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Causal observability of nonlinear time-delay systems
with unknown inputs

G. Zheng , J-P. Barbot , D. Boutat, T. Floquet, J.-P. Richard

Abstract— This paper investigates the problem of causal
observability of the states and unknown inputs of nonlinear
time-delay systems. Using the theory of non-commutative rings,
the nonlinear time-delay system is transformed into a suitable
canonical form to solve the problem. A necessary and sufficient
condition is given to guarantee the existence of a change
of coordinate leading to such a form. Then, algorithms are
provided to check the possibility of obtaining causal estimations
of the states and unknown inputs for the studied systems.

I. INTRODUCTION

Observation and estimation are important issues in control
theory. For linear time-delay systems, various aspects of the
observability problem have been studied in the literature,
using different methods such as the functional analytic
approach ([2]) or the algebraic approach ([3], [18], [6]). The
theory of non-commutative rings has been applied to analyze
nonlinear time-delay systems firstly in [15] for the distur-
bance decoupling problem of nonlinear time-delay systems,
and for observability of nonlinear time-delay systems with
known inputs in [19].

In this algebraic framework, the left Ore ring of non-
commutative polynomials defined over the field of mero-
morphic functions is used for the analysis of nonlinear time-
delay systems, since the rank of a module over this ring is
well defined and can be used to characterize controllabil-
ity, observability and identifiability of nonlinear time-delay
systems.

Based on the algebraic framework proposed in [19], the
problem of causal and non-causal observability of the states
and unknown inputs for nonlinear time-delay systems has
been studied in [20] assuming that the systems can be
transformed into a suitable canonical form. This condition is
relaxed in this paper by introducing additional information
depending on the available measurements. A necessary and
sufficient condition is given to guarantee the existence of
those new variables.
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II. ALGEBRAIC FRAMEWORK

Consider the following nonlinear time-delay system:




ẋ = f(x(t− iτ)) +
∑s

j=0 gj(x(t− iτ))u(t− jτ)
y = h(x(t− iτ)) = [h1(x(t− iτ)), . . . , hp(x(t− iτ))]T

x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ, 0]
(1)

where x ∈ W ⊂ Rn denotes the state variables, u =
[u1, . . . , um]T ∈ Rm is the unknown admissible input and
y ∈ Rp is the measurable output. Without loss of generality,
it can be assumes that p ≥ m. τ is the basic time delay,
and it is assumed that all times delays are multiple times
of τ . i ∈ S− = {0, 1, . . . , s}, a finite set of constant
time-delays. f , gj and h are meromorphic functions1 where
f(x(t− iτ)) = f(x, x(t−τ), . . . , x(t−sτ)). ψ : [−sτ, 0] →
Rn and ϕ : [−sτ, 0] → Rm denote unknown continuous
functions of initial conditions. In this work, it is assumed
that the system (1) with u = 0 is locally observable, and
admits a unique solution for initial conditions ψ and ϕ.

Based on the algebraic framework introduced in [19], let
K be the field of meromorphic functions of a finite number
of the variables from {xj(t − iτ), j ∈ [1, n], i ∈ S−}. With
the standard differential operator d, define the vector space
E over K:

E = spanK{dξ : ξ ∈ K}
which is the set of linear combinations of a finite number of
one-forms from dxj(t − iτ) with row vector coefficients in
K. Introduce the backward time-shift operator δ defined by

δiξ(t) = ξ(t− iτ), ξ(t) ∈ K, for i ∈ Z+ (2)

and
δi (a(t)dξ(t)) = δia(t)δidξ(t)

= a(t− iτ)dξ(t− iτ) (3)

for a(t)dξ(t) ∈ E , and i ∈ Z+.
Let K(δ] denote the set of polynomials of the form

a(δ] = a0(t) + a1(t)δ + · · ·+ ara(t)δra (4)

where ai(t) ∈ K. The addition in K(δ] is defined as usual,
but the multiplication is given by

a(δ]b(δ] =
ra+rb∑

k=0

i≤ra,j≤rb∑

i+j=k

ai(t)bj(t− iτ)δk (5)

Note that K(δ] satisfies the associative law and is a non-
commutative ring (see [19]). However, it is proved that the
ring K(δ] is a left Ore ring [12], [19], which enables to define

1i.e. quotients of convergent power series with real coefficients [4], [19].



the rank of a module over this ring. Let M denote the left
module over K(δ]: M = spanK(δ]{dξ, ξ ∈ K}, where K(δ]
acts on dξ according to (2) and (3).

