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This paper considers interval time-varying delay systems. The time-delay interval is divided into several zones and the systems switch among the different zones. Based on Lyapunov-Krasovskii functional methods and linear matrix inequality (LMI) techniques, Exponential stability is exploited for every time-delay zone. The global stability of the switched system is guaranteed if some minimum average dwell time conditions are satisfied. Some numerical examples and comparisons with other works show that the methods greatly enlarge the value of maximum upper-bound of time-delay for the systems.

INTRODUCTION

A variety of stability and control techniques have been developed for general time delay systems [START_REF] Niculescu | Delay effects on stability: a robust control approach[END_REF][START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF][START_REF] Chiasson | Applications of time delay systems[END_REF]. Of course, when a delay is introduced into a system, the achievable performance (speed, robustness) highly depends on the delay. In the case of a time-varying delay, the guaranteed performance generally depends on the interval of variation of the delay. To give an example, controlling a system through a communication network induces variable time delays and the resulting performance depends on the quality of service (QoS) the network can offer [START_REF] Jiang | A gain scheduling strategy for the control and estimation of a remote robot via internet[END_REF][START_REF] Seuret | Networked control using gps synchronization[END_REF].

In order to reduce the conservatism, some authors used the piecewise analysis method which consist in study the system for smaller delay intervals with a common Lyapunov-Krasovskii Functional (LKF) [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF]. Another approach is consider the system as a switching system in which each subsystem has a different delay. These delays belong to smaller intervals.

Switched systems are dynamical hybrid systems consisting of a family of continuous-time subsystems and a logical rule that orchestrates the switching between them (Liberzon D., 2003; [START_REF] Hirche | Performance oriented control over networks -switching controllers and switched time delay[END_REF]. In general, the stability of the subsystems themselves are not sufficient for the stability of the overall system. A lot of studies have dealt with the stability analysis and design of switched systems [START_REF] Liberzon | Stability of switched systems: a lie-algebraic condition[END_REF][START_REF] Hespanha | stability of switched systems with average dwell-time[END_REF][START_REF] Xie | Stabilization of switched linear systems with time-delay in detection of switching signal[END_REF][START_REF] Hirche | Towards quality-of-service control of networked control systems: a switched time delay systems approach[END_REF].

Single [START_REF] Sun | Stability of switched systems with time-varying delays: delay-dependent common lyapunov functional approach[END_REF][START_REF] Jiang | A gain scheduling strategy for the control and estimation of a remote robot via internet[END_REF] and multiple LKF analysis methods are the most frequently applied in the stabilization of the whole system. A common LKF can ensure the stability with arbitrary switching but it does not always exist. As an alternative, dwell-time based switching is considered in (Hespanha J.P. and Morse A.S., 1999) but time delay is not considered, while in [START_REF] Yan | Stability analysis of switched time delay systems[END_REF][START_REF] Hirche | Towards quality-of-service control of networked control systems: a switched time delay systems approach[END_REF], the time delay is a constant one.

In this paper, a linear switched time-delay system is considered. Multiple LKF are used in the stability analysis. The time-delay interval is divided into several ones to reduce conservativeness. In this means, the maximum timedelay can be enlarged. The minimum average dwell time is considered to guarantee the global stability of the switched system. The LMI (Linear Matrix Inequalities) conditions are derived following the idea of [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF] (using the convex approach). The first part introduces some sufficient conditions for exponential stability of linear systems with interval time-varying delay. Our main results are presented in the second part , where the linear time-delay system is analyzed as a switched system and where sufficient condition for the global stability are given by using average dwelling time. The last part gives some examples and comparisons with other works.

Notation: Throughout the paper the superscript '𝑇 ' stands for matrix transposition, ℛ 𝑛 denotes the 𝑛 dimensional Euclidean space with vector norm ∥ ⋅ ∥, ℛ 𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices, and the notation 𝑃 > 0, for 𝑃 ∈ ℛ 𝑛×𝑛 means that 𝑃 is symmetric and positive definite. The symmetric elements of the symmetric matrix will be denoted by * . 𝐿 2 is the space of square integrable functions 𝑣 : [0, ∞) → 𝑅 𝑛 with the norm

∥𝑣∥ 𝐿2 = [ ∫ ∞ 0 ∥𝑣(𝑡)∥ 2 𝑑𝑡] 1/2 .

