̄3, Ȳ1, Ȳ2 similarly to
(8) and a n×m matrix W, such that the following LMI conditions hold:

Γ3i =

[
Ψ3

[
β1iBW − Ȳ T

1
εβ1iBW − Ȳ T

2

]
µ1

[
β1iBW

εβ1iBW

]

∗ −S̄ 0
∗ ∗ −µ1R̄a

]
< 0,

∀i = 1,2,
[

R̄ Ȳ1 Ȳ2
∗ Z̄1 Z̄2
∗ ∗ Z̄3

]
≥ 0,

where β1i, for i = 1,2, are defined by (7) and

Ψ̄ 11
3 = (A0 +αI)P̄+ P̄T (A0 +αI)T + S̄

+δ1Z̄1 + Ȳ1 + Ȳ T
1 ,

Ψ̄ 12
3 = P̄1− P̄+ εP̄T (A0 +αI)T +δ1Z̄2 + Ȳ2,

Ψ̄ 22
3 = −ε(P̄+ P̄T )+δ1Z̄3 +2µ1R̄a +δ1R̄.

Then, the gain:
K = WP̄−1, (12)

exponentially stabilizes the system (11) with the decay rate α for all delay δ1(t).

In the following, the solution of the LMI problem corresponding this theorem is
written:

K = LMIcon(µ1,δ1,α) (13)

2.6 Global stability of the remote system

The gains K and L have to be computed in such a way they exponentially stabilize
the global Master-Slave-Observer system despite the variable delays δ1(t) and δ2(t).
This global system is:

{
ẋ(t) = Ax(t)+BKx(t−δ1(t))+BKe(t−δ1(t)),
ė(t) = Ae(t)+LCe(t−δ2(t)).

(14)

A separation principle is then applied to the previous system. Then if L and K
are chosen with respect to sections 2.4 and 2.5 respectively, the global system is
exponentially stable with the lowest decay rate.

3 Architecture of the global control system

3.1 Features of the remote system

The remote system is based on Master-Slave structure. In order to simplify the
work of the Slave PC, the control and observation complexity is concentrated on
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Fig. 3. Structure of the global system

the Master. The main features of the system refer to Fig.3. In the system, the robot
Miabot of the company Merlin Systems Corp. Ltd together with a PC serves as the
Slave. The Miabot works as an accessory device which communicates with the PC
by the port of Bluetooth, so we cannot use buffer strategy directly on the robot.
Because there is no time information included in the command of Miabot, we do not
know when the control is applied. That means, we cannot use time stamp on Miabot.
To simplify our problem and apply the theory of [13], we treat the time-delay of
Bluetooth between the PC and Miabot as a constant one. We add the delays d1, d2
into the respectively variable delays h1(t), h2(t).

The transmission protocol UDP is applied to communicate the data between Mas-
ter and Slave. In order to know the instant of data-sent, time stamps are added to the
data packets. The data structure of list served as buffers is introduced for the program
to search for the data of the right instance. In all the lists, the control data are restored
in the decreasing order of its sending time. That is to say, the most recent sent data
is always at the beginning of the list.

3.2 Synchronization of the time clocks

To synchronize the different time in the two PCs, we can add GPS into the system
[13], but this increases the cost and it is not flexible. Another way is to use a certain
protocol such as NTP (Network Time Protocol) [20]. Due to different time clock
of PCs, we have to make synchronization from time to time. So, our solution is to
directly adapt the strategy of NTP in the program to calculate the time differences.

As showed in Fig. 4, here k is the sequential number of the packets sending from
the Master and k′ is the number sent back. h1(k) and h2(k′) refer to the respective
delays of the communication on Internet. To simplify the problem, we assume that
h1(k) = h2(k′). If we define the time clock difference between the M/S as follows
(ts, tm are the respectively time of the Slave and the Master):

θ = tm− ts; (15)

Then, we can calculate the time difference between the two PCs using the fol-
lowing equations (4 is the process time for Slave):
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Fig. 4. Packets communication between the M/S

θ(k,k′) = (tr
m,k′ − te

s,k′ + te
m,k− tr

s,k)/2; (16)

h1(k) = h2(k′) = (tr
s,k− te

m,k + tr
m,k′ − te

s,k′)/2; (17)

That is to say, every time the Master receives a packet, the time clock difference
between the M/S and the time delay of the Internet can also be measured. The values
of θ and hm are comprised in the control packets, so whenever the Slave receives a
control, it can calculate the "target" time for applying the control.