With the definition of K(δ], (1) can be rewritten in a more
compact form as follows:





ẋ = f(x, δ) +
∑m

i=1 Giui(t)
y = h(x, δ)
x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ, 0]

(6)

where f(x, δ) = f(x(t − iτ)) and h(x, δ) = h(x(t − iτ))
with entries belonging to K, Gi =

∑s
j=0 gj

i δ
j with entries

belonging to K(δ]. It is assumed that rankK(δ]
∂h
∂x = p, which

implies that [h1, . . . , hp]
T are independent functions of x and

its backward time-shifts.

III. NOTATIONS AND DEFINITIONS

Observability definitions for nonlinear systems without
delays have been given given in [10] and in [5]. A definition
of observability for time-delay systems is given in [14]. A
more generic definition is stated here as follows:

Definition 1: System (1) is locally observable if the state
x(t) ∈ W ⊂ Rn can be expressed as a function of the output
and its derivatives with their backward and forward shifts as
follows:

x(t) = α(y(t− jτ), . . . , y(k)(t− jτ)) (7)

for j ∈ Z and k ∈ Z+. It is locally causally observable if (7)
is satisfied for j ∈ Z+ and k ∈ Z+, and locally non-causally
observer if (7) is satisfied for j ∈ Z and k ∈ Z+.

Following the same principle of Definition 1, the following
definition for the reconstruction of the unknown inputs is
given.

Definition 2: The unknown input u(t) can be estimated if
it can be written as a function of the derivatives of the output
and its derivatives with backward and forward shifts, i.e.

u(t) = β(y(t− jτ), . . . , y(k)(t− jτ)) (8)

for j ∈ Z and k ∈ Z+. It can be causally estimated if (8) is
satisfied for j ∈ Z+ and k ∈ Z+, and non-causally estimated
if (8) is satisfied for j ∈ Z and k ∈ Z+.

Definition 3: (Unimodular matrix) [14] A matrix A ∈
Kn×n(δ] is said to be unimodular over K(δ] if it has a left
inverse A−1 ∈ Kn×n(δ], such that A−1A = In×n.

Definition 4: (Change of coordinate) [14] z = φ(δ, x) ∈
Kn×1 is a causal change of coordinate over K for system
(1) if there exist locally a function φ−1 ∈ Kn×1 and some
constants c1, · · · , cn ∈ N such that

diag{δci}x = φ−1(δ, z).

The change of coordinate is bicausal over K if max{ci} = 0,
i.e. x = φ−1(δ, z).

Note that the relative degree for nonlinear systems without
delays is well defined via the Lie derivative (see [11]).
Then many efforts have been done to extend the classical
Lie derivative for nonlinear time-delay systems. Several
researchers tried to extend the Lie derivative to nonlinear

time-delay systems (see [8], [9], [16], [17]) in the framework
of commutative rings. In what follows the relative degree and
the observability indices for nonlinear time-delay systems
are defined by extending the Lie derivative in the algebraic
framework of [19], from the non-commutative rings point of
view.

Let f(x(t− jτ)) and h(x(t− jτ)) for 0 ≤ j ≤ s be an n
and p dimensional vectors, respectively, with entries fr ∈ K
for 1 ≤ r ≤ n and hi ∈ K for 1 ≤ i ≤ p. Let

∂hi

∂x
=

[
∂hi

∂x1
, · · · ,

∂hi

∂xn

]
∈ K1×n(δ] (9)

where for 1 ≤ r ≤ n:

∂hi

∂xr
=

s∑

j=0

∂hi

∂xr(t− jτ)
δj ∈ K(δ]

then the Lie derivative for nonlinear systems without delays
can be extended to nonlinear time-delay systems in the
framework of [19] as follows

Lfhi =
∂hi

∂x
(f) =

n∑
r=1

s∑

j=0

∂hi

∂xr(t− jτ)
δj (fr) (10)

For j = 0, (10) is the classical definition of the Lie derivative
of h along f . For hi ∈ K, define

LGihi =
∂hi

∂x
(Gi)

Using the above definition of Lie derivative, the relative
degree can be defined in the following way:

Definition 5: (Relative degree) System (6) has relative
degree (ν1, · · · , νp) in an open set W ⊆ Rn if, for 1 ≤
i ≤ p, the following conditions are satisfied :