EXPONENTIAL STABILITY OF INTERVAL TIME-DELAY SYSTEMS

For the sake of simplicity, the LMI conditions are first derived for exponential stability of a linear time-delay system without switches.

Consider a linear time-delay system:

ẋ(𝑡) = 𝐴𝑥(𝑡) + 𝐴 1 𝑥(𝑡 -𝜏 (𝑡)) (1) 
with 𝐴 stable and 𝜏 (𝑡), a fast varying interval delay with the bounds as [ℎ 1 , ℎ 2 ].

In the following, the notation 𝑥 𝑡 stands for 𝑥(𝑡). Applying the following LKFs [START_REF] Fridman | Exponential stability of linear distributed parameter systems with timevarying delays[END_REF]:

𝑉 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) = 𝑥 𝑇 (𝑡)𝑃 𝑥(𝑡) + 1 ∑ 𝑖=0 𝑡-ℎ𝑖 ∫ 𝑡-ℎ𝑖+1 𝑒 2𝛼(𝑠-𝑡) 𝑥 𝑇 (𝑠)𝑆 𝑖 𝑥(𝑠)𝑑𝑠 + 1 ∑ 𝑖=0 (ℎ 𝑖+1 -ℎ 𝑖 ) -ℎ𝑖 ∫ -ℎ𝑖+1 𝑡 ∫ 𝑡+𝜃 𝑒 2𝛼(𝑠-𝑡) ẋ𝑇 (𝑠)𝑅 𝑖 ẋ(𝑠)𝑑𝑠𝑑𝜃 (2) 
where ℎ 0 = 0, 𝑃 > 0 and 𝑅 𝑖 , 𝑆 𝑖 ≥ 0. Saying that the system (1) is exponentially stable means that there exist a positive function 𝑊 (𝑡, 𝑥(𝑡), ẋ(𝑡)) such that:

𝑊 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) ≤ 𝑒 -2𝛼(𝑡-𝑡0) 𝑊 (𝑡, 𝑥 𝑡0 , ẋ𝑡0 ) ( 3 ) 
It can be ensured by using the LKFs (2) and by checking if: V (𝑡, 𝑥 𝑡 , ẋ𝑡 ) + 2𝛼𝑉 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) < 0 ( 4 )

After the differentiation of the function (2), the system is exponentially stable if:

V (𝑡, 𝑥 𝑡 , ẋ𝑡 ) + 2𝛼𝑉 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) ≤ 2𝑥 𝑇 (𝑡)𝑃 ẋ(𝑡) +2𝛼𝑥 𝑇 (𝑡)𝑃 𝑥(𝑡) + ẋ𝑇 (𝑡)[ 1 ∑ 𝑖=0 (ℎ 𝑖+1 -ℎ 𝑖 ) 2 𝑅 𝑖 ] ẋ(𝑡) - 1 ∑ 𝑖=0 (ℎ 𝑖+1 -ℎ 𝑖 )𝑒 -2𝛼ℎ𝑖+1 𝑡-ℎ𝑖 ∫ 𝑡-ℎ𝑖+1 ẋ𝑇 (𝑠)𝑅 𝑖 ẋ(𝑠)𝑑𝑠 + 1 ∑ 𝑖=0 𝑥(𝑡 -ℎ 𝑖 ) 𝑇 𝑒 -2𝛼ℎ𝑖 𝑆 𝑖 𝑥(𝑡 -ℎ 𝑖 ) - 1 ∑ 𝑖=0 𝑒 -2𝛼ℎ𝑖+1 𝑥 𝑇 (𝑡 -ℎ 𝑖+1 )𝑆 𝑖 𝑥(𝑡 -ℎ 𝑖+1 ).
(5)

Noticing that:

𝑡-ℎ0 ∫ 𝑡-ℎ1 ẋ𝑇 (𝑠)𝑅 𝑖 ẋ(𝑠)𝑑𝑠 = 𝑡-𝜏 (𝑡) ∫ 𝑡-ℎ1 ẋ𝑇 (𝑠)𝑅 0 ẋ(𝑠)𝑑𝑠 + 𝑡-ℎ0 ∫ 𝑡-𝜏 (𝑡) ẋ𝑇 (𝑠)𝑅 0 ẋ(𝑠)𝑑𝑠
and applying the Jensen's inequality [START_REF] Gu | Stability of time-delay systems[END_REF])