3.3 Transmission and receipt of the control data

The kth data sent by the Master to Slave includes the control u(te
m,k) together with

the time stamp when the packet is sent out. At time tr
s,k, when the Slave receives the

data it can calculate the time delay because of the time stamp. If the delay equals
h1m−d1, the Slave should apply immediately the command.

The control u, sent out by the Master at time te
m,k, is received by the Slave at time

tr
s,k > te

m,k − θ . It will be injected in the Slave input only at the pre-defined “target
time": ttarget

s,k = ttarget
m,k − θ = te

m,k + h1m− θ . The corresponding waiting time h1m is
depicted on Fig. 5. This is realistic because the transmission delay is bounded by a
known value h1m. By this way, the Master knows the time when this control u(te

m,k)
will be injected at the Slave input.

3.4 The structure of the Master

In order to implement the model for the remote control system, four-thread pro-
gram is designed to fulfill the functions of Controller and Observer in Fig.3.

These four threads are concurrently working as showed in Fig.6. There are two
buffers, list_U and list_X which respectively keep the data sent out from the Master
and the data of the estimated state of the Slave. The most recent calculated data is



10 Wenjuan Jiang,Alexandre Kruszewski, Jean-Pierre Richard and Armand Toguyeni

Fig. 5. Control data processing

Fig. 6. Structure of the Master

inserted at the beginning of the lists so that it is easier to find the right data we need
and delete the obsolete ones.

Here we consider the following notations. p is the index of the different com-
mands given by the ConsThread. k is the index of the control u given by SenderThread.
q is the index of estimation state given by the ObserverThread and the k′ is the index
of the measure given by the ReceiverThread.

(a) ConsThread is a periodic thread which gets the tasks (it is the position where
the user wants the motor to arrive) from a file given by the user. In this way, the user
can freely change the task. The time period T3 for this thread to work continuously is
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set before the system begins to work whose value should be greater than the response
time of the Slave.

(b) SenderThread is also a periodic one which first gets the task (c(t3,p)) designed
by the user. Considering the mechanic character of the Miabot, we choose 0.1sec as
the time period. Then it calculates the control data for sending out to the Slave.

The most recent x̂(t0,q) can be found at the beginning of the list_X ; then, the data
of command together with the system time is sent out to the slave through a socket.
While, at the same time it is inserted into the list_U for the ObserverThread to use.

(c) ReceiverThread is a event-driven thread. As there is data arrived from the
slave, it first check whether there is packet loss. The maximum number of packet
which can be lost without implies instability of the system is an open issue of our
researches. Then according to the time stamp, the time clock difference and the
time-delay are calculated, meanwhile, the most recent data is sent to the thread of
ObserverThread.

(d) ObserverThread is the most important part of the program. It mainly serves as
the Observer in the system model. The main task is to estimate the present position
and speed of the motor. In order to estimate the continuous state of the Miabot,
the time period of this thread should be small enough. In our program, we choose
0.01sec. As we can see from the result of the experiment (Section 3.6), this value
is suitable. To accomplish the function of the Observer, it is needed to find out the
command u which has been applied to the slave system and the estimated motor
position at the time when the information is sent out from the slave.

As it is illustrated in Fig.7, in order to determine ŷ(t2,k′), it is necessary to find
in the list_X the closer state estimation x̂ with regard to the date ts,k′ − d1. And we
can get the control data u in the list_U with the time stamp of time h1m before. So,
according to the equation (4), the estimated state can be obtained. As we can see

Fig. 7. Packet Sequences

from Fig.7, in order to find the state x̂(t0,q) at the time nearly to ts,k′ − d1, the time
period of this thread should be small enough.

3.5 The structure of the Slave

The Slave does not need power computation abilities, because it just needs to
communicate with the Master and the Miabot. As we can see from Fig.8, this pro-
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gram is divided into two threads: ReceiveThread and SendThread. As we need to
apply the control data with the time delay of h1m after the time stamp, a list_Y is
used to contain the control data temporarily, in which all the nodes are sorted in the
order according to the its’ time stamp. That means the most recent control is inserted
at the end of the list.