1) for all x ∈ W , LGj L
r
fhi(x, δ) = 0, for all 1 ≤ j ≤ m

and 0 ≤ r < νi − 1;
2) there exists x ∈ W such that ∃j ∈ [1,m],

LGj
Lνi−1

f hi(x, δ) 6= 0.
If for 1 ≤ i ≤ p, (1) is satisfied for all r ≥ 0, then we set

νi = ∞.
Since (6) is assumed to be locally observable when u =

0, then one can define, for (6), the so-called observability
indices introduced in [13]. Let

Fk := spanK(δ]

{
dh, dLfh, · · · , dLk−1

f h
}

for 1 ≤ k ≤ n. It can be shown that the filtration of K(δ]-
module satisfies

F1 ⊂ F2 ⊂ · · · ⊂ Fn.

Then define
d1 = rankK(δ]F1

and
dk = rankK(δ]Fk − rankK(δ]Fk−1

for 2 ≤ k ≤ n. Let

ki = card {dk ≥ i, 1 ≤ k ≤ n} .



Then (k1, · · · , kp) are the observability indices and
p∑

i=1

ki = n

since (6) is locally observable with u = 0. Reorder, if
necessary, the output components of (6), such that

rankK(δ]{∂h1
∂x , · · · ,

∂L
k1−1
f h1

∂x , · · · ,
∂hp

∂x , · · · ,
∂L

kp−1
f hp

∂x }
= k1 + · · ·+ kp = n

Since rankK(δ]
∂h
∂x = p, the observability indices

(k1, · · · , kp) for (h1, · · · , hp) are well defined, but the order
may be not unique.

IV. CANONICAL FORM AND CAUSAL OBSERVABILITY

Hereafter are recalled some results given in [20].
Proposition 1: [20] For 1 ≤ i ≤ p, denote ki the

observability indices and νi the relative degree index for
yi of (6), and note ρi = min {νi, ki}. Then there exists a
change of coordinate φ(x, δ) ∈ Kn×1, such that (6) can be
transformed into the following form:

żi,j = zi,j+1 (11)

żi,ρi
= Vi = Lρi

f hi(x, δ) +
m∑

j=1

LGj
Lρi−1

f hi(x, δ)uj (12)

yi = Cizi = zi,1 (13)

ξ̇ = α(z, ξ, δ) + β(z, ξ, δ)u (14)

where

zi = (zi,1, · · · , zi,ρi
)T =

(
hi, · · · , Lρi−1

f hi

)T

∈ Kρi×1

α ∈ Kµ×1, β ∈ Kµ×1(δ] with µ = n−
p∑

j=1

ρj

Ci = (1, 0, · · · , 0) ∈ R1×ρi

Moreover if ki < νi , one has Vi = Lρi

f hi = Lki

f hi. ¥
For (11), note

H(x, δ) = Ψ(x, δ) + Γ(x, δ)u (15)

with
H(x, δ) = (V1, · · · , Vp)

T

Ψ(x, δ) =
(
Lρ1

f h1, · · · , L
ρp

f hp

)T

and

Γ(x, δ) =




LG1L
ρ1−1
f h1 · · · LGmLρ1−1

f h1

...
. . .

...
LG1L

ρp−1
f hp · · · LGm

L
ρp−1
f hp


 (16)

where H(x, δ) ∈ Kp×1, Ψ(x, δ) ∈ Kp×1 and Γ(x, δ) ∈
Kp×m(δ]. Since Γ ∈ Kp×m(δ] with m ≤ p, if

rankK(δ]Γ = m,

there exists a matrix Ξ ∈ Kp×p(δ] such that

ΞΓ =
[

Γ̄
0

]

where Γ̄ ∈ Km×m(δ] has full rank m. The set Φ is introduced
as follows:

Φ = {dh1, · · · , dLρ1−1
f h1, · · · , dhp, · · · , dL

ρp−1
f hp} (17)

Then the following theorem can be stated.
Theorem 1: [20] Consider the system (6) with outputs

(y1, . . . , yp) and the corresponding (ρ1, . . . , ρp) with ρi =
min{ki, νi} where ki and νi are the observability indices
and the relative degree indexes, respectively. If

rankK(δ]Φ = n

where Φ is defined in (17), then there exists a change of
coordinate φ(x, δ) such that (6) can be transformed into (11-
14) with dim ξ = 0.