𝑡-ℎ0 ∫ 𝑡-ℎ1 ẋ𝑇 (𝑠)[(ℎ 2 -ℎ 1 )𝑅 0 ] ẋ(𝑠)𝑑𝑠 ≥ 𝑡-ℎ0 ∫ 𝑡-ℎ1 ẋ𝑇 (𝑠)𝑑𝑠𝑅 0 𝑡-ℎ0 ∫ 𝑡-ℎ1 ẋ(𝑠)𝑑𝑠, 𝑡-ℎ1 ∫ 𝑡-𝜏 (𝑡) ẋ𝑇 (𝑠)(ℎ 2 -ℎ 1 )𝑅 𝑗 ẋ(𝑠)𝑑𝑠 ≥ ℎ 2 -ℎ 1 𝜏 -ℎ 1 𝑡-ℎ1 ∫ 𝑡-𝜏 (𝑡) ẋ𝑇 (𝑠)𝑑𝑠𝑅 1 𝑡-ℎ1 ∫ 𝑡-𝜏 (𝑡) ẋ(𝑠)𝑑𝑠, 𝑡-𝜏 (𝑡) ∫ 𝑡-ℎ2 ẋ𝑇 (𝑠)[(ℎ 2 -ℎ 1 )𝑅 1 ] ẋ(𝑠)𝑑𝑠 ≥ ℎ 2 -ℎ 1 ℎ 2 -𝜏 𝑡-𝜏 (𝑡) ∫ 𝑡-ℎ2 ẋ𝑇 (𝑠)𝑑𝑠𝑅 1 𝑡-𝜏 (𝑡) ∫ 𝑡-ℎ2 ẋ(𝑠)𝑑𝑠. ( 6 
)
Here for 𝜏 → ℎ 1 we understand by

1 𝜏 (𝑡) -ℎ 1 𝑡-ℎ1 ∫ 𝑡-𝜏 (𝑡) ẋ(𝑠)𝑑𝑠 = lim 𝜏 →ℎ1 1 𝜏 (𝑡) -ℎ 1 𝑡-ℎ1 ∫ 𝑡-𝜏 (𝑡) ẋ(𝑠)𝑑𝑠 = ẋ(𝑡 -ℎ 1 ). For ℎ 2 -𝜏 (𝑡) → 0 the vector 1 ℎ2-𝜏 (𝑡) ∫ 𝑡-𝜏 (𝑡) 𝑡-ℎ2 ẋ(𝑠)𝑑𝑠 is defined similarly as ẋ(𝑡 -ℎ 2 ).
Denoting

𝑣 1 = 1 𝜏 -ℎ 1 𝑡-ℎ1 ∫ 𝑡-𝜏 (𝑡) ẋ(𝑠)𝑑𝑠, 𝑣 2 = 1 ℎ 2 -𝜏 𝑡-𝜏 (𝑡) ∫ 𝑡-ℎ2 ẋ(𝑠)𝑑𝑠, (7) we obtain V (𝑡, 𝑥 𝑡 , ẋ𝑡 ) + 2𝛼𝑉 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) ≤ 2𝑥 𝑇 (𝑡)𝑃 ẋ(𝑡) +2𝛼𝑥 𝑇 (𝑡)𝑃 𝑥(𝑡) + ẋ𝑇 (𝑡) 1 ∑ 𝑖=0 (ℎ 𝑖+1 -ℎ 𝑖 ) 2 𝑅 𝑖 ) ẋ(𝑡) + 1 ∑ 𝑖=0 𝑒 -2𝛼ℎ𝑖 𝑥 𝑇 (𝑡 -ℎ 𝑖 )𝑆 𝑖 𝑥(𝑡 -ℎ 𝑖 ) - 1 ∑ 𝑖=0 𝑒 -2𝛼ℎ𝑖+1 𝑥 𝑇 (𝑡 -ℎ 𝑖+1 )𝑆 𝑖 𝑥(𝑡 -ℎ 𝑖+1 ) -[𝑥(𝑡) -𝑥(𝑡 -ℎ 1 )] 𝑇 𝑒 -2𝛼ℎ1 𝑅 0 [𝑥(𝑡) -𝑥(𝑡 -ℎ 1 )] -(𝜏 -ℎ 1 )(ℎ 2 -ℎ 1 )𝑣 𝑇 1 𝑒 -2𝛼ℎ2 𝑅 1 𝑣 1 -(ℎ 2 -𝜏 )(ℎ 2 -ℎ 1 )𝑣 𝑇 2 𝑒 -2𝛼ℎ2 𝑅 1 𝑣 2 . ( 8 
)
We note that in the latter bound we can substitute for 𝜏 its upper bound ℎ 2 .