Fig. 8. Structure of the Slave

(a) ReceiveThread is an event-driven thread which is activated by the control data
arrived from the Master. The control data is inserted into the proper position of the
list list_Y according to its time stamp. If the time stamp is before the oldest data of
the list, that means there is disorder of the packets through Internet, then the data
is discarded. If there are several packets lost, as we have a high frequency of the
Master’s SenderThread, it does not affect the stability of the system.

(b) SendThread is used to apply the control to the Miabot as well as to get its
real position, and then send the data back to the Master. Firstly, the thread takes the
packet at the beginning of list_Y. Thanks to the value of the difference time clock
between Master and Slave in the packet, we can calculate the "target" time to apply
the control. Then the control is sent to the Miabot by the port of Bluetooth at the
right time when the Miabot sends back the measure y(te

s,k′) of its position. This value
is sent to the Master with the time stamp ts,k′ −d1 while ts,k′ is the reception time by
the Slave PC.

3.6 Experimental study

After identification of the Miabot, we get the following model:
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Fig. 9. The RTT between the two PCs by Internet(40km away)

{
ẋ(t) =

[
0 1
0 −10

]
x(t)+

[
0

0.014

]
u(t−δ1(t))

y(t) = [ 1 0 ]x(t).
(18)

We have continuously tested the RTT (Round-trip-time) between the two PCs
by the protocol ICMP (Internet Control Message) as showed in Fig.9. From these
tests, considering also the Bluetooth transmission delays and the sampling delays,
we take the value δ1 = δ2 = 0.4sec and µ1 = µ2 = 0.1sec. If there are once or a few
times that the time-delays are bigger than 0.5sec, we treat the packets as being lost.
The gains K and L have to be computed in such a way they exponentially stabilize
the global Master-Slave-Observer system despite the variable delays δ1(t) and δ2(t).
According to [13], we get α = 0.96 when the gain L is chosen as:

L =
[
−1.4
−0.13

]
. (19)

The gain K is as following:

K = [−702 −70 ] (20)

The experiment is done on two computers separated about 40 kilometers away.
The Master program runs on the remote computer with an advanced computing ca-
pability, the slave program on the local one. We get the result showed in the Fig. 10,
in which the chain line represents the set values; the solid lines represent the robot’s
estimated state, the position and the speed; the dotted line correspond to the real
position. Fig.11 represents the sampled control data send to Slave.

Note that all the data in the figure are obtained from the Master, so the data
of the real position of the Miabot (dotted line) lags behind the estimated one. This
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Fig. 10. Results of remote experiment

0 5 10 15 20 25 30 35 40 45 50 55
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

time(s)

co
m

m
an

d 

 

 
Sampled command

Fig. 11. The corresponding Slave control of centralization experiment

illustrates the fact that, despite the time delays of Internet and Bluetooth, the Master
estimates a prediction of the Slave’s state.
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Fig. 12. hm = 0.05s,α = 8.74

Fig. 13. hm = 0.5s,α = 0.96

Fig. 14. The relation between hm (sec) and α

4 Performance enhancement by a gain scheduling strategy

4.1 Effects of time-delay on the performance and the system stability

The time-delay of the Internet varies a lot especially between the rush hour and
idle time period (Fig. 9). In order to guarantee the exponential stabilization, we have
to choose the maximum time-delay, whereas most of the time, the time-delay is much
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smaller. In other words, the performance is decreased. Comparing the two simulation
results of Matlab, Fig. 12 and Fig. 13, we can see that when the hm is smaller, the
value of α is larger and the task is more quickly attained. In the table Fig. 14, we
list several corresponding values of hm and α . It is clearly that increasing hm means
decreasing the performance of the system.

In order to enhance the performance and make the system adaptable to the
changeable time-delay of the Internet, we have designed two controllers correspond-
ing with two bounds of time-delay. The controller switches on the function of time-
delay. The switching signal is given by σ(t) = γ(t− ξ ), where ξ is the time-delay
of the signal due to the Internet and calculation. In order to guarantee the uniform
exponential stability, our solution is to find a common Lyapunov function for both
closed loops [23]. Of course, for greater delay values, the performance cannot be
guaranteed anymore and an alternative solution has to be considered. In our system,
we give a command for the robot to stop until the communication comes back to a
sufficient quality.