Moreover, if the change of coordinate is locally bicausal
over K, then the state x(t) of (6) is locally causally observ-
able, and if Γ̄ ∈ Km×m(δ] is also unimodular over K(δ], then
the unknown input u(t) of (6) can be causally estimated as
well.¥
Due to the particular triangular structure of the system (11)-
(12), the whole state of the system, as well as the unknown
input, can be estimated in finite time using higher order
sliding mode observers [7].

When rankK(δ]Φ < n, the problem is to estimate the
state ξ. It may be still possible provided that some additional
conditions are satisfied. This is detailed in the next Section.

V. EXTENDED CASE

In [1], a constructive algorithm to solve the above men-
tioned problem for nonlinear systems without delays has
been studied. The result of this section can be seen as an
extension of the work [1] to treat the observation problem
for time-delay systems with unknown inputs of the form (6).
The objective is to generate additional variables from the
available measurement and unaffected by the unknown input
such that an extended canonical form similar to (11)-(12)
can be obtained for the estimation of the remaining state ξ.

For this, consider Φ defined in (17). If rankK(δ]Φ = j,
one can select j linearly independent vectors over K(δ] from
Φ, denoted as

Φ = {dz1, · · · , dzj} .

Note
£ = spanR[δ] {z1, · · · , zj}

where R[δ] is the commutative ring of polynomials of δ with
coefficients belonging to the field R and let £(δ] be the set of
polynomials of δ with coefficients over £. Define the module
spanned by the elements of Φ over £(δ] as follows

Ω = span£(δ] {ξ, ξ ∈ Φ} . (18)

Define also

G = spanR[δ]{G1, . . . , Gm}
and its left annihilator

G⊥ = spanR[δ]{ω ∈ Ω | ωg = 0,∀g ∈ G}.



Based on the above definitions, let us state the main result
of the paper.

Theorem 2: Consider the system (6) with outputs y =
(y1, · · · , yp)T and the corresponding (ρ1, . . . , ρp) with ρi =
min{ki, νi} where ki and νi are the observability in-
dices and the relative degree indexes, respectively. Suppose
rankK(δ]Φ < n where Φ is defined in (17). There exist l new
independent outputs over K suitable to the causal estimation
problem if and only if

rankKH = l

where

H = spanR[δ]{ω ∈ G⊥ ∩ Ω | ωf /∈ £}. (19)

Moreover, the l additional outputs, denoted ȳi, 1 ≤ i ≤ l,
are given by:

ȳi = ωif mod £

where ωi ∈ H.
Proof:

Denote Qi =
[
qi
1, · · · , qi

p

]
as a 1×p vector with qi

j ∈ K(δ]
for 1 ≤ j ≤ p. One has

QiΓ = Qi




LG1L
ρ1−1
f h1 · · · LGm

Lρ1−1
f h1

...
. . .

...
LG1L

ρp−1
f hp · · · LGmL

ρp−1
f hp




=


Qi




∂L
ρ1−1
f h1

∂x
...

∂L
ρp−1
f hp

∂x





 [G1, · · · , Gm]

because of the associativity law over K(δ]. Then according
to the definition (9), one gets

QiΓ = ωi [G1, · · · , Gm] = ωiG

where ωi =
∑n

c=1

∑p
j=1 qi

j

∂L
ρj−1
f hj

∂xc
dxc.

Moreover, one can check that

ωif =


Qi




∂L
ρ1−1
f h1

∂x
...

∂L
ρp−1
f hp

∂x





 f

= Qi







∂L
ρ1−1
f h1

∂x
...

∂L
ρp−1
f hp

∂x


 f




= Qi




Lρ1
f h1

...
L

ρp

f hp


 = QiΨ.

According to (15), one has

QiH = Qi(Ψ + Γu) = ωif + ωiGu (20)

where H = (V1, · · · , Vp)
T is a vector which can be esti-

mated in finite time but which is affected by the unknown

input. Thus, one can generate l additional information suit-
able to solve the estimation problem if and only if one can
find l independent {Q1, · · · , Ql} vectors over K(δ] such that
for each Qi = {qi

1, · · · , qi
p} satisfying qi

j ∈ £(δ], one has
QiΓ = 0 and QiH /∈ £,

Thus, one has to prove that the following conditions are
equivalent:

1) there exist l row vectors Qi =
[
qi
1, · · · , qi

p

]
, with qi

j ∈
£(δ], such that rankK(δ]{Q1, · · · , Ql} = l, QiΓ = 0
and QiH /∈ £.