We insert free-weighting 𝑛×𝑛-matrices (He Y. et al., 2004[START_REF] He | Delayrange-dependent stability for systems with time-varying delay[END_REF] by adding the following expressions to V :

0 = 2[𝑥 𝑇 (𝑡)𝑌 𝑇 1 + ẋ𝑇 (𝑡)𝑌 𝑇 2 + 𝑥 𝑇 (𝑡 -𝜏 )𝑇 𝑇 1 ][-𝑥(𝑡 -ℎ 1 ) +𝑥(𝑡 -𝜏 ) + (𝜏 -ℎ 1 )𝑣 1 ], 0 = 2[𝑥 𝑇 (𝑡)𝑍 𝑇 1 + ẋ𝑇 (𝑡)𝑍 𝑇 2 ][𝑥(𝑡 -ℎ 2 ) +(ℎ 2 -𝜏 )𝑣 2 -𝑥(𝑡 -𝜏 )]. (9)
We use further the descriptor method [START_REF] Fridman | New lyapunov-krasovskii functionals for stability of linear retarded and neutral type systems[END_REF], where the right-hand side of the expression

0 = 2[𝑥 𝑇 (𝑡)𝑃 𝑇 2 + ẋ𝑇 (𝑡)𝑃 𝑇 3 ][𝐴𝑥(𝑡) + 𝐴 1 𝑥(𝑡 -𝜏 (𝑡)) -ẋ(𝑡)], (10) 
with some 𝑛 × 𝑛-matrices 𝑃 2 , 𝑃 3 is added into the righthand side of (8).

Setting 𝜂(𝑡) = 𝑐𝑜𝑙{𝑥(𝑡), ẋ(𝑡), 𝑥(𝑡-ℎ 1 ), 𝑥(𝑡-ℎ 2 ), 𝑣 1 , 𝑣 2 , 𝑥(𝑡-𝜏 )}, we obtain that along the time-delay system (1) V (𝑡, 𝑥 𝑡 , ẋ𝑡 ) + 2𝛼𝑉 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) ≤ 𝜂 𝑇 (𝑡)Φ𝜂(𝑡) < 0, (11)

if the LMI ( 12) is feasible,

where 𝜏 = ℎ 2 and R𝑖 = 𝑒 -2𝛼ℎ𝑖+1 𝑅 𝑖 , S𝑖 = 𝑒 -2𝛼ℎ𝑖+1 𝑆 𝑖 , Ŝ𝑖 = 𝑒 -2𝛼ℎ𝑖 𝑆 𝑖 , Φ 11 = 𝐴 𝑇 𝑃 2 + 𝑃 𝑇 2 𝐴 + 𝑆 0 -𝑒 -2𝛼ℎ1 𝑅 0 + 2𝛼𝑃, Φ 12 = 𝑃 -𝑃 𝑇 2 + 𝐴 𝑇 𝑃 3 , Φ 22 = -𝑃 3 -𝑃 𝑇 3 + 1 ∑ 𝑖=0 (ℎ 𝑖+1 -ℎ 𝑖 ) 2 𝑅 𝑖 , Φ 16 = 𝑃 𝑇 2 𝐴 1 , Φ 26 = 𝑃 𝑇 3 𝐴 1 , 𝜙 3 = -( S0 + R0 -Ŝ1 ), 𝜙 4 = -S1 , 𝜙 5 = -(ℎ 2 -ℎ 1 )(𝜏 -ℎ 1 ) R1 , 𝜙 6 = -(ℎ 2 -ℎ 1 )(ℎ 2 -𝜏 ) R1 . ( 15 
)
The latter condition leads for 𝜏 → ℎ 1 and for 𝜏 → ℎ 2 to the following LMIs ( 13) and ( 14), where we deleted the zero column and the zero row: Denote by 𝜂 𝑖 (𝑡) = 𝑐𝑜𝑙{𝑥(𝑡), ẋ(𝑡), 𝑥(𝑡 -ℎ 1 ), 𝑥(𝑡 -ℎ 2 ), 𝑣 𝑖 , 𝑥(𝑡 -𝜏 )}, 𝑖 = 1, 2.