4.2 Uniform stability with gain scheduling

In order to reach higher value for the exponential convergence, one proposes
switching controller and observer gains. The switching signals σ1(t) and σ2(t) cho-
sen are function of the time delays δ1(t) and δ2(t). For sake of simplicity, they can
only take two values:

σi(t) = j, i f δi(t) ∈ [hi j
Min,h

i j
Max[, i, j = 1,2 (21)

Consider every zone of time-delay, we have to compute the gains K1, K2 and L1,
L2 in such a way that they exponentially stabilize the global Master-Slave-Observer
system despite the variable delays δ1(t) and δ2(t). This global system is:





ẋ(t) = Ax(t)+BKσ1(t)x(t−δ1(t))+BKσ1(t)e(t−δ1(t)),
ė(t) = Ae(t)+Lσ2(t)Ce(t−δ2(t)),
σ1(t) = γ1(t−δ1(t)−δ2(t)),
σ2(t) = γ2(t−δ2(t)).

(22)

γi(t) are the detection functions of δi(t). These functions are delayed because
the Master needs to receive the last packet to calculate the delays. So each gain is
activated for a certain period (δ1(t)+δ2(t)) or δ2(t))).

Each gain is computed using
K j = LMIcon((h

1 j
Max−h1 j

Min)/2,(h1 j
Max +h1 j

Min)/2,αcon)
L j = LMIobs((h

2 j
Max−h2 j

Min)/2,(h2 j
Max +h2 j

Min)/2,αobs).
A sufficient condition to prove the uniform stability of the switching closed loop

is to find a common Lyapunov-Krasovskii functional for all gains. This functional
has to take into account all admissible delays i.e. ∀δi(t) ∈ [hi1

Min,h
i2
Max[. For each gain

Fig. 15 shows the regions where the exponential stability is proven.
The following theorems give sufficient conditions to prove the uniform stability

of the switching closed loop.
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Fig. 15. Uniform stability of the system

Theorem 3. Suppose that, for a given switching observer gains Lσ2(t), for some
positive scalars α and ε , there exists n×n matrices 0 < P1, P, S, Y1, Y2, Z1, Z2, Z3,
R, Ra such that the LMI conditions 1 and the following ones hold for i = 1,2, j = 1,2

[
Ψ2

[
β2 jPT LiC−Y1

εβ2 jPT LiC−Y2

]
µ2β2 j

[
PT LiC

εPT LiC

]

∗ −S 0
∗ ∗ −µ2Ra

]
< 0,

where the matrices Ψ2 and β2 j are the same as in theorem 1.
Then the error of observer exponentially converge to the solution e(t) = 0, with

a decay rate α .

Proof: Consider the Lyapunov-Krasowskii functional (3). Following the same
proof as in [13], one gets the following sufficient conditions for j = 1,2:


Ψ2

[
β2 jPT Lσ2(t)C−Y1

εβ2 jPT Lσ2(t)C−Y2

]
µ2β2 j

[
PT Lσ2(t)C

εPT Lσ2(t)C

]

∗ −S 0
∗ ∗ −µ2Ra


 < 0,

Then by convexity, one obtains the conditions of the previous theorem.

Theorem 4. Suppose that, for a given switching state feedback Kσ1(t), for some posi-
tive numbers α and ε , there exists a positive definite matrix P̄1, matrices of size n×n:
P̄, Ū , Z̄1, Z̄2, Z̄3, Ȳ1, Ȳ2 similarly to (8), such that LMI conditions 1 and the following
ones hold for i = 1,2, j = 1,2

[
Ψ3

[
β1iBK jP̄− Ȳ T

1
εβ1iBK jP̄− Ȳ T

2

]
µ1

[
β1iBK jP̄

εβ1iBK jP̄

]

∗ −S̄ 0
∗ ∗ −µ1R̄a

]
< 0,

where the matrices Ψ3 and β1 j are the same as in theorem 1. Then the closed loop
is exponentially stable with the decay rate α for all delay δ1(t).