2) rankKH = l with H defined in (19).
Necessity: Suppose item 1) is satisfied, then according to

(20), one has

QiΓ = ωiG = 0 ⇒ ωi ∈ G⊥

and
QiH = ωif /∈ £.

Thus rankK(δ]{Q1, · · · , Ql} = l implies
rankK{ω1, · · · , ωl} = l.

Since Lρi−1
f hi ∈ £ and qi ∈ £(δ], then ωi =

∑n
c=1

∑p
j=1 qi

j

∂L
ρj−1
f hj

∂xc
dxc ∈ Ω. Thus, ωi ∈ H defined in

(19).
Sufficiency: Suppose rankKH = l. Then one can find

l independent 1-forms over K: {ω1, · · · , ωl} with ωi ∈
G⊥∩Ω which implies there exist l independent vectors over
K(δ]: {Q1, · · · , Ql} with entries belonging to £(δ] such that
rankK(δ]{Q1, · · · , Ql} = l, since for each Qi one has

QiΓ = ωiG = 0

and
QiH = ωif /∈ £.

The variable

ȳi = QiH = ωif mod £

can be used as an additional output since
1) H can be estimated in finite time;
2) Qi has entries in £(δ];
3) ȳi do not belong to the current set £ of measured

variables.

Theorem 2 means that if rankKH = l, one can define an
extended output

[
yT , ȳ

]T ∈ Rp+l with observability indices
k̄i and relative degree indexes ν̄i. Then, similarly to (17), a
new Φ̄ can be defined. If rankK(δ]Φ̄ = n, the state and the
unknown inputs can be estimated in finite time. Otherwise, if
rankK(δ]Φ̄ < n and if Theorem 2 is still valid, the procedure
is iterated until Theorem 1 is true, resulting in the causal
observation of the states and unknown inputs for nonlinear
time-delay systems of the form (6).

In the tables Algorithm 1 and 2, two algorithms are
proposed in order to check the possible causal estimation
of the states and unknown inputs. Algorithm 2 is used to
determine whether the studied system can be transformed
into the proposed canonical form, by using Theorem 2. If it



is, Algorithm 1 then checks whether the states and unknown
inputs of the system are causally observable.

Let us note that it is the locally bicausal change of
coordinate which makes the state of system locally causally
observable. And it is the unimodular characteristic of Γ over
K(δ] which guarantees the causal reconstruction of unknown
inputs. The non-causal case was studied in [20].

Algorithm 1 Check the causal estimation of the states and
unknown inputs

1: Input: TDS with x ∈ Rn, y ∈ Rp and u ∈ Rm.
2: Output: “Failed” or (“OK”, x̂, û).

3: Main: . Check observability of states and inputs
4: Y ← {y1, · · · , yp}
5: for each yi ∈ Y do
6: νi ← RelaDeg(yi); . Get relative degree for yi

7: ki ← ObsInd(yi); . Get observability indices for yi

8: ρi ← max{νi, ki};
9: end for

10: Φ ← {dh1, · · · , dLρ1
f h1, · · · , dhp, · · · , dL

ρp

f hp};
11: ρ ← {ρi, · · · , ρp};
12: j ← rankK(δ]Φ;
13: result ← Search Diffeo(Φ, Y, ρ, j);
14: if result=(“Failed”) then
15: return (“Failed”);
16: end if
17: (Φ,Y, ρ) ← result;
18: z = φ(x, δ) ← (Φ,Y, ρ); . Get the change of

coordinate
19: if φ is bicausal over K then
20: x̂ = φ−1(δ, z) ∈ Kn×1; . Causally observable
21: else
22: x̂ ← Null; . Non-causal observation
23: end if
24: Calculate Γ(x, δ) . According to Eq. (16)
25: if rankK(δ]Γ = m then

26: ∃Ξ s.t. ΞΓ =
[

Γ̄
0

]
with rankK(δ]Γ̄ = m;

27: if Γ̄ is unimodular over K(δ] then
28: û = β(δ, y, · · · , y(n)) . Causal estimation
29: else
30: û ← Null; . Non-causal estimation
31: end if
32: else
33: û ← Null; . Might not be estimated
34: end if
35: return (“OK”, x̂, û);

Algorithm 2 Search the change of coordinate to transform
TDS into the canonical form