Then ( 13), ( 14) imply (11) because [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF].

ℎ 2 -𝜏 ℎ 2 -ℎ 1 𝜂 𝑇 2 (𝑡)Ψ 1 𝜂 2 (𝑡) + 𝜏 -ℎ 1 ℎ 2 -ℎ 1 𝜂 𝑇 1 (𝑡)Ψ 2 𝜂 1 (𝑡) = 𝜂 𝑇 (𝑡)Ψ𝜂(𝑡) < 0. Thus, Ψ is convex in 𝜏 ∈ [ℎ 1 , ℎ 2 ]
if the four LMIs ( 13) and ( 14) are feasible, thus, the following result is obtained.

Lemma 1. Let there exist 𝑛 × 𝑛-matrices 𝑃 > 0, 𝑅 𝑖 > 0, 𝑆 𝑖 > 0, 𝑖 = 0, 1, 𝑃 2 ,𝑃 3 , 𝑌 1 , 𝑌 2 , 𝑇 1 , 𝑇 2 , 𝑍 1 and 𝑍 2 such that the four LMIs ( 13) and ( 14) with notations given in (15) are feasible. Then the switched system (1) is exponentially stable for delay 𝜏 ∈ [ℎ 1 , ℎ 2 ] with a decay rate 𝛼.

AVERAGE DWELL-TIME FOR SWITCHED TIME-DELAY INTERVALS

In order to reduce the conservatism, one would like to use multiple LKF on smaller delay intervals. To achieves this, the system (1) is rewritten as a switching system:

ẋ(𝑡) = 𝐴𝑥(𝑡) + 𝑁 ∑ 𝑖=0 𝛽 𝑖 𝐴 1 𝑥(𝑡 -𝜏 𝑖 (𝑡)), ( 16 
)
where 𝛽 𝑖 ∈ {0, 1} and ∑ 𝑁 𝑖=0 𝛽 𝑖 = 1, 𝑁 corresponds to the number of the time-delay intervals.

As multiple LKF are used for different delay intervals, arbitrary switching cannot be obtained. So a certain criteria of minimum dwell time will be considered to guarantee the global stability [START_REF] Liberzon | Switching in Systems and Control[END_REF].

Here, to simplify the problem, the time-delay interval is equally divided into 𝑁 smaller intervals. Each one is considered for a mode of the switched system. Then, the bounds of the intervals can be written as

[𝜈 𝑖 , 𝜈 𝑖+1 ], 𝑖 ∈ {1, ..., 𝑁 }, with 𝜈 0 = 0, 𝜈 1 = ℎ 1 , 𝜈 𝑁 +1 = ℎ 2 and ∪ 𝑁 𝑖=1 [𝜈 𝑖 , 𝜈 𝑖+1 ] = [ℎ 1 , ℎ 2 ].
The stability of the system (1) equals to the global stability of the one of ( 16). Two methods are usually applied for verifying stability of switched systems: one is to find the common LKF and the other is to use different LKFs but with minimum dwell time for each mode. The common LKF cannot always be found, and in case of exponential stability, only the same value of 𝛼 can be obtained, i.e., the performance in each mode cannot be taken into account and the performance cannot be better in the case of small time-delay. Not using a common LKF reduces the conservatism as each mode can have a completely different behavior. This reduction allows, in most cases, getting better performances or robustness. So, here the latter method is applied.

The stability analysis is performed by using different LKFs for each time-delay interval. In order to make the LKFs comparable, their structure are chosen as follows:

𝑉 𝑖 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) = 𝑥 𝑇 (𝑡)𝑃 𝑖 𝑥(𝑡)

+ 𝑁 ∑ 𝑗=0 𝑡-𝜈𝑗 ∫ 𝑡-𝜈𝑗+1 𝑒 2𝛼𝑖(𝑠-𝑡) 𝑥 𝑇 (𝑠)𝑆 𝑗𝑖 𝑥(𝑠)𝑑𝑠 + 𝑁 ∑ 𝑗=0 (𝜈 𝑗+1 -𝜈 𝑗 ) -𝜈𝑗 ∫ -𝜈𝑗+1 𝑡 ∫ 𝑡+𝜃 𝑒 2𝛼𝑖(𝑠-𝑡) ẋ𝑇 (𝑠)𝑅 𝑗𝑖 ẋ(𝑠)𝑑𝑠𝑑𝜃 (17)
where 𝑖 represents the mode, 𝑉 𝑖 for 𝜏 𝑖 ∈ [𝜈 𝑖 , 𝜈 𝑖 + 𝑟].