Proof: Same as in the observer case.
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4.3 Gain scheduling experiments

Considering the initial approach, i.e. without switching gains, the maximum ex-
ponential convergence obtained is αcontrol = αobserver = 0.96.

Consider two zones of delay with δ 1
1 = δ 1

2 = 0.04sec. ,µ1
1 = µ1

2 = 0.04sec,and
δ 2

1 = δ 2
2 = 0.29sec., µ2

1 = µ2
2 = 0.21sec. It means that the gains switch when the

delay crosses the value of 0.08sec. According to Theorem (3) and (4), the maximum
exponential convergence ensuring the global stability are: αcontrol1 = 2.1, αobserver1 =
2.2, and αcontrol2 = αobsever2 = 1.

Note that because the global stability is checked after the computation of the
gains, these values are not optimal. To get optimal value, it is needed to be able to
find the control/observer gains ensuring the exponential convergence and the global
stability at the same time with a LMI problem.

The gains Ki and Li (i = 1,2) are:

L1 =
[−3.01
−0.77

]
,K1 =

[−1659 −260
]
.

L2 =
[ −1.4
−0.16

]
,K2 =

[−1015 −100
]
.

4.4 Result of remote experiment

The experiment is done in the same situation as mentioned in the proceeding
parts. The result is shown in Fig. 16, in which the chain line represents the set val-
ues; the solid lines represent respectively the robot’s estimated position and speed;
the dotted line corresponds to the real position of the Miabot. Fig.17 is the cor-
responding variable time-delays, which comprises the time-delay of sampling and
communication of Bluetooth (we consider it as constant time-delay, here we take the
value of 40ms). In Fig.18, the solid line represents the sampled control sent to Slave,
and the chain line and dotted one represent the command for the zone one and two
respectively. Fig.19 shows the time point when the system switches enter the values
of the two zones.

Because the maximal speed of the Miabot is 3.5m/sec [24], the command value
corresponding is 2000 (in open loop). But to guarantee the linear character of the
Miabot, we make the command not greater than 1000 and the speed 1.7m/sec. The
controller gains are those of the last section. Despite of their high value, one can
notice that the control signal (Fig.18) to not exceed the limit value as well as the
speed (Fig. 16 solid line) which validates the linearity assumption.

On Fig. 16, one can notice three kinds of step response. The first one corresponds
to the case where the control switches a lot during the response. In that case, only the
global stability is guaranteed. During the second step, only the second zone is active,
i.e. only the gains K2 and L2 are active (α = 1). In this case, some performances
are guaranteed. In the last kind of response, only the first zone is active because the
delays are small. In that case, the performances are better (α = 2.1): the response
time is smaller and the damping is greater.
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As it is clearly shown in Fig. 16, the global stability of the closed loop is main-
tained despite that some assumptions made are not satisfied. On the bluetooth, it was
considered constant whereas in reality it varies (the minimum delay recorded os less
than 40ms). And the other one is on the synchronization, symmetric delays were
needed and in the experiment it was clearly not the case.
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Fig. 16. Results of remote experiment

5 Conclusion

In addition to some fundamental results, an experimental platform has been de-
veloped to illustrate the results of the network-based control theory. This platform
is able to control a slave through a network and joins skills in automatic control,
computer science and networks.

The experimental results confirm the theory: 1) The exponential stability is ob-
tained in both the time-delay zones and the uniform stability is guaranteed. 2) The
experimental performances are showed to be better when considering two zones of
time delay instead of one.

Considering the variation of time-delays, more than two-zone-switching signals
can be selected in order to enhance the performance of the global system. The LMI
conditions, in that case, have an increased size and are straightforwardly inspired
from Theorem (3) and (4) are not investigated here.
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A way to improve the presented results is to propose a “one shot algorithm”
which allows finding the optimal gains in term of exponential convergence. Another
trend is to investigate a solution without the input buffer. Without buffer, the input de-
lay will be smaller ensuring more performances and the slave will need less memory
to run [25].

A last perspective is to consider the improvement of the network communication
by, for example, developing dedicated protocols which minimize the time delays and
enhance the clock synchronization.
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