1: Function Search Diffeo(Φ,Y, ρ, j)
2: if j = n then . The rank of Φ over K(δ] is equal to

the dimension of the system
3: return (Φ, Y , ρ);
4: end if
5: while j < n do
6: Φ ← {dz1, · · · , dzj}; . Select j linearly

independent vectors over K
7: £ ← spanR[δ] {z1, · · · , zj};
8: Ω ← span£(δ] {ξ, ξ ∈ Φ};
9: H ← spanR[δ]{ω ∈ G⊥ ∩ Ω | ωf /∈ £};

10: l ← rankKH;
11: if l > 0 then . Theorem 2 is satisfied
12: ∃l 1-forms, s.t. H = spanR[δ] {ω1, · · ·ωl};
13: Ȳ ← {ωif mod £, 1 ≤ i ≤ l}; . New outputs
14: for each ȳi ∈ Ȳ do
15: νi ← RelaDeg(yi);
16: ki ← ObsInd(yi);
17: ρi ← max{νi, ki};
18: ρ ← ρ ∪ {ρi};
19: Y ← Y ∪ {ȳi};
20: Φ ← Φ ∪ {dȳi, · · · , dLρi

f ȳi};
21: end for
22: j ← rankK(δ]Φ;
23: else
24: return (“Failed”);
25: end if
26: end while
27: return(Φ,Y, ρ);

VI. ILLUSTRATIVE EXAMPLE

Consider the following dynamical system:




ẋ1 = −δx1 + δx4u1

ẋ2 = −δx3 + x4

ẋ3 = x2 − δx4u1

ẋ4 = u2

y1 = x1

y2 = δx1 + x3

(21)

One can check that

ρ1 = ρ2 = 1

and Φ = {dx1, δdx1 + dx3}whichgivesrankK(δ]Φ = 2 <
n.

Set G =spanR[δ]{G1, . . . , Gm}, one has

G⊥ = spanR[δ] {dx1 + dx3, dx2}

Since rankK(δ]Φ = 2, £ = spanR[δ] {x1, δx1 + x3} and

Ω = span£(δ] {ξ, ξ ∈ Φ} = span£(δ] {dx1, dx3} .



One obtains

Ω ∩ G⊥ = span£(δ] {dx1, dx3}
∩spanR[δ] {dx1 + dx3, dx2}

= span£(δ] {dx1 + dx3}
From the definition of H in (19), one can check that

rankKH = 1, which gives the one-form ω = dx1 + dx3,
satisfying ω ∈ Ω ∩ G⊥ and ωf = −δx1 + x2 /∈ £. Thus, a
new output ȳ1 = h3 is given by

ȳ1 = h3 = ωf mod £
= x2 = δy1 + (1− δ)ẏ1 + ẏ2

(22)

which yields ν3 = 2 and k3 = 2, thus ρ3 = 2. Finally one
has the new Φ as follows:

Φ = {dx1, δdx1 + dx3, dx2,−δdx3 + dx4}
It can be checked that rankK(δ]Φ = 4, and the new £ is

£ = spanR[δ]{x1, δx1 + x3, x2,−δx3 + x4}
This gives the following change of coordinate

z = φ(x, δ) = (x1, δx1 + x3, x2,−δx3 + x4)
T

it is easy to check that it is bicausal over K(δ], since

x = φ−1 =
(
z1, z3, z2 − δz1, z4 + δz2 − δ2z1

)T

and one gets




x1 = y1

x2 = y3

x3 = y2 − δy1

x4 = −δ2y1 + δy2 + ẏ3

where the new output y3 is defined in (22).
Moreover, the matrix Γ with the new output y3 is

Γ =




δx4 0
δ2x4δ − δx4 0

δ2x4δ 1




and
rankK(δ]Γ = 2.

One can find matrices

Ξ =




1 0 0
0 0 1
0 0 0




and

Γ̄−1 =
(

1
δx4

0
−δ 1

)

such that [
Γ̄−1 0

]
ΞΓ = I2×2

Consequently, according to Theorem 1, u1 and u2 are
causally observable. A straightforward computation yields

{
u1 = ẏ1

−δ3y1+δ2y2+δẏ3

u2 = −δẏ1 + ÿ3

VII. CONCLUSION

In this paper, causal observation of nonlinear time-delay
systems with unknown inputs has been studied. The system
has to be transformed in a canonical form suitable for the
design of a finite time observer. A necessary and sufficient
condition for the existence of a change of coordinate has
been given. A constructive algorithm has been proposed to
check the possibility to obtain causal estimations of the states
and unknown inputs for the studied systems.
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