These LKFs consider the delay over 𝑁 zones. Note that if set 𝜈 1 = ℎ 1 , 𝑁 = 1, then the previous LKFs (2) are recovered for a time-delay in

𝜏 (𝑡) ∈ [ℎ 1 , ℎ 2 ].
Therefore, to verify the stability of system (1) can be divided into the following two small problems:

Ψ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ Φ11 -(1 -τ )𝑋 Φ12 R0 -𝑌 𝑇 1 𝑍 𝑇 1 (𝜏 -ℎ1)𝑌 𝑇 1 (ℎ2 -𝜏 )𝑍 𝑇 1 𝑌 𝑇 1 -𝑍 𝑇 1 + Φ16 * Φ22 -𝑌 𝑇 2 𝑍 𝑇 2 (𝜏 -ℎ1)𝑌 𝑇 2 (ℎ2 -𝜏 )𝑍 𝑇 2 𝑌 𝑇 2 -𝑍 𝑇 2 + Φ26 * * 𝜙3 0 0 0 -𝑇1 * * * 𝜙4 0 0 0 * * * * 𝜙5 0 ( 𝜏 -ℎ1)𝑇1 * * * * * 𝜙6 0 * * * * * * 𝑇1 + 𝑇 𝑇 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ < 0, (12) 
Ψ 1 = ⎡ ⎢ ⎢ ⎢ ⎣ Φ11 Φ12 R0 -𝑌 𝑇 1 𝑍 𝑇 1 (ℎ2 -ℎ1)𝑍 𝑇 1 𝑌 𝑇 1 -𝑍 𝑇 1 + Φ16 * Φ22 |𝜏 =ℎ 1 -𝑌 𝑇 2 𝑍 𝑇 2 (ℎ2 -ℎ1)𝑍 𝑇 2 𝑌 𝑇 2 -𝑍 𝑇 2 + Φ26 * * 𝜙3 0 0 -𝑇1 * * * 𝜙4 0 0 * * * * 𝜙6 |𝜏 =ℎ 1 0 * * * * * 𝑇1 + 𝑇 𝑇 1 ⎤ ⎥ ⎥ ⎥ ⎦ < 0, ( 13 
) Ψ 2 = ⎡ ⎢ ⎢ ⎢ ⎣ Φ11 Φ12 R0 -𝑌 𝑇 1 𝑍 𝑇 1 (ℎ2 -ℎ1)𝑌 𝑇 1 𝑌 𝑇 1 -𝑍 𝑇 1 + Φ16 * Φ22 |𝜏 =ℎ 2 -𝑌 𝑇 2 𝑍 𝑇 2 (ℎ2 -ℎ1)𝑌 𝑇 2 𝑌 𝑇 2 -𝑍 𝑇 2 + Φ26 * * 𝜙3 0 0 -𝑇1 * * * 𝜙4 0 0 * * * * 𝜙5 |𝜏 =ℎ 2 (ℎ2 -ℎ1)𝑇1 * * * * * 𝑇1 + 𝑇 𝑇 1 ⎤ ⎥ ⎥ ⎥ ⎦ < 0. (14) 
(1)Guarantee the stability of the system in each time-delay interval. Apply the Theorem 1 to each time-delay interval, the maximum value of exponential decrease decay, i.e. 𝛼 𝑖 , of each mode can be obtained.

(2)According to the theory of (Hespanha J.P. and Morse A.S., 1999) and [START_REF] Zhai | Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach[END_REF], an average dwell time has to be calculated to guarantee the global system stability.

Consider during a period of time as 𝑡 𝑎 as showed in the Fig. 1, 𝑁 ′ denotes the number of switching over the time of 𝑡 𝑎 . For generalizing the problem, we consider 𝑁 ′ ≥ 𝑁 .

t

𝑉 𝑉 1 𝑉 2 𝑉 3 𝑉 𝑁 ′ -1 𝑉 𝑁 ′ 𝑡 0 𝑡 1 𝑡 2 𝑡 3 𝑡 𝑁 ′ -1 𝑡 𝑁 ′ 𝑡 𝑎

Fig. 1. Switching time-delay intervals

Decreasing sequence in Fig. 1 implies that there exits 𝜇 𝑖 , 𝑖 ∈ {1, ..., 𝑁 ′ }, the smaller positive real such that:

𝑉 𝑖+1 (𝑡, 𝑥 𝑡 , ẋ𝑡 ) ≤ 𝜇 𝑖 𝑉 𝑖 (𝑡, 𝑥 𝑡 , ẋ𝑡 ). ( 18 
)
This is implied by the following conditions:

𝑃 𝑖+1 ≤ 𝜇 𝑖 𝑃 𝑖 , 𝑒 -2𝛼𝑖+1𝜈𝑗 𝑆 𝑗(𝑖+1) ≤ 𝜇 𝑖 𝑒 -2𝛼𝑖𝜈𝑗 𝑆 𝑗𝑖 , 𝑒 -2𝛼𝑖+1𝜈𝑗 𝑅 𝑗(𝑖+1) ≤ 𝜇 𝑖 𝑒 -2𝛼𝑖𝜈𝑗 𝑅 𝑗𝑖 , (19) 
with 𝑗 ∈ {1, 2, ..., 𝑁 ′ }.

If the LMIs conditions above are satisfied, one have: 𝑉 𝑖 (𝑡, 𝑥 𝑡 , ṫ𝑡 ) ≤ 𝑒 -2𝛼𝑖(𝑡-𝑡0) 𝑉 𝑖 (𝑡 0 , 𝑥 𝑡0 , ẋ𝑡0 ) for each interval of time-delay. According to these conditions, the smaller positive 𝜇 𝑖 can be calculated.

Notice that:

𝑉 𝑁 ′ (𝑡 𝑎 , 𝑥 𝑡𝑎 , ẋ𝑡𝑎 ) ≤ 𝑒 -2𝛼 𝑁 ′ (𝑡𝑎-𝑡 𝑁 ′ ) 𝑉 𝑁 ′ (𝑡 𝑁 ′ , 𝑥 𝑡 𝑁 ′ , ẋ𝑡 𝑁 ′ ) ≤ 𝜇 𝑁 ′ 𝑒 -2𝛼 𝑁 ′ (𝑡𝑎-𝑡 𝑁 ′ ) 𝑉 𝑁 ′ -1 (𝑡 𝑁 ′ , 𝑥 𝑡 𝑁 ′ , ẋ𝑡 𝑁 ′ ) ≤ ⋅ ⋅ ⋅ ≤ 𝜇 1 𝜇 2 ⋅ ⋅ ⋅ 𝜇 𝑁 ′ 𝑒 -2𝛼1𝑡1 𝑒 -2𝛼2(𝑡2-𝑡1) ⋅ ⋅ ⋅ 𝑒 -2𝛼 𝑁 ′ (𝑡𝑎-𝑡 𝑁 ′ ) 𝑉 1 (𝑡 0 , 𝑥 𝑡0 , ẋ𝑡0 ) (20) 𝜇 1 𝜇 2 ⋅ ⋅ ⋅ 𝜇 𝑁 ′ 𝑒 -2𝛼1𝑡1 𝑒 -2𝛼2(𝑡2-𝑡1) ⋅ ⋅ ⋅ 𝑒 -2𝛼 𝑁 ′ (𝑡𝑎-𝑡 𝑁 ′
) ≤ 1 is sufficient to prove the switching stability for a given period of time 𝑡 𝑎 showed in Fig. 1, so the minimum average dwell time for the system has to satisfy the following condition:

(𝛼 1 -𝛼 2 )𝑡 1 + (𝛼 2 -𝛼 3 )𝑡 2 + ⋅ ⋅ ⋅ + 𝛼 𝑁 ′ 𝑡 𝑎 ≥ 0.5𝑙𝑛(𝜇 1 𝜇 2 ⋅ ⋅ ⋅ 𝜇 𝑁 ′ ). (21) 

NUMERICAL EXAMPLES

In this section, we use two numerical examples as the same as in (He Y. et al., 2004) to show our results. To compare with other methods, we here consider the stability conditions, i.e., in lemma (1), 𝛼 = 0.

Example 1. Consider the system (1) with

𝐴 = [ -2 0 0 -0.9 ] , 𝐴 1 = [ -1 0 -1 -1 ] . ( 22 
)
As listed in the table Fig. 4, when ℎ 1 = 0, our result greatly enlarge the value of maximum upper-bound of time-delay for the system. While considering for the case of interval variable time-delay, the comparison with the methods of [START_REF] Jiang | On h control for linear systems with interval time-varying delay[END_REF] and [START_REF] He | Delayrange-dependent stability for systems with time-varying delay[END_REF] shows the merits of our methods. Note that when ℎ 1 = 0, the result coincides with [START_REF] Park | Stability and robust stability for systems with a time-varying delay[END_REF].

To show the merits of using several intervals of timedelay, we take the same example with two intervals as suggested in [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF]. For simplicity, two intervals here are considered, i.e., the total interval is averaged divided into two smaller ones. Then the result in table 4 can be obtained. It is obvious that using multiple LKF reduces conservatism compared with common LKF [START_REF] Yue | A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay[END_REF] Example 2. Consider the system (1) with

𝐴 = [ 0 1 -1 -2 ] , 𝐴 1 = [ 0 0 -1 1 ] . ( 23 
)
In the table Fig. 4, for given lower bounds ℎ 1 of variable time-delay, the corresponding maximum values of upper bounds ℎ 2 are given by considering different methods to guarantee the stability of the system. The comparison shows that our results are much less conservative than the other methods.

As we can find in the two examples, when the upper bound of time-delay becomes bigger, considering an unique interval, it becomes very difficult to find a LKF to guarantee the stability for the system. Even that Lemma 1 has greatly removed the conservation for the result, but for the greater delay, the result is not satisfied. The method of dividing the one interval into several ones enlarges the bounds of time-delays.

CONCLUSION

In this paper, the delay-dependent stability condition is given for interval LTI time-delay system based on the piecewise analysis method and LKF method. The timedelay interval is divided into several smaller ones and the system switches according to the bounds of each interval. Using multiple LKF, exponential stability of each mode is obtain and the global stability is guaranteed by the average dwell time. For sake of simplicity, the delay interval is equally divided, but for some special cases when the timedelay varies much around the bounds of the intervals, an oscillation will be brought to the system. So, some techniques for dividing the time-delay interval can be further developed.

  Allowable upper bound of ℎ 2 with given ℎ 1 is 𝛼 1 = 0.46, 𝛼 2 = 0.01, 𝜇 1 = 𝜇 2 = 15. According to the equation 21, the minimum average dwell time can be calculated for a given period of time.

	Method	ℎ 1	0	1	2	3	4	4.4697
	(Jiang X. and Han Q. L., 2005) ℎ 2 1.01 1.64 2.39 3.20 4.06	-
	(He Y. et al., 2007)	ℎ 2 1.34 1.74 2.43 3.22 4.07	4.47
	(Park P.G. and Ko. J.W., 2007) ℎ 2 1.86	-	-	-	-	-
	Lemma 1	ℎ 2 1.86 2.06 2.61 3.31 4.09	4.47
	Fig. 2. Allowable upper bound of ℎ 2 with given ℎ 1							
	Method	𝜈 1	0	0.5	1.0	1.5	2.0	
	(Yue D. et al., 2008) 𝜈 3 1.98 2.05 2.16 2.37 2.64	
	our result	𝜈 3 2.08 2.34 2.58 2.81 3.05	
	Fig. 3. Allowable upper bound with switching delays							
	Method	ℎ 1	0	0.3	0.5	0.8	1	2
	(Jiang X. and Han Q. L., 2005) ℎ 2 0.67 0.91 1.07 1.33 1.50 2.39
	(He Y. et al., 2007)	ℎ 2 0.77 0.94 1.09 1.34 1.51 2.40
	Lemma 1	ℎ 2 1.06 1.24 1.38 1.6 1.75 2.58
	Fig. 4.							

, but a certain minimum dwell time has to be considered. So, for calculating the minimum dwell time, we divide the interval into two smaller ones. As showed in the equation 21, there is a compromise between the value of 𝛼 and 𝜇. For this example, we consider the time-delay interval as [ℎ1, ℎ2] = [0, 2.0], the best solution